Photocaging of Carboxylic Acids: A Modular Approach†
Dr. Wiktor Szymański
Center for Systems Chemistry, Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG, Groningen (The Netherlands)
Search for more papers by this authorWillem A. Velema
Center for Systems Chemistry, Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG, Groningen (The Netherlands)
Search for more papers by this authorCorresponding Author
Prof. Dr. Ben L. Feringa
Center for Systems Chemistry, Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG, Groningen (The Netherlands)
Center for Systems Chemistry, Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG, Groningen (The Netherlands)Search for more papers by this authorDr. Wiktor Szymański
Center for Systems Chemistry, Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG, Groningen (The Netherlands)
Search for more papers by this authorWillem A. Velema
Center for Systems Chemistry, Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG, Groningen (The Netherlands)
Search for more papers by this authorCorresponding Author
Prof. Dr. Ben L. Feringa
Center for Systems Chemistry, Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG, Groningen (The Netherlands)
Center for Systems Chemistry, Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG, Groningen (The Netherlands)Search for more papers by this authorWe thank Claudia Poloni for insightful discussions. Financial support from and the Ministry of Education, Culture and Science (Gravity program no. 024.001.035), Royal Netherlands Academy of Sciences (KNAW academy chair), and European Research Council (ERC Advanced grant 227897) is gratefully acknowledged.
Abstract
Photocaged compounds are important tools for studying and regulating multiple processes, including biological functions. Reported herein is the use of the Passerini multicomponent reaction for modular preparation of photocaged carboxylic acids. The reaction is compatible with several functionalities and proceeds smoothly both in water and dichloromethane. The choice of aldehyde determines the wavelength used for deprotection and enables formation of orthogonally protected products. The isocyanide component can be used for introduction of reactive tags and photosensitizers, as well as for immobilization on a solid support.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange_201402665_sm_miscellaneous_information.pdf3.6 MB | miscellaneous_information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aG. Mayer, A. Heckel, Angew. Chem. 2006, 118, 5020–5042; Angew. Chem. Int. Ed. 2006, 45, 4900–4921;
- 1bD. D. Young, A. Deiters, Org. Biomol. Chem. 2007, 5, 999–1005;
- 1cA. Deiters, ChemBioChem 2010, 11, 47–53;
- 1dA. A. Beharry, G. A. Woolley, Chem. Soc. Rev. 2011, 40, 4422–4437;
- 1eC. Brieke, F. Rohrbach, A. Gottschalk, G. Mayer, A. Heckel, Angew. Chem. 2012, 124, 8572–8604;
10.1002/ange.201202134 Google ScholarAngew. Chem. Int. Ed. 2012, 51, 8446–8476;
- 1fW. Szymanski, J. M. Beierle, H. A. V. Kistemaker, W. A. Velema, B. L. Feringa, Chem. Rev. 2013, 113, 6114–6178;
- 1gQ. Liu, A. Deiters, Acc. Chem. Res. 2014, 47, 45–55.
- 2
- 2aH.-M. Lee, D. R. Larson, D. S. Lawrence, ACS Chem. Biol. 2009, 4, 409–427;
- 2bQ. Shao, B. Xing, Chem. Soc. Rev. 2010, 39, 2835–2846;
- 2cP. Klán, T. Šolomek, C. G. Bochet, A. Blanc, R. Givens, M. Rubina, V. Popik, A. Kostikov, J. Wirz, Chem. Rev. 2013, 113, 119–191.
- 3C. A. Goubko, A. Basak, S. Majumdar, H. Jarrell, N. H. Khieu, X. Cao, J. Biomed. Mater. Res. A 2013, 101A, 787–796.
- 4C. Grewer, J. Jäger, B. K. Carpenter, G. P. Hess, Biochemistry 2000, 39, 2063–2070.
- 5
- 5aL. Fan, R. W. Lewis, G. P. Hess, B. Ganem, Bioorg. Med. Chem. Lett. 2009, 19, 3932–3933;
- 5bR. W. Lewis, G. P. Hess, B. Ganem, Future Med. Chem. 2011, 3, 243–250.
- 6K. Takaoka, Y. Tatsu, N. Yumoto, T. Nakajima, K. Shimamoto, Bioorg. Med. Chem. Lett. 2003, 13, 965–970.
- 7P. Neveu, I. Aujard, C. Benbrahim, T. Le Saux, J.-F. Allemand, S. Vriz, D. Bensimon, L. Jullien, Angew. Chem. Int. Ed. 2008, 47, 3744–3746; Angew. Chem. 2008, 120, 3804–3806.
- 8R. H. Pawle, V. Eastman, S. W. Thomas, J. Mater. Chem. 2011, 21, 14041–14047.
- 9M. W. Grinstaff, P. Barthelemy, C. Prata, L. Moreau, US2006/241071A1, 2006.
- 10D. A. Morgenstern, WO2013/55944A2, 2013.
- 11
- 11aB. Amit, D. A. Ben-Efraim, A. Patchornik, J. Am. Chem. Soc. 1976, 98, 843–844;
- 11bG. Papageorgiou, D. C. Ogden, A. Barth, J. E. T. Corrie, J. Am. Chem. Soc. 1999, 121, 6503–6504;
- 11cJ.-L. Débieux, C. G. Bochet, J. Phys. Org. Chem. 2010, 23, 272–282.
- 12
- 12aM. Passerini, L. Simone, Gazz. Chim. Ital. 1921, 51, 126–129;
- 12bA. Dömling, I. Ugi, Angew. Chem. Int. Ed. 2000, 39, 3168–3210;
10.1002/1521-3773(20000915)39:18<3168::AID-ANIE3168>3.0.CO;2-U CAS PubMed Web of Science® Google ScholarAngew. Chem. 2000, 112, 3300–3344;
- 12cA. Dömling, Chem. Rev. 2006, 106, 17–89.
- 13
- 13aA. E. J. de Nooy, G. Masci, V. Crescenzi, Macromolecules 1999, 32, 1318–1320;
- 13bM. C. Pirrung, K. Das Sarma, J. Am. Chem. Soc. 2004, 126, 444–445;
- 13cM. A. Mironov, M. N. Istvanova, M. I. Tokareva, V. S. Mokrushin, Tetrahedron Lett. 2005, 46, 3957–3960;
- 13dT. Sela, A. Vigalok, Adv. Synth. Catal. 2012, 354, 2407–2411.
- 14
- 14aZ. Y. Du, Y. H. Lu, X. D. Dai, D. Zhang-Negrerie, Q. Z. Gao, J. Chem. Res. 2013, 37, 181–185;
- 14bO. Kreye, T. Tóth, M. A. R. Mayer, J. Am. Chem. Soc. 2011, 133, 1790–1792;
- 14cQ. Xia, B. Ganem, Org. Lett. 2002, 4, 1631–1634;
- 14dW. Szymanski, R. Ostaszewski, Tetrahedron: Asymmetry 2006, 17, 2667–2671;
- 14eW. Szymanski, M. Zwolinska, R. Ostaszewski, Tetrahedron 2007, 63, 7647–7653.
- 15L. Li, A. Lv, X.-X. Deng, F.-S. Du, Z.-C. Li, Chem. Commun. 2013, 49, 8549–8551.
- 16A. P. Pelliccioli, J. Wirz, Photochem. Photobiol. Sci. 2002, 1, 441–458.
- 17
- 17aC. G. Bochet, Tetrahedron Lett. 2000, 41, 6341–6346;
- 17bS. Kantevari, M. Matsuzaki, Y. Kanemoto, H. Kasai, G. C. R. Ellis-Davies, Nat. Methods 2010, 7, 123–125;
- 17cA. Rodrigues-Correia, X. M. M. Weyel, A. Heckel, Org. Lett. 2013, 15, 5500–5503;
- 17dJ. P. Olson, M. R. Banghart, B. L. Sabatini, G. C. R. Ellis-Davies, J. Am. Chem. Soc. 2013, 135, 15948–15954;
- 17eV. San Miguel, C. G. Bochet, A. del Campo, J. Am. Chem. Soc. 2011, 133, 5380–5388;
- 17fJ.-L. Débieux, C. G. Bochet, Chem. Sci. 2012, 3, 405–406.
- 18aF. Guillier, D. Orain, M. Bradley, Chem. Rev. 2000, 100, 2091–2158;
- 18bA. Ajayaghosh, V. N. R. Pillai, J. Org. Chem. 1987, 52, 5714–5717;
- 18cC. Marinzi, J. Offer, R. Longhi, P. E. Dawson, Bioorg. Med. Chem. 2004, 12, 2749–2757.
- 19
- 19aJ. J. Chen, A. Golebiowski, J. McClenaghan, S. R. Klopfenstein, L. West, Tetrahedron Lett. 2001, 42, 2269–2271;
- 19bN. R. Aguiam, V. I. Castro, A. I. F. Ribeiro, R. D. V. Fernandes, C. M. Carvalho, S. P. G. Costa, S. M. M. A. Pereira-Lima, Tetrahedron 2013, 69, 9161–9165.
- 20
- 20aD. Wöll, S. Walbert, K. P. Stengele, T. J. Albert, T. Richmond, J. Norton, M. Singer, R. D. Green, W. Pfleiderer, U. E. Steiner, Helv. Chim. Acta 2004, 87, 28–45;
- 20bD. Wöll, S. Laimgruber, M. Galetskaya, J. Smirnova, W. Pfleiderer, B. Heinz, P. Gilch, U. E. Steiner, J. Am. Chem. Soc. 2007, 129, 12148–12158.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.