Self-assembled Dynamic 3D Fingerprints in Liquid-Crystal Coatings Towards Controllable Friction and Adhesion†
Dr. Danqing Liu
Laboratory of Functional Organic Materials & Devices (SFD), Department of Chemical Engineering & Chemistry, Eindhoven University of Technology, Den Dolech 2, 5612 AZ Eindhoven (The Netherlands)
Search for more papers by this authorCorresponding Author
Dr. Dirk J. Broer
Laboratory of Functional Organic Materials & Devices (SFD), Department of Chemical Engineering & Chemistry, Eindhoven University of Technology, Den Dolech 2, 5612 AZ Eindhoven (The Netherlands)
Institute for Complex Molecular Systems (ICMS), P.O. Box 513, 5600 MB Eindhoven (The Netherlands)
Laboratory of Functional Organic Materials & Devices (SFD), Department of Chemical Engineering & Chemistry, Eindhoven University of Technology, Den Dolech 2, 5612 AZ Eindhoven (The Netherlands)===Search for more papers by this authorDr. Danqing Liu
Laboratory of Functional Organic Materials & Devices (SFD), Department of Chemical Engineering & Chemistry, Eindhoven University of Technology, Den Dolech 2, 5612 AZ Eindhoven (The Netherlands)
Search for more papers by this authorCorresponding Author
Dr. Dirk J. Broer
Laboratory of Functional Organic Materials & Devices (SFD), Department of Chemical Engineering & Chemistry, Eindhoven University of Technology, Den Dolech 2, 5612 AZ Eindhoven (The Netherlands)
Institute for Complex Molecular Systems (ICMS), P.O. Box 513, 5600 MB Eindhoven (The Netherlands)
Laboratory of Functional Organic Materials & Devices (SFD), Department of Chemical Engineering & Chemistry, Eindhoven University of Technology, Den Dolech 2, 5612 AZ Eindhoven (The Netherlands)===Search for more papers by this authorThe results presented are part a research program financed by the Dutch Polymer Institute (DPI), project no 775.
Abstract
Chiral-nematic polymer network coatings form a “fingerprint” texture through self-assembly. For this purpose the molecular helix of the coating is oriented parallel to the substrate. The coating has a flat surface but when actuated by light in the presence of a copolymerized azobenzene compound, 3D fingerprint structures appear in the coating. The helix forms protrusions at the positions where the molecules are aligned parallel to the surface and withdraws at the positions where the orientation is perpendicular. This process proceeds rapidly and is reversible, that is, the fingerprint-shaped protrusions disappear when the light is switched off. The texture in the on-state resembles that of a human fingerprint and is used to manipulate the gripping friction of a robotic finger. The friction coefficient drops by a factor of four to five when the fingerprint switched on because of reduced surface contacts.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange_201400370_sm_miscellaneous_information.pdf1.5 MB | miscellaneous_information |
ange_201400370_sm_movies1.wmv15.9 MB | movies1 |
ange_201400370_sm_movies2.wmv279.7 KB | movies2 |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1C. J. Ting, C. F. Chen, C. P. Chou, Opt. Commun. 2009, 282, 434–438.
- 2L. Dong, A. K. Agarwal, D. J. Beebe, H. Jiang, Nature 2006, 442, 551–554.
- 3
- 3aJ. Y. Chung, J. P. Youngblood, C. M. Stafford, Soft Matter 2007, 3, 1163–1169;
- 3bZ.-Z. Gu, H. Uetsuka, K. Takahashi, R. Nakajima, H. Onishi, A. Fujishima, O. Sato, Angew. Chem. 2003, 115, 922–925; Angew. Chem. Int. Ed. 2003, 42, 894–897.
- 4M. Varenberg, S. N. Gorb, Adv. Mater. 2009, 21, 483–486.
- 5M. D. Bartlett, A. B. Croll, A. J. Crosby, Adv. Funct. Mater. 2012, 22, 4985–4992.
- 6Y. Bar-Cohen, IJASS 2012, 13, 1–13.
- 7
- 7aY. Gritsai, L. M. Goldenberg, J. Stumpe, Opt. Express 2011, 19, 18687–18695;
- 7bH. E. Jeong, M. K. Kwak, K. Y. Suh, Langmuir 2010, 26, 2223–2226;
- 7cM. Guvendiren, S. Yang, J. A. Burdick, Adv. Funct. Mater. 2009, 19, 3038–3045;
- 7dD. P. Holmes, A. J. Crosby, Adv. Mater. 2007, 19, 3589–3593;
- 7eD. M. Drotlef, P. Blümler, A. del Campo, Adv. Mater. 2014, 26, 775–779;
- 7fS. Reddy, E. Arzt, A. del Campo, Adv. Mater. 2007, 19, 3833–3837.
- 8
- 8aD. Liu, C. M. W. Bastiaansen, J. M. J. den Toonder, D. J. Broer, Angew. Chem. 2012, 124, 916–920; Angew. Chem. Int. Ed. 2012, 51, 892–896;
- 8bJ. Yoon, P. Bian, J. Kim, T. J. McCarthy, R. C. Hayward, Angew. Chem. 2012, 124, 7258–7261; Angew. Chem. Int. Ed. 2012, 51, 7146–7149;
- 8cM. E. Sousa, D. J. Broer, C. W. M. Bastiaansen, L. B. Freund, G. P. Crawford, Adv. Mater. 2006, 18, 1842–1845.
- 9D. Liu, C. W. M. Bastiaansen, J. M. J. Toonder, D. J. Broer, Langmuir 2013, 29, 5622–5629.
- 10D. Liu, C. M. W. Bastiaansen, J. M. J. den Toonder, D. J. Broer, Macromolecules 2012, 45, 8005–8012.
- 11
- 11aJ. S. Evans, P. J. Ackerman, D. J. Broer, J. Lagemaat, I. I. Smalyukh, Phys. Rev. E 2013, 87, 032503;
- 11bM. Warner, C. D. Modes, D. Corbett, Proc. R. Soc. London Ser. A 2010, 466, 2975–2989;
- 11cM. Camacho-Lopez, H. Finkelmann, P. Palffy-Muhoray, M. Shelley, Nat. Mater. 2004, 3, 307–310;
- 11dT. J. White, S. V. Serak, N. V. Tabiryan, R. A. Vaia, T. J. Bunning, J. Mater. Chem. 2009, 19, 1080–1085;
- 11eC. L. Van Oosten, C. W. M. Bastiaansen, D. J. Broer, Nat. Mater. 2009, 8, 677–682;
- 11fT. Kosa, L. Sukhomlinova, L. Su, B. Taheri, T. J. White, T. J. Bunning, Nature 2012, 485, 347–349;
- 11gY. Yu, M. Nakano, T. Ikeda, Nature 2003, 425, 145–145;
- 11hJ. Cui, D. M. Drotlef, I. Larraza, J. P. Fernández-Blázquez, L. F. Boesel, C. Ohm, M. Mezger, R. Zentel, A. del Campo, Adv. Mater. 2012, 24, 4601–4604.
- 12R. Eelkema, M. M. Pollard, J. Vicario, V. Katsonis, B. S. Ramon, C. W. M. Bastiaansen, D. J. Broer, B. L. Feringa, Nature 2006, 440, 163–163.
- 13A. A. Beharry, G. A. Woolley, Chem. Soc. Rev. 2011, 40, 4422–4437.
- 14
- 14aT. Frisch, L. Gil, J. M. Gilli, Phys. Rev. E 1993, 48, R 4199–R4202;
- 14bJ. Baudry, M. Brazovskaia, L. Lejcek, P. Oswald, S. Pirkl, Liq. Cryst. 1996, 21, 893–901.
- 15R. P. Kusv, J. Q. Whitley, J. Biomech. 1990, 23, 913–925.
- 16C. Pang, T. Kim, W. G. Bae, D. Kang, S. M. Kim, K.-Y. Suh, Adv. Mater. 2012, 24, 475–479.
- 17M. Ibn-Elhaj, M. Schadt, Nature 2001, 410, 796–799.
- 18A. D. Stroock, S. K. W. Dertinger, A. Ajdari, I. Mezić, H. A. Stone, G. M. Whitesides, Science 2002, 295, 647–651.
- 19V. Jayawarna, Adv. Mater. 2006, 18, 611–614.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.