Voltage-Driven Reversible Insertion into and Leaving from a Lipid Bilayer: Tuning Transmembrane Transport of Artificial Channels†
Wen Si
Department of Chemistry, Fudan University, 220 Handan Road, Shanghai 200433 (China)
Search for more papers by this authorProf. Zhan-Ting Li
Department of Chemistry, Fudan University, 220 Handan Road, Shanghai 200433 (China)
Search for more papers by this authorCorresponding Author
Prof. Jun-Li Hou
Department of Chemistry, Fudan University, 220 Handan Road, Shanghai 200433 (China)
Department of Chemistry, Fudan University, 220 Handan Road, Shanghai 200433 (China)===Search for more papers by this authorWen Si
Department of Chemistry, Fudan University, 220 Handan Road, Shanghai 200433 (China)
Search for more papers by this authorProf. Zhan-Ting Li
Department of Chemistry, Fudan University, 220 Handan Road, Shanghai 200433 (China)
Search for more papers by this authorCorresponding Author
Prof. Jun-Li Hou
Department of Chemistry, Fudan University, 220 Handan Road, Shanghai 200433 (China)
Department of Chemistry, Fudan University, 220 Handan Road, Shanghai 200433 (China)===Search for more papers by this authorWe are grateful to the National Basic Research Program (grant number 2013CB834501), the Ministry of Education of China (grant number IRT1117), NSFC (grant number 91027008), and FANEDD (grant number 200930) for financial support.
Abstract
Three new artificial transmembrane channel molecules have been designed and synthesized by attaching positively charged Arg-incorporated tripeptide chains to pillar[5]arene. Fluorescent and patch-clamp experiments revealed that voltage can drive the molecules to insert into and leave from a lipid bilayer and thus switch on and off the transport of K+ ions. One of the molecules was found to display antimicrobial activity toward Bacillus subtilis with half maximal inhibitory concentration (IC50) of 10 μM which is comparable to that of natural channel-forming peptide alamethicin.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange_201311249_sm_miscellaneous_information.pdf1.5 MB | miscellaneous_information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1B. Hille, Ionic Channels of Excitable Membranes, 2nd ed., Sinauer, Sunderland, 1992.
- 2
- 2aW. Lu, C. M. Lieber, Nat. Mater. 2007, 6, 841–850;
- 2bR. Waser, M. Aono, Nat. Mater. 2007, 6, 833–840.
- 3
- 3aK. S. Akerfeldt, J. D. Lear, Z. R. Wasserman, L. A. Chung, W. F. DeGrado, Acc. Chem. Res. 1993, 26, 191–197;
- 3bG. W. Gokel, A. Mukhopadhyay, Chem. Soc. Rev. 2001, 30, 274–286;
- 3cT. M. Fyles, Chem. Soc. Rev. 2007, 36, 335–347;
- 3dA. P. Davis, D. N. Sheppard, B. D. Smith, Chem. Soc. Rev. 2007, 36, 348–357;
- 3eX. Li, Y.-D. Wu, D. Yang, Acc. Chem. Res. 2008, 41, 1428–1438;
- 3fS. Matile, V. A. Jentzsch, J. Montenegro, A. Fin, Chem. Soc. Rev. 2011, 40, 2453–2474;
- 3gY. Zhao, H. Cho, L. Widanapathirana, S. Zhang, Acc. Chem. Res. 2013, 46, 2763–2772;
- 3hB. Gong, Z. Shao, Acc. Chem. Res. 2013, 46, 2856–2866;
- 3iJ. Montenegro, M. R. Ghadiri, J. R. Granja, Acc. Chem. Res. 2013, 46, 2955–2965.
- 4P. A. Gale, Acc. Chem. Res. 2011, 44, 216–226.
- 5
- 5aY. J. Jeon, H. Kim, S. Jon, N. Selvapalam, D. Y. Oh, I. Seo, C.-S. Park, S. R. Jung, D.-S. Koh, K. kim, J. Am. Chem. Soc. 2004, 126, 15944–15945;
- 5bT. Liu, C. Bao, H. Wang, Y. Lin, H. Jia, L. Zhu, Chem. Commun. 2013, 49, 10311–10313;
- 5cN. Sakai, S. Matile, Langmuir 2013, 29, 9031–9040.
- 6
- 6aY. Kobuke, K. Ueda, M. Sokabe, Chem. Lett. 1995, 435–436;
- 6bT. M. Fyles, D. Loock, X. Zhou, J. Am. Chem. Soc. 1998, 120, 2997–3003;
- 6cJ.-Y. Winum, S. Matile, J. Am. Chem. Soc. 1999, 121, 7961–7962;
- 6dC. Goto, M. Yamamura, A. Satake, Y. Kobuke, J. Am. Chem. Soc. 2001, 123, 12152–12159;
- 6eN. Sakai, D. Gerard, S. Matile, J. Am. Chem. Soc. 2001, 123, 2517–2524.
- 7
- 7aC. M. Armstrong, F. Bezanilla, J. Gen. Physiol. 1974, 63, 533–552;
- 7bF. J. Sigworth, Q. Rev. Biophys. 1994, 27, 1–40;
- 7cF. Bezanilla, Physiol. Rev. 2000, 80, 555–592;
- 7dH. C. Lai, L. Y. Jan, Nat. Rev. Neurosci. 2006, 7, 548–562.
- 8
- 8aY. Jiang, V. Ruta, J. Chen, A. Lee, R. MacKinnon, Nature 2003, 423, 42–48;
- 8bF. Tombola, M. M. Pathak, E. Y. Isacoff, Annu. Rev. Cell Dev. Biol. 2006, 22, 23–52.
- 9
- 9aT. Ogoshi, S. Kanai, S. Fujinami, T.-A. Yamagishi, Y. Nakamoto, J. Am. Chem. Soc. 2008, 130, 5022–5023;
- 9bC. Li, Q. Xu, J. Li, F. Yao, X. Jia, Org. Biomol. Chem. 2010, 8, 1568–1576;
- 9cZ. Zhang, Y. Luo, J. Chen, S. Dong, Y. Yu, Z. Ma, F. Huang, Angew. Chem. 2011, 123, 1433–1437; Angew. Chem. Int. Ed. 2011, 50, 1397–1401;
- 9dP. J. Cragg, K. Sharma, Chem. Soc. Rev. 2012, 41, 597–607;
- 9eM. Xue, Y. Yang, X. Chi, Z. Zhang, F. Huang, Acc. Chem. Res. 2012, 45, 1294–1308;
- 9fY. Yao, M. Xue, J. Chen, M. Zhang, F. Huang, J. Am. Chem. Soc. 2012, 134, 15712–15715;
- 9gG. Yu, C. Han, Z. Zhang, J. Chen, X. Yan, B. Zheng, S. Liu, F. Huang, J. Am. Chem. Soc. 2012, 134, 8711–8717;
- 9hG. Yu, X. Zhou, Z. Zhang, C. Han, Z. Mao, C. Gao, F. Huang, J. Am. Chem. Soc. 2012, 134, 19489–19497;
- 9iH. Li, D.-X. Chen, Y.-L. Sun, Y. B. Zheng, L.-L. Tan, P. S. Weiss, Y.-W. Yang, J. Am. Chem. Soc. 2013, 135, 1570–1576;
- 9jQ. Duan, Y. Cao, Y. Li, X. Hu, T. Xiao, C. Lin, Y. Pan, L. Wang, J. Am. Chem. Soc. 2013, 135, 10542–10549.
- 10
- 10aW. Si, L. Chen, X.-B. Hu, G. Tang, Z. Chen, J.-L. Hou, Z.-T. Li, Angew. Chem. 2011, 123, 12772–12776; Angew. Chem. Int. Ed. 2011, 50, 12564–12568;
- 10bX.-B. Hu, Z. Chen, G. Tang, J.-L. Hou, Z.-T. Li, J. Am. Chem. Soc. 2012, 134, 8384–8387;
- 10cL. Chen, W. Si, L. Zhang, G. Tang, Z.-T. Li, J.-L. Hou, J. Am. Chem. Soc. 2013, 135, 2152–2155.
- 11S. Matile, N. Sakai, A. Hennig, Transport Experiments in Membranes in Supramolecular Chemistry: From Molecules to Nanomaterials (Eds.: ), Wiley, Hoboken, 2012.
- 12G. A. Woolley, C. M. Deber, Biopolymers 1989, 28, 267–272.
- 13M. Dobler, Ionophores and Their Structures, Wiley, New York, 1981.
- 14N. Sakai, S. Matile, J. Am. Chem. Soc. 2002, 124, 1184–1185.
- 15R. H. Ashley, Ion Channels: A Practical Approach, Oxford University Press, Oxford, 1995.
10.1093/oso/9780199634750.001.0001 Google Scholar
- 16The negative and positive pulsing times are important parameters for this experiment. A too long negative pulsing time would cause many channel molecules to insert into and to damage the bilayer. After many experiments, we established that 30 s was the suitable negative pulsing time and 90 s of positive pulsing could force all the inserted channel molecules to leave out.
- 17J. K. W. Chui, T. M. Fyles, Chem. Soc. Rev. 2012, 41, 148–175.
- 18
- 18aN. Sakai, D. Houdebert, S. Matile, Chem. Eur. J. 2003, 9, 223–232;
- 18bA. Hennig, L. Fischer, G. Guichard, S. Matile, J. Am. Chem. Soc. 2009, 131, 16889–16895.
- 19D. Novo, N. G. Perlmutter, R. H. Hunt, H. M. Shapiro, Cytometry 1999, 35, 55–63.
10.1002/(SICI)1097-0320(19990101)35:1<55::AID-CYTO8>3.0.CO;2-2 CAS PubMed Web of Science® Google Scholar
- 20F. Wang, L. Qin, C. J. Pace, P. Wong, R. Malonis, J. Gao, ChemBioChem 2012, 13, 51–55.
- 21J. G. Hurdle, A. J. O’Neill, I. Chopra, R. E. Lee, Nat. Rev. Microbiol. 2011, 9, 62–75.
- 22I. Wiegand, K. Hilpert, R. E. W. Hancock, Nat. Protoc. 2008, 3, 163–175.
- 23B. Bechinger, J. Membr. Biol. 1997, 156, 197–211.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.