Separation of Photoactive Conformers Based on Hindered Diarylethenes: Efficient Modulation in Photocyclization Quantum Yields†
Wenlong Li
Key Laboratory for Advanced Materials and Institute of Fine Chemicals, Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science & Technology, Shanghai 200237 (China)
Search for more papers by this authorChanghong Jiao
Key Laboratory for Advanced Materials and Institute of Fine Chemicals, Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science & Technology, Shanghai 200237 (China)
Search for more papers by this authorDr. Xin Li
Key Laboratory for Advanced Materials and Institute of Fine Chemicals, Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science & Technology, Shanghai 200237 (China)
Search for more papers by this authorProf. Dr. Yongshu Xie
Key Laboratory for Advanced Materials and Institute of Fine Chemicals, Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science & Technology, Shanghai 200237 (China)
Search for more papers by this authorProf. Dr. Keitaro Nakatani
PPSM, ENS Cachan, CNRS, UniverSud, 61 av Président Wilson, 94230 Cachan (France)
Search for more papers by this authorProf. Dr. He Tian
Key Laboratory for Advanced Materials and Institute of Fine Chemicals, Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science & Technology, Shanghai 200237 (China)
Search for more papers by this authorCorresponding Author
Prof. Dr. Weihong Zhu
Key Laboratory for Advanced Materials and Institute of Fine Chemicals, Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science & Technology, Shanghai 200237 (China)
Key Laboratory for Advanced Materials and Institute of Fine Chemicals, Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science & Technology, Shanghai 200237 (China)===Search for more papers by this authorWenlong Li
Key Laboratory for Advanced Materials and Institute of Fine Chemicals, Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science & Technology, Shanghai 200237 (China)
Search for more papers by this authorChanghong Jiao
Key Laboratory for Advanced Materials and Institute of Fine Chemicals, Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science & Technology, Shanghai 200237 (China)
Search for more papers by this authorDr. Xin Li
Key Laboratory for Advanced Materials and Institute of Fine Chemicals, Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science & Technology, Shanghai 200237 (China)
Search for more papers by this authorProf. Dr. Yongshu Xie
Key Laboratory for Advanced Materials and Institute of Fine Chemicals, Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science & Technology, Shanghai 200237 (China)
Search for more papers by this authorProf. Dr. Keitaro Nakatani
PPSM, ENS Cachan, CNRS, UniverSud, 61 av Président Wilson, 94230 Cachan (France)
Search for more papers by this authorProf. Dr. He Tian
Key Laboratory for Advanced Materials and Institute of Fine Chemicals, Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science & Technology, Shanghai 200237 (China)
Search for more papers by this authorCorresponding Author
Prof. Dr. Weihong Zhu
Key Laboratory for Advanced Materials and Institute of Fine Chemicals, Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science & Technology, Shanghai 200237 (China)
Key Laboratory for Advanced Materials and Institute of Fine Chemicals, Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science & Technology, Shanghai 200237 (China)===Search for more papers by this authorThis work was supported by National 973 Program (No. 2013CB733700), NSFC/China, NSFC for Distinguished Young Scholars (Grant No. 21325625), the Oriental Scholarship, National Major Scientific Technological Special Project (2012YQ15008709), SRFDP 20120074110002, and the Fundamental Research Funds for the Central Universities (WK1013002).
Abstract
Endowing both solvent independency and excellent thermal bistability, the benzobis(thiadiazole)-bridged diarylethene system provides an efficient approach to realize extremely high photocyclization quantum yields (Φo-c, up to 90.6 %) by both separating completely pure anti-parallel conformer and suppressing intramolecular charge transfer (ICT).
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange_201310438_sm_miscellaneous_information.pdf4.9 MB | miscellaneous_information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aM. Irie, Chem. Rev. 2000, 100, 1685–1716;
- 1bW. Szymański, J. M. Beierle, H. A. V. Kistemaker, W. A. Velema, B. L. Feringa, Chem. Rev. 2013, 113, 6114–6178;
- 1cC.-J. Carling, J.-C. Boyer, N. R. Branda, J. Am. Chem. Soc. 2009, 131, 10838–10839;
- 1dK. Suzuki, T. Ubukata, Y. Yokoyama, Chem. Commun. 2012, 48, 765–767;
- 1eW. H. Zhu, L. W. Song, Y. H. Yang, H. Tian, Chem. Eur. J. 2012, 18, 13388–13394;
- 1fY. Zou, T. Yi, S. Z. Xiao, F. Y. Li, C. Y. Li, X. Gao, J. C. Wu, M. X. Yu, C. H. Huang, J. Am. Chem. Soc. 2008, 130, 15750–15751;
- 1gT. Q. Wu, M. Barker, K. M. Arafeh, J.-C. Boyer, C.-J. Carling, N. R. Branda, Angew. Chem. 2013, 125, 11312–11315; Angew. Chem. Int. Ed. 2013, 52, 11106–11109.
- 2
- 2aH. Tian, Y. L. Feng, J. Mater. Chem. 2008, 18, 1617–1622;
- 2bS. J. Chen, L. J. Chen, H. B. Yang, H. Tian, W. H. Zhu, J. Am. Chem. Soc. 2012, 134, 13596–13599;
- 2cB. M. Neilson, C. W. Bielawski, J. Am. Chem. Soc. 2012, 134, 12693–12699;
- 2dH. B. Cheng, H. Y. Zhang, Y. Liu, J. Am. Chem. Soc. 2013, 135, 10190–10193;
- 2eH. Sun, X. Tian, J. Autschbach, Y. Yuan, J. Sun, X. Liu, C. Chen, H. Cao, J. Mater. Chem. C 2013, 1, 5779–5790.
- 3
- 3aT. A. Darwish, R. A. Evans, M. James, N. Malic, G. Triani, T. L. Hanley, J. Am. Chem. Soc. 2010, 132, 10748–10755;
- 3bS. J. Chen, Y. H. Yang, Y. Wu, H. Tian, W. H. Zhu, J. Mater. Chem. 2012, 22, 5486–5494;
- 3cD. Gust, J. Andréasson, U. Pischel, T. A. Moore, A. L. Moore, Chem. Commun. 2012, 48, 1947–1957;
- 3dQ. Zou, X. Li, J. J. Zhang, J. Zhou, B. B. Sun, H. Tian, Chem. Commun. 2012, 48, 2095–2097;
- 3eM. Bälter, S. Li, J. R. Nilsson, J. Andréasson, U. Pischel, J. Am. Chem. Soc. 2013, 135, 10230–10233;
- 3fS. J. Chen, Z. Q. Guo, S. Q. Zhu, W. Shi, W. H. Zhu, ACS Appl. Mater. Interfaces 2013, 5, 5623–5629;
- 3gS. Z. Pu, Z. P. Tong, G. Liu, R. J. Wang, J. Mater. Chem. C 2013, 1, 4726–4739.
- 4
- 4aM. Berberich, A.-M. Krause, M. Orlandi, F. Scandola, F. Würthner, Angew. Chem. 2008, 120, 6718–6721;
10.1002/ange.200802007 Google ScholarAngew. Chem. Int. Ed. 2008, 47, 6616–6619;
- 4bG. Y. Jiang, Y. L. Song, X. F. Guo, D. Q. Zhang, D. B. Zhu, Adv. Mater. 2008, 20, 2888–2898;
- 4cJ. Kärnbratt, M. Hammarson, S. Li, H. L. Anderson, B. Albinsson, J. Andréasson, Angew. Chem. 2010, 122, 1898–1901;
10.1002/ange.200906088 Google ScholarAngew. Chem. Int. Ed. 2010, 49, 1854–1857;
- 4dT. Fukaminato, T. Doi, N. Tamaoki, K. Okuno, Y. Ishibashi, H. Miyasaka, M. Irie, J. Am. Chem. Soc. 2011, 133, 4984–4990.
- 5
- 5aY. Nakayama, K. Hayashi, M. Irie, J. Org. Chem. 1990, 55, 2592–2596;
- 5bM. Irie, M. Mohri, J. Org. Chem. 1988, 53, 803–808;
- 5cT. Kudernac, T. Kobayashi, A. Uyama, K. Uchida, S. Nakamura, B. L. Feringa, J. Phys. Chem. A 2013, 117, 8222–8229;
- 5dY. Asano, A. Murakami, T. Kobayashi, S. Kobatake, M. Irie, S. Yabushita, S. Nakamura, J. Mol. Struct. THEOCHEM 2003, 625, 227–234.
- 6
- 6aS. Kawai, T. Nakashima, Y. Kutsunugi, H. Nakagawa, H. Nakano, T. Kawai, J. Mater. Chem. 2009, 19, 3606–3611;
- 6bS. Fukumoto, T. Nakashima, T. Kawai, Angew. Chem. 2011, 123, 1603–1606; Angew. Chem. Int. Ed. 2011, 50, 1565–1568;
- 6cS. Fukumoto, T. Nakashima, T. Kawai, Eur. J. Org. Chem. 2011, 5047–5053;
- 6dT. Nakashima, R. Fujii, T. Kawai, Chem. Eur. J. 2011, 17, 10951–10957;
- 6eK. Morinaka, T. Ubukata, Y. Yokoyama, Org. Lett. 2009, 11, 3890–3893;
- 6fH. Ogawa, K. Takagi, T. Ubukata, A. Okamoto, N. Yonezawa, S. Delbaere, Y. Yokoyama, Chem. Commun. 2012, 48, 11838–11840.
- 7
- 7aM. Takeshita, M. Nagai, T. Yamato, Chem. Commun. 2003, 1496–1497;
- 7bM. K. Hossain, M. Takeshita, T. Yamato, Eur. J. Org. Chem. 2005, 2771–2776.
- 8
- 8aM. Takeshita, C. N. Choi, M. Irie, Chem. Commun. 1997, 2265–2266;
- 8bM. Takeshita, N. Kato, S. Kawauchi, T. Imase, J. Watanabe, M. Irie, J. Org. Chem. 1998, 63, 9306–9313;
- 8cM. Takeshita, M. Yamada, N. Kato, M. Irie, J. Chem. Soc. Perkin Trans. 2 2000, 619–622;
- 8dF. Stellacci, C. Bertarelli, F. Toscano, M. C. Gallazzi, G. Zotti, G. Zerbi, Adv. Mater. 1999, 11, 292–295;
- 8eK. Uchida, E. Tsuchida, Y. Aoi, S. Nakamura, M. Irie, Chem. Lett. 1999, 28, 63–64;
10.1246/cl.1999.63 Google Scholar
- 8fR. T. F. Jukes, V. Adamo, F. Hartl, P. Belser, L. De Cola, Inorg. Chem. 2004, 43, 2779–2792;
- 8gT. Yamaguchi, M. Irie, J. Photochem. Photobiol. A 2006, 178, 162–169;
- 8hA. R. Santos, R. Ballardini, P. Belser, M. T. Gandolfi, V. M. Iyer, L. Moggi, Photochem. Photobiol. Sci. 2009, 8, 1734–1742;
- 8iR. Göstl, B. Kobin, L. Grubert, M. Pätzel, S. Hecht, Chem. Eur. J. 2012, 18, 14282–14285;
- 8jV. W.-W. Yam, C.-C. Ko, N. Zhu, J. Am. Chem. Soc. 2004, 126, 12734–12735;
- 8kS. Aloïse, M. Sliwa, Z. Pawlowska, J. Réhault, J. Dubois, O. Poizat, G. Buntinx, A. Perrier, F. Maurel, S. Yamaguchi, M. Takeshita, J. Am. Chem. Soc. 2010, 132, 7379–7390.
- 9
- 9aW. H. Zhu, Y. H. Yang, R. Metivier, Q. Zhang, R. Guillot, Y. S. Xie, H. Tian, K. Nakatani, Angew. Chem. 2011, 123, 11178–11182; Angew. Chem. Int. Ed. 2011, 50, 10986–10990;
- 9bY. H. Yang, Y. S. Xie, Q. Zhang, K. Nakatani, H. Tian, W. H. Zhu, Chem. Eur. J. 2012, 18, 11685–11694.
- 10I. Alkorta, J. Elguero, C. Roussel, N. Vanthuyne, P. Piras, Adv. Heterocycl. Chem., Vol. 105 (Ed.: ), Academic Press Elsevier (Amsterdam), 2012, pp. 4,.
- 11
- 11aN. Tanaka, C. Okabe, K. Sakota, T. Fukaminato, T. Kawai, M. Irie, A. Goldberg, S. Nakamura, H. Sekiya, J. Mol. Struct. 2002, 616, 113–118;
- 11bS. Aloïse, M. Sliwa, G. Buntinx, S. Delbaere, A. Perrier, F. Maurel, D. Jacquemin, M. Takeshita, Phys. Chem. Chem. Phys. 2013, 15, 6226–6234.
- 12
- 12aS. Kobatake, K. Uchida, E. Tsuchida, M. Irie, Chem. Commun. 2002, 2804–2805;
- 12bM. Morimoto, M. Irie, Chem. Commun. 2005, 3895–3905;
- 12cK. Shibata, K. Muto, S. Kobatake, M. Irie, J. Phys. Chem. A 2002, 106, 209–214.
- 13
- 13aS. Fukumoto, T. Nakagawa, S. Kawai, T. Nakashima, T. Kawai, Dyes Pigm. 2011, 89, 297–304;
- 13bS. Pu, C. Fan, W. Miao, G. Liu, Tetrahedron 2008, 64, 9464–9470;
- 13cG. Liu, S. Pu, R. Wang, Org. Lett. 2013, 15, 980–983;
- 13dH. Ohara, M. Morimoto, M. Irie, Photochem. Photobiol. Sci. 2010, 9, 1079–1081.
- 14M. Hanazawa, R. Sumiya, Y. Horikawa, M. Irie, J. Chem. Soc. Chem. Commun. 1992, 206–207.
- 15M. Irie, K. Sayo, J. Phys. Chem. 1992, 96, 7671–7674.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.