Controlled Carbon Nitride Growth on Surfaces for Hydrogen Evolution Electrodes†
Corresponding Author
Dr. Menny Shalom
Department of Colloid Chemistry, Max Planck Institute of Colloids and Interfaces, Research Campus Golm, 14424 Potsdam (Germany)
Department of Colloid Chemistry, Max Planck Institute of Colloids and Interfaces, Research Campus Golm, 14424 Potsdam (Germany)Search for more papers by this authorDr. Sixto Gimenez
Departament de Física, Photovoltaics and Optoelectronic Devices Group, Universitat Jaume I, 12071 Castelló (Spain)
Search for more papers by this authorFlorian Schipper
Department of Colloid Chemistry, Max Planck Institute of Colloids and Interfaces, Research Campus Golm, 14424 Potsdam (Germany)
Search for more papers by this authorIsaac Herraiz-Cardona
Departament de Física, Photovoltaics and Optoelectronic Devices Group, Universitat Jaume I, 12071 Castelló (Spain)
Search for more papers by this authorProf. Juan Bisquert
Departament de Física, Photovoltaics and Optoelectronic Devices Group, Universitat Jaume I, 12071 Castelló (Spain)
Search for more papers by this authorProf. Dr. Markus Antonietti
Department of Colloid Chemistry, Max Planck Institute of Colloids and Interfaces, Research Campus Golm, 14424 Potsdam (Germany)
Search for more papers by this authorCorresponding Author
Dr. Menny Shalom
Department of Colloid Chemistry, Max Planck Institute of Colloids and Interfaces, Research Campus Golm, 14424 Potsdam (Germany)
Department of Colloid Chemistry, Max Planck Institute of Colloids and Interfaces, Research Campus Golm, 14424 Potsdam (Germany)Search for more papers by this authorDr. Sixto Gimenez
Departament de Física, Photovoltaics and Optoelectronic Devices Group, Universitat Jaume I, 12071 Castelló (Spain)
Search for more papers by this authorFlorian Schipper
Department of Colloid Chemistry, Max Planck Institute of Colloids and Interfaces, Research Campus Golm, 14424 Potsdam (Germany)
Search for more papers by this authorIsaac Herraiz-Cardona
Departament de Física, Photovoltaics and Optoelectronic Devices Group, Universitat Jaume I, 12071 Castelló (Spain)
Search for more papers by this authorProf. Juan Bisquert
Departament de Física, Photovoltaics and Optoelectronic Devices Group, Universitat Jaume I, 12071 Castelló (Spain)
Search for more papers by this authorProf. Dr. Markus Antonietti
Department of Colloid Chemistry, Max Planck Institute of Colloids and Interfaces, Research Campus Golm, 14424 Potsdam (Germany)
Search for more papers by this authorM.S. thanks “Minerva Fellowship” for financial support and Dr. Laurent Chabanne for fruitful discussions.
Abstract
Efficient and low-cost electrocatalysts for the hydrogen evolution reaction are highly desired for future renewable energy systems. Described herein is the reduction of water to hydrogen using a metal-free carbon nitride electrocatalyst which operates in neutral and alkaline environments. An efficient, easy, and general method for growing ordered carbon nitride on different electrodes was developed. The metal-free catalyst demonstrates low overpotential values, which are comparable to those of non-noble metals, with reasonable current densities. The facile deposition method enables the fabrication of many electronic and photoelectronic devices based on carbon nitride for renewable energy applications.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange_201309415_sm_miscellaneous_information.pdf711.1 KB | miscellaneous_information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1H. I. Karunadasa, C. J. Chang, J. R. Long, Nature 2010, 464, 1329–1333.
- 2W. C. Sheng, M. Myint, J. G. G. Chen, Y. S. Yan, Energy Environ. Sci. 2013, 6, 1509–1512.
- 3W. C. Sheng, H. A. Gasteiger, Y. Shao-Horn, J. Electrochem. Soc. 2010, 157, B 1529–B1536.
- 4W. F. Chen, K. Sasaki, C. Ma, A. I. Frenkel, N. Marinkovic, J. T. Muckerman, Y. M. Zhu, R. R. Adzic, Angew. Chem. 2012, 124, 6235–6239; Angew. Chem. Int. Ed. 2012, 51, 6131–6135.
- 5D. V. Esposito, S. T. Hunt, A. L. Stottlemyer, B. E. McCandless, R. W. Birkmire, J. G. Chen, Angew. Chem. 2010, 122, 10055–10058;
10.1002/ange.201004718 Google ScholarAngew. Chem. Int. Ed. 2010, 49, 9859–9862.
- 6N. Danilovic, R. Subbaraman, D. Strmcnik, K. C. Chang, A. P. Paulikas, V. R. Stamenkovic, N. M. Markovic, Angew. Chem. 2012, 124, 12663–12666;
10.1002/ange.201204842 Google ScholarAngew. Chem. Int. Ed. 2012, 51, 12495–12498.
- 7R. Subbaraman, D. Tripkovic, K. C. Chang, D. Strmcnik, A. P. Paulikas, P. Hirunsit, M. Chan, J. Greeley, V. Stamenkovic, N. M. Markovic, Nat. Mater. 2012, 11, 550–557.
- 8X. C. Wang, K. Maeda, A. Thomas, K. Takanabe, G. Xin, J. M. Carlsson, K. Domen, M. Antonietti, Nat. Mater. 2009, 8, 76–80.
- 9
- 9aJ. Xu, K. Shen, B. Xue, Y. X. Li, Y. Cao, Catal. Lett. 2013, 143, 600–609;
- 9bJ. Xu, H. T. Wu, X. Wang, B. Xue, Y. X. Li, Y. Cao, Phys. Chem. Chem. Phys. 2013, 15, 4510–4517.
- 10
- 10aJ. H. Sun, J. S. Zhang, M. W. Zhang, M. Antonietti, X. Z. Fu, X. C. Wang, Nat. Commun. 2012, 3, 1139;
- 10bS. Martha, A. Nashim, K. M. Parida, J. Mater. Chem. A 2013, 1, 7816–7824.
- 11
- 11aM. Shalom, S. Inal, C. Fettkenhauer, D. Neher, M. Antonietti, J. Am. Chem. Soc. 2013, 135, 7118–7121;
- 11bY. J. Cui, Z. X. Ding, P. Liu, M. Antonietti, X. Z. Fu, X. C. Wang, Phys. Chem. Chem. Phys. 2012, 14, 1455–1462.
- 12
- 12aY. Zheng, J. Liu, J. Liang, M. Jaroniec, S. Z. Qiao, Energy. Environ. Sci. 2012, 5, 6717–6731;
- 12bY. Zheng, Y. Jiao, J. Chen, J. Liu, J. Liang, A. Du, W. M. Zhang, Z. H. Zhu, S. C. Smith, M. Jaroniec, G. Q. Lu, S. Z. Qiao, J. Am. Chem. Soc. 2011, 133, 20116–20119;
- 12cJ. T. Jin, X. G. Fu, Q. Liu, J. Y. Zhang, J. Mater. Chem. A 2013, 1, 10538–10545.
- 13Y. J. Zhang, Z. Schnepp, J. Y. Cao, S. X. Ouyang, Y. Li, J. H. Ye, S. Q. Liu, Sci. Rep. 2013, 50, 3.
- 14A. Schwarzer, T. Saplinova, E. Kroke, Coord. Chem. Rev. 2013, 257, 2032–2062.
- 15F. Goettmann, A. Fischer, M. Antonietti, A. Thomas, New J. Chem. 2007, 31, 1455–1460.
- 16
- 16aS. Stolbov, S. Zuluaga, J. Phys. Condens. Matter 2013, 25, 085507;
- 16bY. J. Zhang, T. Mori, J. H. Ye, M. Antonietti, J. Am. Chem. Soc. 2010, 132, 6294–6295.
- 17aY. Guo, F. Kong, C. C. Wang, S. Chu, J. C. Yang, Y. Wang, Z. G. Zou, J. Mater. Chem. A 2013, 1, 5142–5147;
- 17bJ. S. Zhang, X. F. Chen, K. Takanabe, K. Maeda, K. Domen, J. D. Epping, X. Z. Fu, M. Antonietti, X. C. Wang, Angew. Chem. 2010, 122, 451–454; Angew. Chem. Int. Ed. 2010, 49, 441–444.
- 18Y. Y. Bu, Z. Y. Chen, J. Q. Yu, W. B. Li, Electrochim. Acta 2013, 88, 294–300.
- 19S. B. Yang, X. L. Feng, X. C. Wang, K. Mullen, Angew. Chem. 2011, 123, 5451–5455; Angew. Chem. Int. Ed. 2011, 50, 5339–5343.
- 20Y. S. Jun, E. Z. Lee, X. C. Wang, W. H. Hong, G. D. Stucky, A. Thomas, Adv. Funct. Mater. 2013, 23, 3661–3667.
- 21
- 21aF. Fabregat-Santiago, I. Mora-Sero, G. Garcia-Belmonte, J. Bisquert, J. Phys. Chem. B 2003, 107, 758–768;
- 21bT. Berger, T. Lana-Villarreal, D. Monllor-Satoca, R. Gomez, J. Phys. Chem. C 2007, 111, 9936–9942.
- 22Y. Zhao, R. Nakamura, K. Kamiya, S. Nakanishi, K. Hashimoto, Nat. Commun. 2013, 4, 2390.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.