Keimbildung organischer Kristalle aus molekularer Sichtweise
Corresponding Author
Prof. Roger J. Davey
School of Chemical Engineering and Analytical Sciences, University of Manchester, The Mill, Sackville Street, Manchester M13 9PL (Großbritannien)
School of Chemical Engineering and Analytical Sciences, University of Manchester, The Mill, Sackville Street, Manchester M13 9PL (Großbritannien)===Search for more papers by this authorProf. Sven L. M. Schroeder
School of Chemical Engineering and Analytical Sciences, University of Manchester, The Mill, Sackville Street, Manchester M13 9PL (Großbritannien)
School of Chemistry, University of Manchester, Brunswick Street, Manchester M13 9PL (Großbritannien)
Search for more papers by this authorProf. Joop H. ter Horst
Intensified Reaction & Separation Systems, Process & Energy Department, Delft University of Technology, Delft (Niederlande)
Search for more papers by this authorCorresponding Author
Prof. Roger J. Davey
School of Chemical Engineering and Analytical Sciences, University of Manchester, The Mill, Sackville Street, Manchester M13 9PL (Großbritannien)
School of Chemical Engineering and Analytical Sciences, University of Manchester, The Mill, Sackville Street, Manchester M13 9PL (Großbritannien)===Search for more papers by this authorProf. Sven L. M. Schroeder
School of Chemical Engineering and Analytical Sciences, University of Manchester, The Mill, Sackville Street, Manchester M13 9PL (Großbritannien)
School of Chemistry, University of Manchester, Brunswick Street, Manchester M13 9PL (Großbritannien)
Search for more papers by this authorProf. Joop H. ter Horst
Intensified Reaction & Separation Systems, Process & Energy Department, Delft University of Technology, Delft (Niederlande)
Search for more papers by this authorAbstract
Das Produkt der Synthese kristalliner organischer Materialien hängt stark von den ersten Schritten des molekularen Selbstorganisationswegs ab, ein Vorgang, den wir als Keimbildung von Kristallen kennen. Die Entwicklung neuer experimenteller und rechnerischer Verfahren hat zu verstärktem Interesse an der Aufklärung der molekularen Mechanismen geführt, durch die Keime entstehen und sich zu makroskopischen Kristallen entwickeln. Die Kinetik der beteiligten Vorgänge wird gut von der klassischen Keimbildungstheorie (“classical nucleation theory”, CNT) beschrieben, neu vorgeschlagene Keimbildungstheorien betrachten zusätzlich die Entwicklung der Struktur und die Konkurrenzsituation bei der Kristallisation polymorpher Systeme. Dieser Aufsatz diskutiert, wie weit die CNT und Messungen der Keimbildungsrate Informationen über diese Vorgänge auf molekularer Ebene liefern können, und fasst das aktuelle Wissen über die molekulare Selbstorganisation in keimbildenden Systemen zusammen.
References
- 1J. Hulliger, Angew. Chem. 1994, 106, 151–171; Angew. Chem. Int. Ed. Engl. 1994, 33, 143–162.
- 2W. I. Cross, N. Blagden, R. J. Davey, R. G. Pritchard, M. A. Neumann, R. J. Roberts, R. C. Rowe, Cryst. Growth Des. 2003, 3, 151–158.
- 3H. Freund, K. Sundmacher, Ullmann’s Encyclopedia of Industrial Chemistry, Wiley-VCH, Weinheim, 2011.
10.1002/14356007.o22_o03 Google Scholar
- 4 Pharmaceutical Principles of Solid Dosage Forms (Hrsg.: ), Technomic Publishing Co., 1993.
- 5R. J. Davey, K. Allen, N. Blagden, W. I. Cross, H. F. Lieberman, M. J. Quayle, S. Righini, L. Seton, G. J. T. Tiddy, CrystEngComm 2002, 4, 257–264.
- 6I. Weissbuch, M. Lahav, L. Leiserowitz, Cryst. Growth Des. 2003, 3, 125–150.
- 7P. G. Vekilov, Cryst. Growth Des. 2010, 10, 5007–5019.
- 8D. Gebauer, H. Cölfen, Nano Today 2011, 6, 564–584.
- 9G. Tosi, S. Fermani, G. Falini, J. A. Gavira, J. M. G. Ruiz, Cryst. Growth Des. 2011, 11, 1542–1548.
- 10J. Anwar, D. Zahn, Angew. Chem. 2011, 123, 2042–2061; Angew. Chem. Int. Ed. 2011, 50, 1996–2013.
- 11M. Volmer, Kinetik der Phasenbildung, Steinkopff, Leipzig, 1939.
- 12O. Galkin, P. G. Vekilov, J. Phys. Chem. B 1999, 103, 10965–10971.
- 13S. Selimović, Y. Jia, S. Fraden, Cryst. Growth Des. 2009, 9, 1806–1810.
- 14J. Leng, J. B. Salmon, Lab Chip 2009, 9, 24–34.
- 15S. Jiang, J. H. ter Horst, Cryst. Growth Des. 2011, 11, 256–261.
- 16D. Kashchiev, Nucleation: Basic Theory with Applications, Butterworth-Heinemann, Oxford, 2000.
- 17J. W. Mullin, Crystallization, 4 Aufl., Butterworth-Heinemann, Oxford, 1997.
- 18S. Black, Proc. R. Soc. London Ser. A 2007, 463, 2799–2811.
- 19R. B. Hammond, K. Pencheva, K. J. Roberts, T. Auffret, J. Pharm. Sci. 2007, 96, 1967–1973.
- 20S. Jiang, J. H. ter Horst, P. J. Jansens, Cryst. Growth Des. 2008, 8, 37–43.
- 21A. E. Nielsen, O. Söhnel, J. Cryst. Growth 1971, 11, 233–242.
- 22D. Kashchiev, G. M. van Rosmalen, Cryst. Res. Technol. 2003, 38, 555–574.
- 23I. V. Markov, Crystal Growth for Beginners, World Scientific, Singapur, 2003.
10.1142/5172 Google Scholar
- 24J. B. Zeldovich, Acta Physicochim. URSS 1943, 18, 1.
- 25M. A. Deij, J. H. ter Horst, H. Meekes, P. Jansens, E. Vlieg, J. Phys. Chem. B 2007, 111, 1523–1530.
- 26J. H. ter Horst, D. Kashchiev, J. Chem. Phys. 2003, 119, 2241–2246.
- 27W. J. Dunning, A. J. Shipman, Proc. Agric. Industry Tenth Intern. Congr. Madrid 1954, 1448–1456.
- 28J. Urbanus, J. Laven, C. Roelands, J. H. ter Horst, D. Verdoes, P. J. Jansens, Cryst. Growth Des. 2009, 9, 2762–2769.
- 29J. Urbanus, C. Roelands, J. ter Horst, D. Verdoes, P. Jansens, Food Bioprod. Process. 2008, 86, 116–121.
- 30A. Y. Lee, I. S. Lee, S. S. Dettet, J. Boerner, A. S. Myerson, J. Am. Chem. Soc. 2005, 127, 14982–14983.
- 31D. Turnbull, J. C. Fisher, J. Chem. Phys. 1949, 17, 71–73.
- 32J. F. Edd, K. J. Humphry, D. Irimia, D. A. Weitz, M. Toner, Lab Chip 2009, 9, 1859–1865.
- 33R. A. W. Dryfe, Adv. Chem. Phys. 2009, 141, 153–215.
- 34M. L. Schlossman, A. M. Tikhonov, Ann. Rev. Phys. Chem. 2008, 59, 153–177.
- 35N. D. Draper, S. F. Bakhoum, A. E. Haddrell, G. R. Agnes, J. Am. Chem. Soc. 2007, 129, 11364–11377.
- 36S. K. Chung, E. H. Trinh, J. Cryst. Growth 1998, 194, 384–397.
- 37R. Montague, K. Back, persönliche Mitteilung 2012.
- 38W. J. Dunning, N. T. Notley, Z. Elektrochem. 1957, 61, 55–59.
- 39S. S. Kadam, H. J. M. Kramer, J. H. ter Horst, Cryst. Growth Des. 2011, 11, 1271–1277.
- 40S. S. Kadam, S. A. Kulkarni, R. Coloma Ribera, A. I. Stankiewicz, J. H. ter Horst, H. J. M. Kramer, Chem. Eng. Sci. 2012, 72, 10–19.
- 41D. K. Kondepudi, R. J. Kaufman, N. Singh, Science 1990, 250, 975–976.
- 42P. R. ten Wolde, D. Frenkel, Science 1997, 277, 1975–1978.
- 43D. Erdemir, A. Y. Lee, A. S. Myerson, Acc. Chem. Res. 2009, 42, 621–629.
- 44P. E. Bonnett, K. J. Carpenter, S. Dawson, R. J. Davey, Chem. Commun. 2003, 698–699.
- 45J. Anwar, P. K. Boateng, J. Am. Chem. Soc. 1998, 120, 9600–9604.
- 46L. C. Jacobson, W. Hujo, V. Molinero, J. Am. Chem. Soc. 2010, 132, 11806–11811.
- 47J. E. Ricci in The Phase Rule and Heterogeneous Equilibrium, Van Nostrand, New York, 1951.
- 48R. J. Davey, N. Blagden, S. Righini, H. Alison, M. J. Quayle, S. Fuller, Cryst. Growth Des. 2001, 1, 59–65.
- 49J. H. ter Horst, H. J. M. Kramer, P. J. Jansens, Chem. Eng. Technol. 2006, 29, 175–181.
- 50R. B. Hammond, K. Pencheva, K. J. Roberts, J. Phys. Chem. B 2005, 109, 19550–19552.
- 51C. Desgranges, J. Delhommelle, J. Am. Chem. Soc. 2006, 128, 15104–15105.
- 52R. Dowling, R. J. Davey, R. A. Curtis, G. J. Han, S. K. Poornachary, P. S. Chow, R. B. H. Tan, Chem. Commun. 2010, 46, 5924–5926.
- 53C. S. Towler, R. J. Davey, R. W. Lancaster, C. J. Price, J. Am. Chem. Soc. 2004, 126, 13347–13353.
- 54N. Pienack, W. Bensch, Angew. Chem. 2011, 123, 2062–2083; Angew. Chem. Int. Ed. 2011, 50, 2014–2034.
- 55H. G. Alison, R. J. Davey, J. Garside, M. J. Quayle, G. J. T. Tiddy, D. T. Clarke, G. R. Jones, Phys. Chem. Chem. Phys. 2003, 5, 4998–5000.
- 56A. M. Beale, A. M. J. van der Eerden, S. D. M. Jacques, O. Leynaud, M. G. O’Brien, F. Meneau, S. Nikitenko, W. Bras, B. M. Weckhuysen, J. Am. Chem. Soc. 2006, 128, 12386–12387.
- 57J. Polte, R. Kraehnert, M. Radtke, U. Reinholz, H. Riesemeier, A. F. Thünemann, F. Emmerling, J. Phys. Conf. Ser. 2010, 247, 012051.
- 58S. Calvin, E. E. Carpenter, V. Cestone, L. K. Kurihara, V. G. Harris, E. C. Brown, Rev. Sci. Instrum. 2005, 76, 016103.
- 59S. Janbon, R. J. Davey, G. Dent, J. Phys. Chem. C 2008, 112, 15771–15776.
- 60R. Banerjee, P. M. Bhatt, M. T. Kirchner, G. R. Desiraju, Angew. Chem. 2005, 117, 2571–2576; Angew. Chem. Int. Ed. 2005, 44, 2515–2520.
- 61R. Mondal, J. A. K. Howard, CrystEngComm 2005, 7, 462–464.
- 62H. F. Lieberman, L. Williams, R. J. Davey, R. G. Pritchard, J. Am. Chem. Soc. 1998, 120, 686–691.
- 63F. H. Allen, Acta Crystallogr. Sect. B 2002, 58, 380–388.
- 64C. A. Hunter, Angew. Chem. 2004, 116, 5424–5439; Angew. Chem. Int. Ed. 2004, 43, 5310–5324.
- 65K. Ohgaki, Y. Makihara, M. Morishita, M. Ueda, N. Hirokawa, Chem. Eng. Sci. 1991, 46, 3283–3287.
- 66K. Ohgaki, N. Hirokawa, M. Ueda, Chem. Eng. Sci. 1992, 47, 1819–1823.
- 67M. Ueda, N. Hirokawa, Y. Harano, M. Moritoki, K. Ohgaki, J. Cryst. Growth 1995, 156, 261–266.
- 68R. M. Ginde, A. S. Myerson, J. Cryst. Growth 1992, 116, 41–47.
- 69D. Schwahn, Y. R. Ma, H. Cölfen, J. Phys. Chem. C 2007, 111, 3224–3227.
- 70Y. R. Ma, H. Cölfen, M. Antonietti, J. Phys. Chem. B 2006, 110, 10822–10828.
- 71F. Peral, E. Gallego, J. Mol. Struct. 1997, 415, 187–196.
- 72J. S. Stevens, S. J. Byard, S. L. M. Schroeder, Cryst. Growth Des. 2010, 10, 1435–1442.
- 73J. S. Stevens, S. J. Byard, S. L. M. Schroeder, J. Pharm. Sci. 2010, 99, 4453–4457.
- 74J. S. Stevens, S. J. Byard, C. A. Muryn, S. L. M. Schroeder, J. Phys. Chem. B 2010, 114, 13961–13969.
- 75J. S. Stevens, S. J. Byard, C. C. Seaton, G. Sadiq, R. J. Davey, S. L. M. Schroeder, Angew. Chem. 2011, 123, 10090–10092;
10.1002/ange.201103981 Google ScholarAngew. Chem. Int. Ed. 2011, 50, 9916–9918.
- 76B. Jagoda-Cwiklik, P. Slavícek, D. Nolting, B. Winter, P. Jungwirth, J. Phys. Chem. B 2008, 112, 7355–7358.
- 77B. Jagoda-Cwiklik, P. Slavícek, L. Cwiklik, D. Nolting, B. Winter, P. Jungwirth, J. Phys. Chem. A 2008, 112, 3499–3505.
- 78D. Nolting, N. Ottosson, M. Faubel, I. V. Hertel, B. Winter, J. Am. Chem. Soc. 2008, 130, 8150.
- 79A. Spitaleri, C. A. Hunter, J. F. McCabe, M. J. Packer, S. L. Cockroft, CrystEngComm 2004, 6, 489–493.
- 80R. A. Chiarella, A. L. Gillon, R. C. Burton, R. J. Davey, G. Sadiq, A. Auffret, M. Cioffi, C. A. Hunter, Faraday Discuss. Chem. Soc. 2007, 136, 179–193.
- 81R. J. Davey, G. Dent, R. K. Mughal, S. Parveen, Cryst. Growth Des. 2006, 6, 1788–1796.
- 82J. L. Finney, A. K. Soper, Chem. Soc. Rev. 1994, 23, 1–10.
- 83C. A. Koh, R. P. Wisbey, X. P. Wu, R. E. Westacott, A. K. Soper, J. Chem. Phys. 2000, 113, 6390–6397.
- 84A. Saito, K. Igarashi, M. Azuma, H. Ooshima, J. Chem. Eng. Jpn. 2002, 35, 1133–1139.
- 85R. Kind, O. Liechti, N. Korner, J. Hulliger, J. Dolinsek, R. Blinc, Phys. Rev. B 1992, 45, 7697–7703.
- 86S. Parveen, R. J. Davey, G. Dent, R. G. Pritchard, Chem. Commun. 2005, 1531–1533.
- 87A. Gavezzotti, G. Filippini, J. Kroon, B. P. van Eijck, P. Klewinghaus, Chem. Eur. J. 1997, 3, 893–899.
- 88J. Chen, B. L. Trout, J. Phys. Chem. B 2008, 112, 7794–7802.
- 89S. A. Kulkarni, E. S. McGarrity, H. Meekes, J. H. ter Horst, Chem. Commun. 2012, 48, 4983–4985.
- 90R. C. Burton, E. S. Ferrari, R. J. Davey, J. Hopwood, M. J. Quayle, J. L. Finney, D. T. Bowron, Cryst. Growth Des. 2008, 8, 1559–1565.
- 91K. Chadwick, R. J. Davey, G. Dent, R. G. Pritchard, C. A. Hunter, D. Musumeci, Cryst. Growth Des. 2009, 9, 1990–1999.
- 92R. C. Burton, E. S. Ferrari, R. J. Davey, J. L. Finney, D. T. Bowron, J. Phys. Chem. B 2009, 113, 5967–5977.
- 93R. C. Burton, E. S. Ferrari, R. J. Davey, J. L. Finney, D. T. Bowron, J. Phys. Chem. B 2010, 114, 8807–8816.
- 94A. T. Hulme, A. Johnston, A. J. Florence, P. Fernandes, K. Shankland, C. T. Bedford, G. W. A. Welch, G. Sadiq, D. A. Haynes, W. D. S. Motherwell, D. A. Tocher, S. L. Price, J. Am. Chem. Soc. 2007, 129, 3649–3657.
- 95K. Elamin, J. Sjöström, H. Jansson, J. Swenson, J. Chem. Phys. 2012, 136, 104508.
- 96M. Jiménez-Ruiz, A. Sanz, A. Nogales, T. A. Ezquerra, Rev. Sci. Instrum. 2005, 76, 043901.
- 97D. Nolting, E. F. Aziz, N. Ottosson, M. Faubel, I. V. Hertel, B. Winter, J. Am. Chem. Soc. 2007, 129, 14068–14073.
- 98I. L. Bradeanu, N. Kosugi, R. Flesch, E. Rühl, J. Phys. Chem. A 2008, 112, 9192–9199.
- 99I. L. Bradeanu, R. Flesch, N. Kosugi, A. A. Pavlychev, E. Rühl, Phys. Chem. Chem. Phys. 2006, 8, 1906–1913.
- 100R. Flesch, N. Kosugi, I. L. Bradeanu, J. J. Neville, E. Rühl, J. Chem. Phys. 2004, 121, 8343–8350.
- 101S. Mensah, MSc Thesis, The University of Manchester, 2011.
- 102O. Galkin, P. G. Vekilov, J. Cryst. Growth 2001, 232, 63–76.
- 103C. P. M. Roelands, R. R. W. Roestenberg, J. H. ter Horst, H. J. M. Kramer, P. J. Jansens, Cryst. Growth Des. 2004, 4, 921–928; H4EDTA=Ethylendiamintetraessigsäure.
- 104S. Hamad, C. Moon, C. R. A. Catlow, A. T. Hulme, S. L. Price, J. Phys. Chem. B 2006, 110, 3323–3329.
- 105C. A. Hunter, J. F. McCabe, A. Spitaleri, CrystEngComm 2012, 14, 7115–7117.
- 106C. A. Hunter, persönliche Mitteilung, 2012.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.