Oligomers and Cyclooligomers of Rigid Phenylene–Ethynylene–Butadiynylenes: Synthesis and Self-Assembled Monolayers†
Stefan-S. Jester Dr.
Kekulé-Institut für Organische Chemie und Biochemie, Rheinische Friedrich-Wilhelms-Universität Bonn, Gerhard-Domagk-Strasse 1, 53121 Bonn (Germany), Fax: (+49) 228-73-5662
Search for more papers by this authorNatalia Shabelina Dr.
Kekulé-Institut für Organische Chemie und Biochemie, Rheinische Friedrich-Wilhelms-Universität Bonn, Gerhard-Domagk-Strasse 1, 53121 Bonn (Germany), Fax: (+49) 228-73-5662
Search for more papers by this authorStephan M. Le Blanc
Kekulé-Institut für Organische Chemie und Biochemie, Rheinische Friedrich-Wilhelms-Universität Bonn, Gerhard-Domagk-Strasse 1, 53121 Bonn (Germany), Fax: (+49) 228-73-5662
Search for more papers by this authorSigurd Höger Prof. Dr.
Kekulé-Institut für Organische Chemie und Biochemie, Rheinische Friedrich-Wilhelms-Universität Bonn, Gerhard-Domagk-Strasse 1, 53121 Bonn (Germany), Fax: (+49) 228-73-5662
Search for more papers by this authorStefan-S. Jester Dr.
Kekulé-Institut für Organische Chemie und Biochemie, Rheinische Friedrich-Wilhelms-Universität Bonn, Gerhard-Domagk-Strasse 1, 53121 Bonn (Germany), Fax: (+49) 228-73-5662
Search for more papers by this authorNatalia Shabelina Dr.
Kekulé-Institut für Organische Chemie und Biochemie, Rheinische Friedrich-Wilhelms-Universität Bonn, Gerhard-Domagk-Strasse 1, 53121 Bonn (Germany), Fax: (+49) 228-73-5662
Search for more papers by this authorStephan M. Le Blanc
Kekulé-Institut für Organische Chemie und Biochemie, Rheinische Friedrich-Wilhelms-Universität Bonn, Gerhard-Domagk-Strasse 1, 53121 Bonn (Germany), Fax: (+49) 228-73-5662
Search for more papers by this authorSigurd Höger Prof. Dr.
Kekulé-Institut für Organische Chemie und Biochemie, Rheinische Friedrich-Wilhelms-Universität Bonn, Gerhard-Domagk-Strasse 1, 53121 Bonn (Germany), Fax: (+49) 228-73-5662
Search for more papers by this authorFinancial support by the DFG, the SFB 624, and the VolkswagenStiftung is gratefully acknowledged.
Graphical Abstract
Ausgehend vom gleichen Bisacetylen entstanden abhängig von den Reaktionsbedingungen (Palladium- oder Kupferkatalyse) selektiv cyclische oder acyclische Oligomere mit n=2–6 (siehe Bild für den Fall n=3), die durch frei rotierende Eckstücke verknüpft sind. Aus STM-Bildern der selbstorganisierten Monoschichten folgt der Unterschied im Adsorptionsverhalten der acyclischen und cyclischen Oligomere.
Supporting Information
Detailed facts of importance to specialist readers are published as ”Supporting Information”. Such documents are peer-reviewed, but not copy-edited or typeset. They are made available as submitted by the authors.
Filename | Description |
---|---|
ange_201001625_sm_miscellaneous_information.pdf9.8 MB | miscellaneous_information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aJ. S. Moore, Acc. Chem. Res. 1997, 30, 402;
- 1bS. Höger, J. Polym. Sci. Part A 1999, 37, 2685;
10.1002/(SICI)1099-0518(19990801)37:15<2685::AID-POLA1>3.0.CO;2-S CAS Web of Science® Google Scholar
- 1cC. Grave, A. D. Schlüter, Eur. J. Org. Chem. 2002, 3075;
- 1dY. Yamaguchi, Z. Yoshida, Chem. Eur. J. 2003, 9, 5430;
- 1eJ. A. Marsden, G. J. Palmer, M. M. Haley, Eur. J. Org. Chem. 2003, 2355;
- 1fS. Höger, Angew. Chem. 2005, 117, 3872;
10.1002/ange.200500681 Google ScholarAngew. Chem. Int. Ed. 2005, 44, 3806;
- 1gW. Zhang, J. S. Moore, Angew. Chem. 2006, 118, 4524; Angew. Chem. Int. Ed. 2006, 45, 4416.
- 2
- 2aS. Höger, K. Bonrad, A. Mourran, U. Beginn, M. Möller, J. Am. Chem. Soc. 2001, 123, 5651;
- 2bD. Borissov, A. Ziegler, S. Höger, W. Freyland, Langmuir 2004, 20, 2781;
- 2cK. Tahara, C. A. Johnson II, T. Fujita, M. Sonoda, F. C. de Schryver, S. de Feyter, M. M. Haley, Y. Tobe, Langmuir 2007, 23, 10190;
- 2dS. Lei, K. Tahara, F. C. de Schryver, M. van der Auweraer, Y. Tobe, S. de Feyter, Angew. Chem. 2008, 120, 3006; Angew. Chem. Int. Ed. 2008, 47, 2964.
- 3
- 3aG.-B. Pan, X.-H. Cheng, S. Höger, W. Freyland, J. Am. Chem. Soc. 2006, 128, 4218;
- 3bE. Mena-Osteritz, P. Bäuerle, Adv. Mater. 2006, 18, 447;
- 3cS. Furukawa, K. Tahara, F. C. de Schryver, M. van der Auweraer, Y. Tobe, S. de Feyter, Angew. Chem. 2007, 119, 2889; Angew. Chem. Int. Ed. 2007, 46, 2831;
- 3dK. Tahara, S. Lei, D. Mössinger, H. Kozuma, K. Inukai, M. Van der Auweraer, F. C. de Schryver, S. Höger, Y. Tobe, S. de Feyter, Chem. Commun. 2008, 3897;
- 3eK. Tahara, S. Lei, W. Mamdouh, Y. Yamaguchi, T. Ichikawa, H. Uji-i, M. Sonoda, K. Kirose, F. C. de Schryver, S. de Feyter, Y. Tobe, J. Am. Chem. Soc. 2008, 130, 6666;
- 3fS. Lei, K. Tahara, X. Feng, S. Furukawa, F. C. de Schryver, K. Müllen, Y. Tobe, S. De Feyter, J. Am. Chem. Soc. 2008, 130, 7119;
- 3gB. Schmaltz, A. Rouhanipour, H. J. Räder, W. Pisula, K. Müllen, Angew. Chem. 2009, 121, 734; Angew. Chem. Int. Ed. 2009, 48, 720;
- 3hJ. Adisoejoso, K. Tahara, S. Okuhata, S. Lei, Y. Tobe, S. de Feyter, Angew. Chem. 2009, 121, 7489;
10.1002/ange.200900436 Google ScholarAngew. Chem. Int. Ed. 2009, 48, 7353;
- 3iT. Chen, G.-B. Pan, H. Wettach, M. Fritzsche, S. Höger, L.-J. Wan, H.-B. Yang, B. H. Northrop, P. J. Stang, J. Am. Chem. Soc. 2010, 132, 1328.
- 4For recent publications about SAMs of shape-persistent linear coupling products see, e.g.:
- 4aP. Samorí, N. Severin, K. Müllen, J. P. Rabe, Adv. Mater. 2000, 12, 579;
- 4bJ.-R. Gong, J.-L. Zhao, S.-B. Lei, L.-J. Wan, Z.-S. Bo, X.-L. Fan, C.-L. Bai, Langmuir 2003, 19, 10128;
- 4cZ. Mu, X. Yang, Z. Wang, X. Zhang, Langmuir 2004, 20, 8892;
- 4dZ.-Y. Yang, L.-H. Gan, S.-B. Lei, L.-J. Wan, C. Wang, J.-Z. Jiang, J. Phys. Chem. B 2005, 109, 19859;
- 4eJ.-R. Gong, H.-J. Yan, Q.-H. Yuan, L.-P. Xu, Z.-S. Bo, L.-J. Wan, J. Am. Chem. Soc. 2006, 128, 12384;
- 4fK. Yoosaf, P. V. James, A. R. Ramesh, C. H. Suresh, K. G. Thomas, J. Phys. Chem. C 2007, 111, 14933;
- 4gM. Wielopolski, A. Atienza, T. Clark, D. M. Guldi, N. Martín, Chem. Eur. J. 2008, 14, 6379;
- 4hD. Mössinger, S.-S. Jester, E. Sigmund, U. Müller, S. Höger, Macromolecules 2009, 42, 7974.
- 5Freely jointed chains are rigid segments of fixed length, interconnected by linkers that allow variable valence angles and rotation. In contrast, the hinges of freely rotating chains enforce fixed angles between adjacent segments, whilst still allowing free rotation with all torsion angles being equally likely. After adsorption to the substrate, the rotation is restricted, and the linked units may adopt cisoidal and transoidal conformation.
- 6
- 6aC. Glaser, Ber. Dtsch. Chem. Ges. 1869, 2, 422;
10.1002/cber.186900201183 Google Scholar
- 6bG. Eglinton, A. R. Galbraith, Proc. Chem. Soc. 1957, 350;
- 6cO. M. Behr, G. Eglinton, A. R. Galbraith, R. A. Raphael, J. Chem. Soc. 1960, 3614;
- 6dA. S. Hay, J. Org. Chem. 1962, 27, 3320;
- 6eR. Rossi, A. Carpita, C. Bigelli, Tetrahedron Lett. 1985, 26, 523;
- 6fP. Siemsen, R. C. Livingston, F. Diederich, Angew. Chem. 2000, 112, 2740;
10.1002/1521-3757(20000804)112:15<2740::AID-ANGE2740>3.0.CO;2-F Google ScholarAngew. Chem. Int. Ed. 2000, 39, 2632.10.1002/1521-3773(20000804)39:15<2632::AID-ANIE2632>3.0.CO;2-F CAS PubMed Web of Science® Google Scholar
- 7
- 7aF. Sondheimer, R. Wolovsky, J. Am. Chem. Soc. 1962, 84, 260;
- 7bF. Sondheimer, Acc. Chem. Res. 1972, 3, 81;
- 7cD. O′Krongly, S. R. Denmeade, M. Y. Chiang, R. Breslow, J. Am. Chem. Soc. 1985, 107, 5544;
- 7dK. Kadei, F. Vögtle, Chem. Ber. 1991, 124, 909.
- 8A. de Meijere, S. Kozhushkov, T. Haumann, R. Boese, C. Puls, M. J. Cooney, L. T. Scott, Chem. Eur. J. 1995, 1, 124.
- 9J. A. Marsden, J. J. Miller, M. M. Haley, Angew. Chem. 2004, 116, 1726;
10.1002/ange.200353043 Google ScholarAngew. Chem. Int. Ed. 2004, 43, 1694.
- 10Tobe could specifically couple bisacetylenes to form the acyclic oligomers under Hay conditions, whereas cyclic oligomers were formed under Eglinton contitions; see: Y. Tobe, N. Utsumi, A. Nagano, M. Sonoda, K. Naemura, Tetrahedron 2001, 57, 8075.
- 11For pyridyl-containing rigid macrocycles, see for example:
- 11aY. Tobe, A. Nagano, K. Kawabata, M. Sonoda, K. Naemura, Org. Lett. 2000, 2, 3265;
- 11bS.-S. Sun, A. J. Lees, Organometallics 2001, 20, 2353;
- 11cK. Campbell, R. McDonald, R. R. Tykwinski, J. Org. Chem. 2002, 67, 1133;
- 11dO. Henze, D. Lentz, A. Schäfer, P. Franke, A. D. Schlüter, Chem. Eur. J. 2002, 8, 357;
10.1002/1521-3765(20020118)8:2<357::AID-CHEM357>3.0.CO;2-9 CAS PubMed Web of Science® Google Scholar
- 11eM. Schmittel, H. Ammon, V. Kalsani, A. Wiegrefe, C. Michel, Chem. Commun. 2002, 2566;
- 11fP. N. W. Baxter, Chem. Eur. J. 2003, 9, 5011;
- 11gY. Yamaguchi, Z.-i. Yoshida, Chem. Eur. J. 2003, 9, 5430;
- 11hC. Grave, D. Lentz, A. Schäfer, P. Samorì, J. P. Rabe, P. Franke, A. D. Schlüter, J. Am. Chem. Soc. 2003, 125, 6907.
- 12The ratio of TMEDA to CuCl is of high importance for the reaction. With an excess of TMEDA, halogenation of the acetylenes was observed (see Supporting Information); see also: T. Hamada, X. Ye, S. S. Stahl, J. Am. Chem. Soc. 2008, 130, 833.
- 13Attempts to couple 1 a or 4 a under pseudo-high-dilution conditions using CuCl/CuCl2 as catalyst/oxidant mixture and pyridine as solvent were not successful, and only a dark brown tarry material of unknown composition could be isolated. The absence of cyclodimers was surprising, as the same coupling conditions worked well in most of our acetylene coupling reactions and gave (with a similar but smaller substrate) high to nearly quantitative product yields; see: N. Shabelina, S. Klyatskaya, V. Enkelmann, S. Höger, C. R. Chim. 2009, 12, 430. Opris et al. also obtained cyclic products when bipyridyl containing bis(acetylene)s were oxidatively coupled under copper catalysis: D. M. Opris, A. Ossenbach, D. Lentz, A. D. Schlüter, Org. Lett. 2008, 10, 2091. Similarly, Kim et al. obtained rectangular shape-persistent macrocycles under copper catalysis; see: J.-K. Kim, E. Lee, M.-C. Kim, E. Sim, M. Lee, J. Am. Chem. Soc. 2009, 131, 17768.
- 141 b and 4 b were not investigated under the conditions of the copper-catalyzed reaction.
- 15Only the cyclodimer [6 b]2 was identified when 4 b was coupled under palladium catalysis; higher oligomers were not characterized.
- 16Considering 1 b and 4 b with 2-ethylhexyloxy side chains, solubility is clearly not responsible for the observed discrimination between cyclic and acyclic products.
- 17Proton NMR studies (see Supporting Information) showed that all oligomers obtained from the copper-promoted coupling reactions still contain ethynyl end groups, whereas all separated fractions of the palladium-catalyzed coupling reactions did not exhibit ethynyl protons. Furthermore, the peak patterns of the aromatic protons in the spectra are different for both reactions. HRMS data for [5 a]2 and [6 a]2 show the exact masses for the proposed structures.
- 18The difference in conformational freedom between the acyclic and cyclic oligomers is also reflected by their thermal behavior. Although the acyclic dimers [2 a]2 and [5 a]2 have melting points of 71 °C and 95 °C, the cyclic analogue [3 a]2 melts at 221 °C and [6 a]2 decomposes at >325 °C; see: H. A. Staab, H. Bräumling, K. Schneider, Chem. Ber. 1968, 101, 879, and Ref. [10].
- 19For theoretical descriptions of the contrast mechanism in STM, see for example:
- 19aR. Lazzaroni, A. Calderone, J. L. Brédas, J. P. Rabe, J. Chem. Phys. 1997, 107, 99;
- 19bP. Sautet, Chem. Rev. 1997, 97, 1097.
- 20As visualized by the inset of the molecular model in Figure 2 A (b), the distance of the terminal ethynyl units is smaller than the lateral changes of the tunneling current. Therefore, we cannot clearly resolve the difference of the cyclic and acyclic dimer, [5 a]2 and [6 a]2, by microscopy. Nevertheless, the presence of a cyclic dimer [6 a]2 as impurity in [5 a]2 could be excluded by GPC, HRMS, and 1H NMR analysis.[17] Furthermore, the presence of two distinguishable O- and S-shaped polymorphs of the dimer [14 a]2 on HOPG is rather expected instead of peculiar.
- 21STM image size, tunneling parameters, concentration, and unit cell dimensions for the SAM of the monomer 4 a on HOPG are: 24.1×24.1 nm2, Vs=−0.95 V, It=6 pA, c=10−4 mol L−1; O-shaped polymorph: a=3.8±0.1 nm, b=2.7±0.1 nm, γ=68±2°; S-shaped polymorph: a=3.6±0.1 nm, b=2.7±0.1 nm, γ=90±2°.
- 22In Figure 1, Figure A 2 (b–f), and Figure 2 B (b,d), the unit cell vectors along the lamellar directions are oriented with 9±2° towards the main axis of the HOPG substrate (see Supporting Information), indicating surface induced chirality of the molecules. For the alkoxy substituents, we assume the common commensurability of all-gauche-constituted alkyl chains on the graphene surface lattice.[23] We conclude that the angle between the rigid PEB rods and the alkyl chains must be 81±2° for the considered systems [5 a]n and [6 a]n. Clearly, this angle is not a generally constant value for all alkoxy-substituted rigid systems, but will rather strongly depend on the concrete PEB backbone sequence. However, as individual short alkoxy chains (such as OC6H13 in this case) cannot be resolved by STM under the applied conditions, their orientation shall not be further discussed herein.
- 23For SAMs of alkanes on HOPG, see for example: T. Yang, S. Berber, J.-F. Liu, G. P. Miller, D. Tománek, J. Chem. Phys. 2008, 128, 124709, and references therein.
- 24The sizes of the STM images, tunneling parameters, applied solutions, and annealing temperatures, and the dimensions of the unit cells of the self-assembled monolayers of acyclic oligomers [5 a]2–6 are as follows: b) dimer [5 a]2 (34.0×34.0 nm2, Vs=−1.1 V, It=150 pA, c=10−5 mol L−1, unit cell: a=3.9±0.1 nm, b=2.7±0.1 nm, γ=68±2°); c) trimer [5 a]3 (32.4×32.4 nm2, Vs=−1.35 V, It=100 pA, c=10−5 mol L−1, annealed to 60 °C for 2 min, unit cell: a=8.2±0.2 nm, b=3.8±0.1 nm, γ=90±2°); d) tetramer [5 a]4 (28.0×28.0 nm2, Vs=−1.1 V, It=120 pA, c=10−6 mol L−1, annealed to 80 °C for 2 min, unit cell: a=5.4±0.2 nm, b=3.8±0.1 nm, γ=90±2°); e) pentamer [5 a]5 (24.3×24.3 nm2, Vs=−0.85 V, It=11 pA, c=10−5 mol L−1, annealed to 80 °C for 2 min, unit cell: a=13.5±0.2 nm, b=3.8±0.1 nm, γ=90±2°); f) hexamer [5 a]6 (25.3×25.3 nm2, Vs=−0.3 V, It=246 pA, c=10−5 mol L−1, annealed to 80 °C for 2 min, unit cell: a=8.0±0.2 nm, b=3.8±0.1 nm, γ=90±2°). The respective parameter sets for cyclic oligomers [6 a]2–6: b) dimer [6 a]2 (20.9×20.9 nm2, Vs=−0.42 V, It=14 pA, c=10−5 M, unit cell: a=3.8±0.1 nm, b=2.7±0.1 nm, γ=69±2°); c) trimer [6 a]3 (30.8×30.8 nm2, Vs=−1.1 V, It=5 pA, c=10−6 mol L−1, annealed to 80 °C for 2 min, unit cell: a=10.1±0.2 nm, b=4.7±0.1 nm, γ=44±2°); d) tetramer [6 a]4 (26.0×26.0 nm2, Vs=−1.43 V, It=14 pA, c=10−5 mol L−1, annealed to 80 °C for 2 min, inset: 12.1×12.1 nm2, Vs=−1.20 V, It=10 pA, unit cell: a=7.6±0.2 nm, b=2.7±0.1 nm, γ=79±3°); e) pentamer [6 a]5 (50×50 nm2, Vs=−0.87 V, It=43 pA, c=10−5 mol L−1, annealed to 80 °C for 2 min, amorphous); f) hexamer [6 a]6 (40×40 nm2, Vs=−0.6 V, It=14 pA, c=10−5 mol L−1, annealed to 80 °C for 2 min, expected unit cell: a=11.5 nm, b=2.7 nm, γ=83°). Note: a and b denote the long and short unit cell vectors, respectively. By definition, the unit cells for (sufficiently large) odd acyclic oligomers [5 a]n (n=3, 5) are larger than for the respective even oligomers (n=4, 6). All images were calibrated in situ using the HOPG substrate as reference grid (see the Supporting Information).
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.