Epoxidöffnungskaskaden zur Synthese polycyclischer Polyether-Naturstoffe
Ivan Vilotijevic
Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139 (USA), Fax: (+1) 617-324-0253 http://web.mit.edu/chemistry/jamison
Search for more papers by this authorTimothy F. Jamison Prof. Dr.
Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139 (USA), Fax: (+1) 617-324-0253 http://web.mit.edu/chemistry/jamison
Search for more papers by this authorIvan Vilotijevic
Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139 (USA), Fax: (+1) 617-324-0253 http://web.mit.edu/chemistry/jamison
Search for more papers by this authorTimothy F. Jamison Prof. Dr.
Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139 (USA), Fax: (+1) 617-324-0253 http://web.mit.edu/chemistry/jamison
Search for more papers by this authorAbstract
Die polycyclischen Strukturelemente von Polyether-Naturstoffen können in einigen Fällen bis auf ihren Ursprung in der Biosynthese zurückverfolgt werden, in anderen, weniger gut verstandenen Fällen jedoch nur auf vorgeschlagene Biosynthesewege, die spekulative Epoxidöffnungskaskaden vorsehen. In diesem Aufsatz wird zusammengefasst, wie solche Reaktionskaskaden zur Synthese polycyclischer Polyether und verwandter Naturstoffe genutzt wurden.
Polycyclische Polyether-Naturstoffe sind wegen ihrer faszinierenden Struktur und ihrer biologischen Eigenschaften von besonderem Interesse. Letztere umfassen potenziell therapeutische antibiotische und fungizide Wirkungen sowie Antikrebswirkungen und außerdem eine starke Giftwirkung bis hin zur Letalität. Die polycyclischen Strukturelemente dieser Verbindungsklasse können in einigen Fällen bis auf ihren Ursprung in der Biosynthese zurückverfolgt werden, in anderen, weniger gut verstandenen Fällen jedoch nur auf vorgeschlagene Biosynthesewege, die spekulative Epoxidöffnungskaskaden vorsehen. In diesem Aufsatz wird zusammengefasst, wie solche Reaktionskaskaden zur Synthese polycyclischer Polyether und verwandter Naturstoffe genutzt wurden.
References
- 1C. J. Dutton, B. J. Banks, C. B. Cooper, Nat. Prod. Rep. 1995, 12, 165–181.
- 2J. J. Fernández, M. L. Souto, M. Norte, Nat. Prod. Rep. 2000, 17, 235–246.
- 3K. S. Rein, J. Borrone, Comp. Biochem. Physiol. Part B 1999, 124, 117–131.
- 4A. R. Gallimore, Nat. Prod. Rep. 2009, 26, 266–280.
- 5J. E. Baldwin, J. Chem. Soc. Chem. Commun. 1976, 734–736.
- 6H. B. Buergi, J. D. Dunitz, J. M. Lehn, G. Wipff, Tetrahedron 1974, 30, 1563–1572.
- 7C. D. Johnson, Acc. Chem. Res. 1993, 26, 476–482.
- 8J. M. Coxon, M. P. Hartshorn, W. H. Swallow, Aust. J. Chem. 1973, 26, 2521–2526.
- 9S. Danishefsky, J. Dynak, E. Hatch, M. Yamamoto, J. Am. Chem. Soc. 1974, 96, 1256–1259.
- 10T. Katsuki, K. B. Sharpless, J. Am. Chem. Soc. 1980, 102, 5974–5976.
- 11R. A. Johnson, K. B. Sharpless in Catalytic Asymmetric Synthesis (Hrsg.: ), VCH, New York, 1993, 103–158.
- 12T. Katsuki, V. S. Martin, Org. React. 1996, 48, 1–299.
- 13W. Zhang, J. L. Loebach, S. R. Wilson, E. N. Jacobsen, J. Am. Chem. Soc. 1990, 112, 2801–2803.
- 14E. N. Jacobsen, W. Zhang, A. R. Muci, J. R. Ecker, L. Deng, J. Am. Chem. Soc. 1991, 113, 7063–7064.
- 15B. D. Brandes, E. N. Jacobsen, J. Org. Chem. 1994, 59, 4378–4380.
- 16S. Chang, J. M. Galvin, E. N. Jacobsen, J. Am. Chem. Soc. 1994, 116, 6937–6938.
- 17Y. Tu, Z.-X. Wang, Y. Shi, J. Am. Chem. Soc. 1996, 118, 9806–9807.
- 18Z.-X. Wang, Y. Tu, M. Frohn, J.-R. Zhang, Y. Shi, J. Am. Chem. Soc. 1997, 119, 11224–11235.
- 19Y. Shi, Acc. Chem. Res. 2004, 37, 488–496.
- 20O. A. Wong, Y. Shi, Chem. Rev. 2008, 108, 3958–3987.
- 21Q. H. Xia, H. Q. Ge, C. P. Ye, Z. M. Liu, K. X. Su, Chem. Rev. 2005, 105, 1603–1662.
- 22K. C. Nicolaou, M. E. Duggan, C. K. Hwang, P. K. Somers, J. Chem. Soc. Chem. Commun. 1985, 1359–1362.
- 23K. C. Nicolaou, C. V. C. Prasad, P. K. Somers, C. K. Hwang, J. Am. Chem. Soc. 1989, 111, 5330–5334.
- 24K. C. Nicolaou, C. V. C. Prasad, P. K. Somers, C. K. Hwang, J. Am. Chem. Soc. 1989, 111, 5335–5340.
- 25T. Suzuki, O. Sato, M. Hirama, Tetrahedron Lett. 1990, 31, 4747–4750.
- 26H. Matsukura, M. Morimoto, H. Koshino, T. Nakata, Tetrahedron Lett. 1997, 38, 5545–5548.
- 27C. Mukai, Y. Ikeda, Y.-i. Sugimoto, M. Hanaoka, Tetrahedron Lett. 1994, 35, 2179–2182.
- 28C. Mukai, Y.-i. Sugimoto, Y. Ikeda, M. Hanaoka, Tetrahedron Lett. 1994, 35, 2183–2186.
- 29C. Mukai, Y.-i. Sugimoto, Y. Ikeda, M. Hanaoka, Tetrahedron 1998, 54, 823–850.
- 30C. Mukai, S. Yamaguchi, I. J. Kim, M. Hanaoka, Chem. Pharm. Bull. 2001, 49, 613–618.
- 31F. E. McDonald, X. Wang, B. Do, K. I. Hardcastle, Org. Lett. 2000, 2, 2917–2919.
- 32F. Bravo, F. E. McDonald, W. A. Neiwert, B. Do, K. I. Hardcastle, Org. Lett. 2003, 5, 2123–2126.
- 33Y. Morimoto, Y. Nishikawa, C. Ueba, T. Tanaka, Angew. Chem. 2006, 118, 824–826;
10.1002/ange.200503143 Google ScholarAngew. Chem. Int. Ed. 2006, 45, 810–812.
- 34P. F. Hudrlik, P. E. Holmes, A. M. Hudrlik, Tetrahedron Lett. 1988, 29, 6395–6398.
- 35G. Adiwidjaja, H. Flörke, A. Kirschning, E. Schaumann, Tetrahedron Lett. 1995, 36, 8771–8774.
- 36T. P. Heffron, T. F. Jamison, Org. Lett. 2003, 5, 2339–2342.
- 37Y. Mori, K. Yaegashi, H. Furukawa, J. Am. Chem. Soc. 1996, 118, 8158–8159.
- 38Y. Mori, Chem. Eur. J. 1997, 3, 849–852.
- 39Y. Mori, H. Furuta, T. Takase, S. Mitsuoka, H. Furukawa, Tetrahedron Lett. 1999, 40, 8019–8022.
- 40K. Fujiwara, T. Tokiwano, A. Murai, Tetrahedron Lett. 1995, 36, 8063–8066.
- 41K. Fujiwara, K. Saka, D. Takaoka, A. Murai, Synlett 1999, 1037–1040.
- 42T. Tokiwano, K. Fujiwara, A. Murai, Chem. Lett. 2000, 272–273.
- 43K. D. Janda, C. G. Shevlin, R. A. Lerner, Science 1993, 259, 490–493.
- 44J. Na, K. N. Houk, C. G. Shevlin, K. D. Janda, R. A. Lerner, J. Am. Chem. Soc. 1993, 115, 8453–8454.
- 45K. D. Janda, C. G. Shevlin, R. A. Lerner, J. Am. Chem. Soc. 1995, 117, 2659–2660.
- 46J. Na, K. N. Houk, J. Am. Chem. Soc. 1996, 118, 9204–9205.
- 47M. Tokunaga, J. F. Larrow, F. Kakiuchi, E. N. Jacobsen, Science 1997, 277, 936–938.
- 48M. H. Wu, K. B. Hansen, E. N. Jacobsen, Angew. Chem. 1999, 111, 2167–2170;
10.1002/(SICI)1521-3757(19990712)111:13/14<2167::AID-ANGE2167>3.0.CO;2-F Web of Science® Google ScholarAngew. Chem. Int. Ed. 1999, 38, 2012–2014.10.1002/(SICI)1521-3773(19990712)38:13/14<2012::AID-ANIE2012>3.0.CO;2-H CAS PubMed Web of Science® Google Scholar
- 49J. Berger, A. I. Rachlin, W. E. Scott, L. H. Sternbach, M. W. Goldberg, J. Am. Chem. Soc. 1951, 73, 5295–5298.
- 50R. L. Harned, P. H. Hidy, C. J. Corum, K. L. Jones, Antibiot. Chemother. 1951, 1, 594–596.
- 51A. Agtarap, J. W. Chamberlin, M. Pinkerton, L. K. Steinrauf, J. Am. Chem. Soc. 1967, 89, 5737–5739.
- 52B. C. Pressman, E. J. Harris, W. S. Jagger, J. H. Johnson, Proc. Natl. Acad. Sci. USA 1967, 58, 1949–1956.
- 53R. F. Shumard, M. E. Callender, Antimicrob. Agents Chemother. 1967, 7, 369–377.
- 54A. P. Raun, C. O. Cooley, E. L. Potter, R. P. Rathmacher, L. F. Richardson, J. Anim. Sci. 1976, 43, 670–677.
- 55J. B. Russell, A. J. Houlihan, FEMS Microbiol. Rev. 2003, 27, 65–74.
- 56J. W. Westley, D. Perlman in Advances in Applied Microbiology, Vol. 22 (Hrsg.: ), Academic Press, New York, 1977, S. 177–223.
- 57J. W. Westley, R. H. Evans, Jr., L. H. Sello, N. Troupe, C. M. Liu, P. A. Miller, J. Antibiot. 1981, 34, 1248–1252.
- 58J. W. Westley, R. H. Evans, Jr., L. H. Sello, N. Troupe, C.-M. Liu, J. F. Blount, R. G. Pitcher, T. H. Williams, P. A. Miller, J. Antibiot. 1981, 34, 139–147.
- 59J. W. Westley, J. Nat. Prod. 1986, 49, 35–47.
- 60L. E. Day, J. W. Chamberlin, E. Z. Gordee, S. Chen, M. Gorman, R. L. Hamill, T. Ness, R. E. Weeks, R. Stroshane, Antimicrob. Agents Chemother. 1973, 4, 410–414.
- 61J. W. Westley, J. F. Blount, R. H. Evans, Jr., A. Stempel, J. Berger, J. Antibiot. 1974, 27, 597–604.
- 62J. W. Westley, R. H. Evans, Jr., G. Harvey, R. G. Pitcher, D. L. Pruess, A. Stempel, J. Berger, J. Antibiot. 1974, 27, 288–297.
- 63D. E. Dorman, J. W. Paschal, W. M. Nakatsukasa, L. L. Huckstep, N. Neuss, Helv. Chim. Acta 1976, 59, 2625–2634.
- 64C. R. Hutchinson, M. M. Sherman, A. G. McInnes, J. A. Walter, J. C. Vederas, J. Am. Chem. Soc. 1981, 103, 5956–5959.
- 65D. E. Cane, T.-C. Liang, H. Hasler, J. Am. Chem. Soc. 1981, 103, 5962–5965.
- 66C. R. Hutchinson, M. M. Sherman, J. C. Vederas, T. T. Nakashima, J. Am. Chem. Soc. 1981, 103, 5953–5956.
- 67J. W. Westley, Antibiotics 1981, 4, 41–73.
- 68D. E. Cane, T. C. Liang, H. Hasler, J. Am. Chem. Soc. 1982, 104, 7274–7281.
- 69C. R. Hutchinson, Acc. Chem. Res. 1983, 16, 7–14.
- 70D. E. Cane, W. D. Celmer, J. W. Westley, J. Am. Chem. Soc. 1983, 105, 3594–3600.
- 71D. E. Cane, T. C. Liang, L. Kaplan, M. K. Nallin, M. D. Schulman, O. D. Hensens, A. W. Douglas, G. Albers-Schoenberg, J. Am. Chem. Soc. 1983, 105, 4110–4112.
- 72G. R. Sood, J. A. Robinson, A. A. Ajaz, J. Chem. Soc. Chem. Commun. 1984, 1421–1423.
- 73D. Gani, D. O’Hagan, K. Reynolds, J. A. Robinson, J. Chem. Soc. Chem. Commun. 1985, 1002–1004.
- 74M. M. Sherman, C. R. Hutchinson, J. Antibiot. 1986, 39, 1270–1280.
- 75M. M. Sherman, S. Yue, C. R. Hutchinson, J. Antibiot. 1986, 39, 1135–1143.
- 76Z. Spavold, J. A. Robinson, D. L. Turner, Tetrahedron Lett. 1986, 27, 3299–3302.
- 77A. A. Ajaz, J. A. Robinson, D. L. Turner, J. Chem. Soc. Perkin Trans. 1 1987, 27–36.
- 78D. E. Cane, B. R. Hubbard, J. Am. Chem. Soc. 1987, 109, 6533–6535.
- 79M. M. Sherman, C. R. Hutchinson, Biochemistry 1987, 26, 438–445.
- 80G. R. Sood, D. M. Ashworth, A. A. Ajaz, J. A. Robinson, J. Chem. Soc. Perkin Trans. 1 1988, 3183–3193.
- 81D. S. Holmes, D. M. Ashworth, J. A. Robinson, Helv. Chim. Acta 1990, 73, 260–271.
- 82D. S. Holmes, J. A. Sherringham, U. C. Dyer, S. T. Russell, J. A. Robinson, Helv. Chim. Acta 1990, 73, 239–259.
- 83H. Patzelt, J. A. Robinson, J. Chem. Soc. Chem. Commun. 1993, 1258–1260.
- 84C. A. Townsend, A. Basak, Tetrahedron 1991, 47, 2591–2602.
- 85U. Koert, Angew. Chem. 1995, 107, 326–328;
10.1002/ange.19951070307 Google ScholarAngew. Chem. Int. Ed. Engl. 1995, 34, 298–300.
- 86F. E. McDonald, T. B. Towne, J. Am. Chem. Soc. 1994, 116, 7921–7922.
- 87F. E. McDonald, T. B. Towne, C. C. Schultz, Pure Appl. Chem. 1998, 70, 355–358.
- 88P. F. Leadlay, J. Staunton, M. Oliynyk, C. Bisang, J. Cortes, E. Frost, Z. A. Hughes-Thomas, M. A. Jones, S. G. Kendrew, J. B. Lester, P. F. Long, H. A. I. McArthur, E. L. McCormick, Z. Oliynyk, C. B. W. Stark, C. J. Wilkinson, J. Ind. Microbiol. Biotechnol. 2001, 27, 360–367.
- 89M. Oliynyk, C. B. W. Stark, A. Bhatt, M. A. Jones, Z. A. Hughes-Thomas, C. Wilkinson, Z. Oliynyk, Y. Demydchuk, J. Staunton, P. F. Leadlay, Mol. Microbiol. 2003, 49, 1179–1190.
- 90A. Bhatt, C. B. W. Stark, B. M. Harvey, A. R. Gallimore, Y. A. Demydchuk, J. B. Spencer, J. Staunton, P. F. Leadlay, Angew. Chem. 2005, 117, 7237–7240;
10.1002/ange.200501757 Google ScholarAngew. Chem. Int. Ed. 2005, 44, 7075–7078.
- 91A. R. Gallimore, C. B. W. Stark, A. Bhatt, B. M. Harvey, Y. Demydchuk, V. Bolanos-Garcia, D. J. Fowler, J. Staunton, P. F. Leadlay, J. B. Spencer, Chem. Biol. Chem. Biol 2006, 13, 453–460.
- 92Y. Sun, X. Zhou, H. Dong, G. Tu, M. Wang, B. Wang, Z. Deng, Chem. Biol. Chem. Biol 2003, 10, 431–441.
- 93B. M. Harvey, H. Hong, M. A. Jones, Z. A. Hughes-Thomas, R. M. Goss, M. L. Heathcote, V. M. Bolanos-Garcia, W. Kroutil, J. Staunton, P. F. Leadlay, J. B. Spencer, ChemBioChem 2006, 7, 1435–1442.
- 94T. Liu, D. You, C. Valenzano, Y. Sun, J. Li, Q. Yu, X. Zhou, E. Cane David, Z. Deng, Chem. Biol. 2006, 13, 945–955.
- 95T. Liu, X. Lin, X. Zhou, Z. Deng, E. Cane David, Chem. Biol. 2008, 15, 449–458.
- 96M. Izumikawa, M. Murata, K. Tachibana, Y. Ebizuka, I. Fujii, Bioorg. Med. Chem. 2003, 11, 3401–3405.
- 97B. M. Harvey, T. Mironenko, Y. Sun, H. Hong, Z. Deng, P. F. Leadlay, K. J. Weissman, S. F. Haydock, Chem. Biol. 2007, 14, 703–714.
- 98Y. Demydchuk, Y. Sun, H. Hong, J. Staunton, J. B. Spencer, P. F. Leadlay, ChemBioChem 2008, 9, 1136–1145.
- 99Y. Sun, H. Hong, F. Gillies, J. B. Spencer, P. F. Leadlay, ChemBioChem 2008, 9, 150–156.
- 100Y. Shichijo, A. Migita, H. Oguri, M. Watanabe, T. Tokiwano, K. Watanabe, H. Oikawa, J. Am. Chem. Soc. 2008, 130, 12230–12231.
- 101A. Migita, Y. Shichijo, H. Oguri, M. Watanabe, T. Tokiwano, H. Oikawa, Tetrahedron Lett. 2008, 49, 1021–1025.
- 102L. Smith, H. Hong, J. B. Spencer, P. F. Leadlay, ChemBioChem 2008, 9, 2967–2975.
- 103G. D. Brown, Nat. Prod. Rep. 1998, 15, 653–696.
- 104A. Rudi, T. Yosief, M. Schleyer, Y. Kashman, Tetrahedron 1999, 55, 5555–5566.
- 105Y. Kashman, A. Rudi, Phytochem. Rev. 2004, 3, 309–323.
- 106Y.-Y. Lin, M. Risk, S. M. Ray, D. Van Engen, J. Clardy, J. Golik, J. C. James, K. Nakanishi, J. Am. Chem. Soc. 1981, 103, 6773–6775.
- 107M. Murata, T. Iwashita, A. Yokoyama, M. Sasaki, T. Yasumoto, J. Am. Chem. Soc. 1992, 114, 6594–6596.
- 108M. Murata, H. Naoki, T. Iwashita, S. Matsunaga, M. Sasaki, A. Yokoyama, T. Yasumoto, J. Am. Chem. Soc. 1993, 115, 2060–2062.
- 109M. Murata, H. Naoki, S. Matsunaga, M. Satake, T. Yasumoto, J. Am. Chem. Soc. 1994, 116, 7098–7107.
- 110T. Nonomura, M. Sasaki, N. Matsumori, M. Murata, K. Tachibana, T. Yasumoto, Angew. Chem. 1996, 108, 1786–1789;
10.1002/ange.19961081512 Google ScholarAngew. Chem. Int. Ed. Engl. 1996, 35, 1675–1678.
- 111M. Sasaki, N. Matsumori, T. Maruyama, T. Nonomura, M. Murata, K. Tachibana, T. Yasumoto, Angew. Chem. 1996, 108, 1782–1785; Angew. Chem. Int. Ed. Engl. 1996, 35, 1672–1675.
- 112M. Inoue, Chem. Rev. 2005, 105, 4379–4405.
- 113T. Nakata, Chem. Rev. 2005, 105, 4314–4347.
- 114M. Sasaki, H. Fuwa, Nat. Prod. Rep. 2008, 25, 401–426.
- 115K. C. Nicolaou, M. O. Frederick, R. J. Aversa, Angew. Chem. 2008, 120, 7292–7335;
10.1002/ange.200801696 Google ScholarAngew. Chem. Int. Ed. 2008, 47, 7182–7225.
- 116M. Schrope, Nature 2008, 452, 24–26.
- 117M. Murata, A. M. Legrand, Y. Ishibashi, M. Fukui, T. Yasumoto, J. Am. Chem. Soc. 1990, 112, 4380–4386.
- 118R. J. Lewis, Toxicon 2001, 39, 97–106.
- 119K. G. Sellner, G. J. Doucette, G. J. Kirkpatrick, J. Ind. Microbiol. Biotechnol. 2003, 30, 383–406.
- 120F. G. Figueiras, G. C. Pitcher, M. Estrada, Ecol. Stud. 2006, 189, 127–138.
- 121P. M. Glibert, J. M. Burkholder, Ecol. Stud. 2006, 189, 341–354.
- 122W. G. Sunda, Ecol. Stud. 2006, 189, 203–214.
- 123M. Takahashi, M. Tatsumi, Y. Ohizumi, T. Yasumoto, J. Biol. Chem. 1983, 258, 10944–10949.
- 124M. Murata, A. M. Legrand, Y. Ishibashi, T. Yasumoto, J. Am. Chem. Soc. 1989, 111, 8929–8931.
- 125M. Murata, A. M. Legrand, T. Yasumoto, Tetrahedron Lett. 1989, 30, 3793–3796.
- 126M. Satake, A. Morohashi, H. Oguri, T. Oishi, M. Hirama, N. Harada, T. Yasumoto, J. Am. Chem. Soc. 1997, 119, 11325–11326.
- 127T. Yasumoto, T. Igarashi, A.-M. Legrand, P. Cruchet, M. Chinain, T. Fujita, H. Naoki, J. Am. Chem. Soc. 2000, 122, 4988–4989.
- 128M. Satake, M. Shoji, Y. Oshima, H. Naoki, T. Fujita, T. Yasumoto, Tetrahedron Lett. 2002, 43, 5829–5832.
- 129S. Ferrari, P. Ciminiello, C. Dell′Aversano, M. Forino, C. Malaguti, A. Tubaro, R. Poletti, T. Yasumoto, E. Fattorusso, G. P. Rossini, Chem. Res. Toxicol. 2004, 17, 1251–1257.
- 130G. Ronzitti, F. Callegari, C. Malaguti, G. P. Rossini, Br. J. Cancer 2004, 90, 1100–1107.
- 131H. Nagai, M. Murata, K. Torigoe, M. Satake, T. Yasumoto, J. Org. Chem. 1992, 57, 5448–5453.
- 132A. J. Bourdelais, S. Campbell, H. Jacocks, J. Naar, J. L. C. Wright, J. Carsi, D. G. Baden, Cell. Mol. Neurobiol. 2004, 24, 553–563.
- 133A. J. Bourdelais, H. M. Jacocks, J. L. C. Wright, P. M. Bigwarfe, Jr., D. G. Baden, J. Nat. Prod. 2005, 68, 2–6.
- 134W. M. Abraham, A. J. Bourdelais, J. R. Sabater, A. Ahmed, T. A. Lee, I. Serebriakov, D. G. Baden, Am. J. Respir. Crit. Care Med. 2004, 171, 26–34.
- 135M. A. Poli, T. J. Mende, D. G. Baden, Mol. Pharmacol. 1986, 30, 129–135.
- 136J. N. Bidard, H. P. M. Vijverberg, C. Frelin, E. Chungue, A. M. Legrand, R. Bagnis, M. Lazdunski, J. Biol. Chem. 1984, 259, 8353–8357.
- 137R. E. Gawley, K. S. Rein, G. Jeglitsch, D. J. Adams, E. A. Theodorakis, J. Tiebes, K. C. Nicolaou, D. G. Baden, Chem. Biol. 1995, 2, 533–541.
- 138R. E. Gawley, K. S. Rein, M. Kinoshita, D. G. Baden, Toxicon 1992, 30, 780–785.
- 139W. A. Catterall, M. Risk, Mol. Pharmacol. 1981, 19, 345–348.
- 140V. L. Trainer, D. G. Baden, W. A. Catterall, J. Biol. Chem. 1994, 269, 19904–19909.
- 141M. Mori, T. Oishi, S. Matsuoka, S. Ujihara, N. Matsumori, M. Murata, M. Satake, Y. Oshima, N. Matsushita, S. Aimoto, Bioorg. Med. Chem. 2005, 13, 5099–5103.
- 142K. Konoki, M. Hashimoto, T. Nonomura, M. Sasaki, M. Murata, K. Tachibana, J. Neurochem. 1998, 70, 409–416.
- 143Y. Ohizumi, A. Kajiwara, T. Yasumoto, J. Pharmacol. Exp. Ther. 1983, 227, 199–204.
- 144D. G. Soergel, F. Gusovsky, T. Yasumoto, J. W. Daly, J. Pharmacol. Exp. Ther. 1990, 255, 1360–1365.
- 145M. Taglialatela, S. Amoroso, T. Yasumoto, G. Di Renzo, L. Annunziato, Brain Res. 1986, 381, 356–358.
- 146M. Takahashi, Y. Ohizumi, T. Yasumoto, J. Biol. Chem. 1982, 257, 7287–7289.
- 147H. Ueda, S. Tamura, N. Fukushima, H. Takagi, Eur. J. Pharmacol. 1986, 122, 379–380.
- 148F. Gusovsky, J. W. Daly, Biochem. Pharmacol. 1990, 39, 1633–1639.
- 149F. Gusovsky, T. Yasumoto, J. W. Daly, FEBS Lett. 1989, 243, 307–312.
- 150M. Murata, F. Gusovsky, T. Yasumoto, J. W. Daly, Eur. J. Pharmacol. Mol. Pharmacol. Sect. 1992, 227, 43–49.
- 151K. Nakanishi, Toxicon 1985, 23, 473–479.
- 152H. N. Chou, Y. Shimizu, J. Am. Chem. Soc. 1987, 109, 2184–2185.
- 153A. R. Gallimore, J. B. Spencer, Angew. Chem. 2006, 118, 4514–4521;
10.1002/ange.200504284 Google ScholarAngew. Chem. Int. Ed. 2006, 45, 4406–4413.
- 154M. S. Lee, G. Qin, K. Nakanishi, M. G. Zagorski, J. Am. Chem. Soc. 1989, 111, 6234–6241.
- 155M. S. Lee, D. J. Repeta, K. Nakanishi, M. G. Zagorski, J. Am. Chem. Soc. 1986, 108, 7855–7856.
- 156R. V. Snyder, P. D. L. Gibbs, A. Palacios, L. Abiy, R. Dickey, J. V. Lopez, K. S. Rein, Mar. Biotechnol. 2003, 5, 1–12.
- 157R. V. Snyder, M. A. Guerrero, C. D. Sinigalliano, J. Winshell, R. Perez, J. V. Lopez, K. S. Rein, Phytochemistry 2005, 66, 1767–1780.
- 158K. S. Rein, R. V. Snyder, Adv. Appl. Microbiol. 2006, 59, 93–125.
- 159R. Perez, L. Liu, J. Lopez, T. An, K. S. Rein, Mar. Drugs 2008, 6, 164–179.
- 160M. Murata, M. Izumikawa, K. Tachibana, T. Fujita, H. Naoki, J. Am. Chem. Soc. 1998, 120, 147–151.
- 161M. Izumikawa, M. Murata, K. Tachibana, T. Fujita, H. Naoki, Eur. J. Biochem. 2000, 267, 5179–5183.
- 162H. Fuwa, M. Ebine, M. Sasaki, J. Am. Chem. Soc. 2006, 128, 9648–9650.
- 163H. Fuwa, M. Ebine, A. J. Bourdelais, D. G. Baden, M. Sasaki, J. Am. Chem. Soc. 2006, 128, 16989–16999.
- 164K. C. Nicolaou, M. O. Frederick, Angew. Chem. 2007, 119, 5372–5376;
10.1002/ange.200604656 Google ScholarAngew. Chem. Int. Ed. 2007, 46, 5278–5282.
- 165K. C. Nicolaou, M. O. Frederick, A. C. B. Burtoloso, R. M. Denton, F. Rivas, K. P. Cole, R. J. Aversa, R. Gibe, T. Umezawa, T. Suzuki, J. Am. Chem. Soc. 2008, 130, 7466–7476.
- 166J.-L. Giner, X. Li, J. J. Mullins, J. Org. Chem. 2003, 68, 10079–10086.
- 167J.-L. Giner, J. Org. Chem. 2005, 70, 721–724.
- 168L. F. Wiggins, D. J. C. Wood, J. Chem. Soc. 1950, 1566–1575.
- 169S. Rigolet, I. McCort, Y. Le Merrer, Tetrahedron Lett. 2002, 43, 8129–8132.
- 170R. Saladino, U. Ciambecchini, S. Hanessian, Eur. J. Org. Chem. 2003, 4401–4405.
- 171S. M. Glueck, W. M. F. Fabian, K. Faber, S. F. Mayer, Chem. Eur. J. 2004, 10, 3467–3478.
- 172T. Satoh, T. Imai, S. Umeda, K. Tsuda, H. Hashimoto, T. Kakuchi, Carbohydr. Res. 2005, 340, 2677–2681.
- 173H. Hashimoto, T. Kakuchi, K. Yokota, J. Org. Chem. 1991, 56, 6470–6472.
- 174L. Poitout, Y. Le Merrer, J.-C. Depezay, Tetrahedron Lett. 1995, 36, 6887–6890.
- 175R. J. Capon, R. A. Barrow, J. Org. Chem. 1998, 63, 75–83.
- 176M. Kamada, T. Satoh, K. Yokota, T. Kakuchi, Macromolecules 1999, 32, 5755–5759.
- 177E. Bozó, A. Medgyes, S. Boros, J. Kuszmann, Carbohydr. Res. 2000, 329, 25–40.
- 178I. McCort, M. Saniere, Y. Le Merrer, Tetrahedron 2003, 59, 2693–2700.
- 179S. A. Benner, J. E. Maggio, H. E. Simmons, J. Am. Chem. Soc. 1981, 103, 1581–1582.
- 180H. E. Simmons III, J. E. Maggio, Tetrahedron Lett. 1981, 22, 287–290.
- 181L. A. Paquette, M. Vazeux, Tetrahedron Lett. 1981, 22, 291–294.
- 182L. A. Paquette, R. V. Williams, M. Vazeux, A. R. Browne, J. Org. Chem. 1984, 49, 2194–2197.
- 183C. Weitemeyer, T. Preuß, A. de Meijere, Chem. Ber. 1985, 118, 3993–4005.
- 184S. Liang, C.-H. Lee, S. I. Kozhushkov, D. S. Yufit, J. A. K. Howard, K. Meindl, S. Ruehl, C. Yamamoto, Y. Okamoto, P. R. Schreiner, B. C. Rinderspacher, A. de Meijere, Chem. Eur. J. 2005, 11, 2012–2018.
- 185G. Person, M. Keller, H. Prinzbach, Liebigs Ann. 1996, 507–527.
- 186S. Guiard, M. Giorgi, M. Santelli, J.-L. Parrain, J. Org. Chem. 2003, 68, 3319–3322.
- 187E. Alvarez, E. Manta, J. D. Martin, M. L. Rodriguez, C. Ruiz-Perez, D. Zurita, Tetrahedron Lett. 1988, 29, 2097–2100.
- 188E. Alvarez, M. T. Diaz, R. Perez, J. L. Ravelo, A. Regueiro, J. A. Vera, D. Zurita, J. D. Martin, J. Org. Chem. 1994, 59, 2848–2876.
- 189R. E. Dolle, K. C. Nicolaou, J. Am. Chem. Soc. 1985, 107, 1691–1694.
- 190T. R. Hoye, J. C. Suhadolnik, J. Am. Chem. Soc. 1985, 107, 5312–5313.
- 191T. R. Hoye, J. C. Suhadolnik, Tetrahedron 1986, 42, 2855–2862.
- 192T. R. Hoye, S. A. Jenkins, J. Am. Chem. Soc. 1987, 109, 6196–6198.
- 193T. R. Hoye, N. E. Witowski, J. Am. Chem. Soc. 1992, 114, 7291–7292.
- 194W. C. Still, A. G. Romero, J. Am. Chem. Soc. 1986, 108, 2105–2106.
- 195S. L. Schreiber, T. Sammakia, B. Hulin, G. Schulte, J. Am. Chem. Soc. 1986, 108, 2106–2108.
- 196E. Vedejs, D. M. Gapinski, J. Am. Chem. Soc. 1983, 105, 5058–5061.
- 197I. Paterson, I. Boddy, I. Mason, Tetrahedron Lett. 1987, 28, 5205–5208.
- 198K. Nacro, M. Baltas, C. Zedde, L. Gorrichon, J. Jaud, Tetrahedron 1999, 55, 5129–5138.
- 199S. T. Russell, J. A. Robinson, D. J. Williams, J. Chem. Soc. Chem. Commun. 1987, 351–352.
- 200N. Hayashi, K. Fujiwara, A. Murai, Tetrahedron 1997, 53, 12425–12468.
- 201V. S. Kumar, D. L. Aubele, P. E. Floreancig, Org. Lett. 2002, 4, 2489–2492.
- 202V. S. Kumar, S. Wan, D. L. Aubele, P. E. Floreancig, Tetrahedron: Asymmetry 2005, 16, 3570–3578.
- 203J. A. Marshall, H. R. Chobanian, Org. Lett. 2003, 5, 1931–1933.
- 204J. A. Marshall, A. M. Mikowski, Org. Lett. 2006, 8, 4375–4378.
- 205J. A. Marshall, R. K. Hann, J. Org. Chem. 2008, 73, 6753–6757.
- 206Z. Wang, Y.-T. Cui, Z.-B. Xu, J. Qu, J. Org. Chem. 2008, 73, 2270–2274.
- 207W. J. Schultz, M. C. Etter, A. V. Pocius, S. Smith, J. Am. Chem. Soc. 1980, 102, 7981–7982.
- 208U. Koert, H. Wagner, M. Stein, Tetrahedron Lett. 1994, 35, 7629–7632.
- 209T. Iimori, W. C. Still, A. L. Rheingold, D. L. Staley, J. Am. Chem. Soc. 1989, 111, 3439–3440.
- 210I. Paterson, I. Boddy, Tetrahedron Lett. 1988, 29, 5301–5304.
- 211I. Paterson, P. A. Craw, Tetrahedron Lett. 1989, 30, 5799–5802.
- 212D. A. Evans, A. M. Ratz, B. E. Huff, G. S. Sheppard, J. Am. Chem. Soc. 1995, 117, 3448–3467.
- 213J. A. Marshall, H. R. Chobanian, Org. Lett. 2003, 5, 1931–1933.
- 214T. Lindel, B. Franck, Tetrahedron Lett. 1995, 36, 9465–9468.
- 215Z. Xiong, E. J. Corey, J. Am. Chem. Soc. 2000, 122, 4831–4832.
- 216Y. Morimoto, T. Iwai, T. Kinoshita, J. Am. Chem. Soc. 2000, 122, 7124–7125.
- 217M. Hashimoto, H. Harigaya, M. Yanagiya, H. Shirahama, Tetrahedron Lett. 1988, 29, 5947–5948.
- 218M. Hashimoto, T. Kan, K. Nozaki, M. Yanagiya, H. Shirahama, T. Matsumoto, Tetrahedron Lett. 1988, 29, 1143–1144.
- 219M. Hashimoto, M. Yanagiya, H. Shirahama, Chem. Lett. 1988, 645–646.
- 220M. Hashimoto, T. Kan, K. Nozaki, M. Yanagiya, H. Shirahama, T. Matsumoto, J. Org. Chem. 1990, 55, 5088–5107.
- 221M. Hashimoto, H. Harigaya, M. Yanagiya, H. Shirahama, J. Org. Chem. 1991, 56, 2299–2311.
- 222Z. Xiong, E. J. Corey, J. Am. Chem. Soc. 2000, 122, 9328–9329.
- 223Y. Morimoto, T. Iwai, Y. Nishikawa, T. Kinoshita, Tetrahedron: Asymmetry 2002, 13, 2641–2647.
- 224Y. Morimoto, Y. Nishikawa, M. Takaishi, J. Am. Chem. Soc. 2005, 127, 5806–5807.
- 225Y. Morimoto, Y. Nishikawa, C. Ueba, T. Tanaka, Angew. Chem. 2006, 118, 824–826;
10.1002/ange.200503143 Google ScholarAngew. Chem. Int. Ed. 2006, 45, 810–812.
- 226Y. Morimoto, H. Yata, Y. Nishikawa, Angew. Chem. 2007, 119, 6601–6604;
10.1002/ange.200701737 Google ScholarAngew. Chem. Int. Ed. 2007, 46, 6481–6484.
- 227Y. Morimoto, T. Okita, M. Takaishi, T. Tanaka, Angew. Chem. 2007, 119, 1150–1153;
10.1002/ange.200603806 Google ScholarAngew. Chem. Int. Ed. 2007, 46, 1132–1135.
- 228R. Tong, F. E. McDonald, Angew. Chem. 2008, 120, 4449–4451; Angew. Chem. Int. Ed. 2008, 47, 4377–4379.
- 229R. Tong, J. C. Valentine, F. E. McDonald, R. Cao, X. Fang, K. I. Hardcastle, J. Am. Chem. Soc. 2007, 129, 1050–1051.
- 230Y. Mori, K. Yaegashi, H. Furukawa, Tetrahedron 1997, 53, 12917–12932.
- 231H. Furuta, T. Takase, H. Hayashi, R. Noyori, Y. Mori, Tetrahedron 2003, 59, 9767–9777.
- 232P. F. Hudrlik, J. P. Arcoleo, R. H. Schwartz, R. N. Misra, R. J. Rona, Tetrahedron Lett. 1977, 18, 591–594.
10.1016/S0040-4039(01)92701-7 Google Scholar
- 233P. F. Hudrlik, A. M. Hudrlik, A. K. Kulkarni, J. Am. Chem. Soc. 1982, 104, 6809–6811.
- 234P. F. Hudrlik, A. M. Hudrlik, Adv. Silicon Chem. 1993, 2, 1–89.
- 235W. E. Fristad, T. R. Bailey, L. A. Paquette, R. Gleiter, M. C. Boehm, J. Am. Chem. Soc. 1979, 101, 4420–4423.
- 236T. P. Heffron, J. D. Trenkle, T. F. Jamison, Tetrahedron 2003, 59, 8913–8917.
- 237J. D. Warren, Y. Shi, J. Org. Chem. 1999, 64, 7675–7677.
- 238T. Tokiwano, K. Fujiwara, A. Murai, Synlett 2000, 335–338.
- 239F. E. McDonald, F. Bravo, X. Wang, X. Wei, M. Toganoh, J. R. Rodriguez, B. Do, W. A. Neiwert, K. I. Hardcastle, J. Org. Chem. 2002, 67, 2515–2523.
- 240F. Bravo, F. E. McDonald, W. A. Neiwert, K. I. Hardcastle, Org. Lett. 2004, 6, 4487–4489.
- 241J. C. Valentine, F. E. McDonald, W. A. Neiwert, K. I. Hardcastle, J. Am. Chem. Soc. 2005, 127, 4586–4587.
- 242R. Tong, F. E. McDonald, X. Fang, K. I. Hardcastle, Synthesis 2007, 2337–2342.
- 243T. P. Heffron, T. F. Jamison, Synlett 2006, 2329–2333.
- 244S. Wan, H. Gunaydin, K. N. Houk, P. E. Floreancig, J. Am. Chem. Soc. 2007, 129, 7915–7923.
- 245G. L. Simpson, T. P. Heffron, E. Merino, T. F. Jamison, J. Am. Chem. Soc. 2006, 128, 1056–1057.
- 246I. Vilotijevic, T. F. Jamison, Science 2007, 317, 1189–1192.
- 247K. C. Nicolaou, K. R. Reddy, G. Skokotas, F. Sato, X. Y. Xiao, J. Am. Chem. Soc. 1992, 114, 7935–7936.
- 248K. C. Nicolaou, K. R. Reddy, G. Skokotas, F. Sato, X. Y. Xiao, C. K. Hwang, J. Am. Chem. Soc. 1993, 115, 3558–3575.
- 249I. Kadota, P. Jung-Youl, N. Koumura, G. Pollaud, Y. Matsukawa, Y. Yamamoto, Tetrahedron Lett. 1995, 36, 5777–5780.
- 250I. Kadota, Y. Yamamoto, J. Org. Chem. 1998, 63, 6597–6606.
- 251M. Morimoto, H. Matsukura, T. Nakata, Tetrahedron Lett. 1996, 37, 6365–6368.
- 252Y. Mori, K. Yaegashi, H. Furukawa, J. Am. Chem. Soc. 1997, 119, 4557–4558.
- 253Y. Mori, K. Yaegashi, H. Furukawa, J. Org. Chem. 1998, 63, 6200–6209.
- 254K. C. Nicolaou, M. E. Duggan, C. K. Hwang, J. Am. Chem. Soc. 1989, 111, 6676–6682.
- 255K. C. Nicolaou, M. E. Duggan, C. K. Hwang, J. Am. Chem. Soc. 1989, 111, 6666–6675.
- 256K. C. Nicolaou, C. K. Hwang, M. E. Duggan, J. Am. Chem. Soc. 1989, 111, 6682–6690.
- 257K. C. Nicolaou, D. A. Nugiel, E. Couladouros, C. K. Hwang, Tetrahedron 1990, 46, 4517–4552.
- 258K. C. Nicolaou, C. K. Hwang, M. E. Duggan, D. A. Nugiel, Y. Abe, K. B. Reddy, S. A. DeFrees, D. R. Reddy, R. A. Awartani et al., J. Am. Chem. Soc. 1995, 117, 10227–10238.
- 259K. C. Nicolaou, F. P. J. T. Rutjes, E. A. Theodorakis, J. Tiebes, M. Sato, E. Untersteller, J. Am. Chem. Soc. 1995, 117, 1173–1174.
- 260K. C. Nicolaou, F. P. J. T. Rutjes, E. A. Theodorakis, J. Tiebes, M. Sato, E. Untersteller, J. Am. Chem. Soc. 1995, 117, 10252–10263.
- 261K. C. Nicolaou, E. A. Theodorakis, F. P. J. T. Rutjes, M. Sato, J. Tiebes, X. Y. Xiao, C. K. Hwang, M. E. Duggan, Z. Yang, J. Am. Chem. Soc. 1995, 117, 10239–10251.
- 262K. C. Nicolaou, E. A. Theodorakis, F. P. J. T. Rutjes, J. Tiebes, M. Sato, E. Untersteller, X. Y. Xiao, J. Am. Chem. Soc. 1995, 117, 1171–1172.
- 263K. C. Nicolaou, Angew. Chem. 1996, 108, 644–664;
10.1002/ange.19961080605 Google ScholarAngew. Chem. Int. Ed. Engl. 1996, 35, 588–607.
- 264G. Matsuo, H. Hinou, H. Koshino, T. Suenaga, T. Nakata, Tetrahedron Lett. 2000, 41, 903–906.
- 265G. Matsuo, N. Hori, H. Matsukura, T. Nakata, Tetrahedron Lett. 2000, 41, 7677–7680.
- 266G. Matsuo, H. Matsukura, N. Hori, T. Nakata, Tetrahedron Lett. 2000, 41, 7673–7676.
- 267G. Matsuo, K. Kawamura, N. Hori, H. Matsukura, T. Nakata, J. Am. Chem. Soc. 2004, 126, 14374–14376.
- 268K. C. Nicolaou, D. G. McGarry, P. K. Sommers, J. Am. Chem. Soc. 1990, 112, 3696–3697.
- 269K. C. Nicolaou, C. V. C. Prasad, W. W. Ogilvie, J. Am. Chem. Soc. 1990, 112, 4988–4989.
- 270K. C. Nicolaou, Z. Yang, G. Shi, J. L. Gunzner, K. A. Agrios, P. Gartner, Nature 1998, 392, 264–269.
- 271K. C. Nicolaou, M. E. Bunnage, D. G. McGarry, S. Shi, P. K. Somers, P. A. Wallace, X.-J. Chu, K. A. Agrios, J. L. Gunzner, Z. Yang, Chem. Eur. J. 1999, 5, 599–617.
- 272K. C. Nicolaou, J. L. Gunzner, G.-Q. Shi, K. A. Agrios, P. Gartner, Z. Yang, Chem. Eur. J. 1999, 5, 646–658.
- 273K. C. Nicolaou, G.-Q. Shi, J. L. Gunzner, P. Gartner, P. A. Wallace, M. A. Ouellette, S. Shi, M. E. Bunnage, K. A. Agrios, C. A. Veale, C.-K. Hwang, J. Hutchinson, C. V. C. Prasad, W. W. Ogilvie, Z. Yang, Chem. Eur. J. 1999, 5, 628–645.
- 274K. C. Nicolaou, P. A. Wallace, S. Shi, M. A. Ouellette, M. E. Bunnage, J. L. Gunzner, K. A. Agrios, G.-Q. Shi, P. Gartner, Z. Yang, Chem. Eur. J. 1999, 5, 618–627.
- 275H. Fuwa, M. Sasaki, K. Tachibana, Tetrahedron Lett. 2000, 41, 8371–8375.
- 276H. Fuwa, M. Sasaki, K. Tachibana, Org. Lett. 2001, 3, 3549–3552.
- 277H. Fuwa, M. Sasaki, K. Tachibana, Tetrahedron 2001, 57, 3019–3033.
- 278H. Fuwa, N. Kainuma, K. Tachibana, M. Sasaki, J. Am. Chem. Soc. 2002, 124, 14983–14992.
- 279I. Kadota, C. Kadowaki, N. Yoshida, Y. Yamamoto, Tetrahedron Lett. 1998, 39, 6369–6372.
- 280I. Kadota, A. Ohno, Y. Matsukawa, Y. Yamamoto, Tetrahedron Lett. 1998, 39, 6373–6376.
- 281I. Kadota, C.-H. Park, M. Ohtaka, N. Oguro, Y. Yamamoto, Tetrahedron Lett. 1998, 39, 6365–6368.
- 282I. Kadota, C. Kadowaki, C.-H. Park, H. Takamura, K. Sato, P. W. H. Chan, S. Thorand, Y. Yamamoto, Tetrahedron 2002, 58, 1799–1816.
- 283I. Kadota, H. Takamura, K. Sato, A. Ohno, K. Matsuda, M. Satake, Y. Yamamoto, J. Am. Chem. Soc. 2003, 125, 11893–11899.
- 284I. Kadota, H. Takamura, K. Sato, A. Ohno, K. Matsuda, Y. Yamamoto, J. Am. Chem. Soc. 2003, 125, 46–47.
- 285Y. Mori, T. Takase, R. Noyori, Tetrahedron Lett. 2003, 44, 2319–2322.
- 286A. Zakarian, A. Batch, R. A. Holton, J. Am. Chem. Soc. 2003, 125, 7822–7824.
- 287K. C. Nicolaou, D. J. Edmonds, P. G. Bulger, Angew. Chem. 2006, 118, 7292–7344;
10.1002/ange.200601872 Google ScholarAngew. Chem. Int. Ed. 2006, 45, 7134–7186.
- 288N. R. Mente, J. D. Neighbors, D. F. Wiemer, J. Org. Chem. 2008, 73, 7963–7970.
- 289J. D. Neighbors, N. R. Mente, K. D. Boss, D. W. Zehnder, D. F. Wiemer, Tetrahedron Lett. 2008, 49, 516–519.
- 290S. Sato, M. Nakada, M. Shibasaki, Tetrahedron Lett. 1996, 37, 6141–6144.
- 291Seit der Einreichung dieses Aufsatzes haben wir Studien zum Mechanismus der wasservermittelten Epoxidöffnungen[291a] und zu wasservermittelten Reaktionskaskaden von Epoxiden mit unterschiedlichen Substitutionsmustern[291b] beschrieben. Außerdem haben wir neue Template für Kaskaden entwickelt,[291c] die in der Synthese von Leiter-Polyethern nützlich sein könnten:
- 291aJ. A. Byers, T. F. Jamison, J. Am. Chem. Soc. 2009, 131, 6383–6385;
- 291bC. J. Morten, T. F. Jamison, J. Am. Chem. Soc. 2009, 131, 6678–6679;
- 291cA. R. Van Dyke, T. F. Jamison, Angew. Chem. 2009, 121, 4494–4496;
10.1002/ange.200900924 Google ScholarAngew. Chem. Int. Ed. 2009, 48, 4430–4432.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.