Three-Mode Squeezing of Simultaneous and Ordinal Cascaded Four-Wave Mixing Processes in Rubidium Vapor
Wei Li
Key Laboratory for Physical Electronics and Devices of the Ministry of Education & Shaanxi Key Lab of Information Photonic Technique, Xi'an Jiaotong University, Xi'an, 710049 China
Search for more papers by this authorChangbiao Li
Key Laboratory for Physical Electronics and Devices of the Ministry of Education & Shaanxi Key Lab of Information Photonic Technique, Xi'an Jiaotong University, Xi'an, 710049 China
Search for more papers by this authorMengqi Niu
Key Laboratory for Physical Electronics and Devices of the Ministry of Education & Shaanxi Key Lab of Information Photonic Technique, Xi'an Jiaotong University, Xi'an, 710049 China
Search for more papers by this authorBinshuo Luo
Key Laboratory for Physical Electronics and Devices of the Ministry of Education & Shaanxi Key Lab of Information Photonic Technique, Xi'an Jiaotong University, Xi'an, 710049 China
Search for more papers by this authorIrfan Ahmed
Department of Physics, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077 China
Electrical Engineering Department, Sukkur IBA University, Sindh, 65200 Pakistan
Search for more papers by this authorCorresponding Author
Yin Cai
Key Laboratory for Physical Electronics and Devices of the Ministry of Education & Shaanxi Key Lab of Information Photonic Technique, Xi'an Jiaotong University, Xi'an, 710049 China
E-mail: [email protected]
Search for more papers by this authorYanpeng Zhang
Key Laboratory for Physical Electronics and Devices of the Ministry of Education & Shaanxi Key Lab of Information Photonic Technique, Xi'an Jiaotong University, Xi'an, 710049 China
Yin Cin and Yanpeng Zhang are Co-corresponding author.
Search for more papers by this authorWei Li
Key Laboratory for Physical Electronics and Devices of the Ministry of Education & Shaanxi Key Lab of Information Photonic Technique, Xi'an Jiaotong University, Xi'an, 710049 China
Search for more papers by this authorChangbiao Li
Key Laboratory for Physical Electronics and Devices of the Ministry of Education & Shaanxi Key Lab of Information Photonic Technique, Xi'an Jiaotong University, Xi'an, 710049 China
Search for more papers by this authorMengqi Niu
Key Laboratory for Physical Electronics and Devices of the Ministry of Education & Shaanxi Key Lab of Information Photonic Technique, Xi'an Jiaotong University, Xi'an, 710049 China
Search for more papers by this authorBinshuo Luo
Key Laboratory for Physical Electronics and Devices of the Ministry of Education & Shaanxi Key Lab of Information Photonic Technique, Xi'an Jiaotong University, Xi'an, 710049 China
Search for more papers by this authorIrfan Ahmed
Department of Physics, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077 China
Electrical Engineering Department, Sukkur IBA University, Sindh, 65200 Pakistan
Search for more papers by this authorCorresponding Author
Yin Cai
Key Laboratory for Physical Electronics and Devices of the Ministry of Education & Shaanxi Key Lab of Information Photonic Technique, Xi'an Jiaotong University, Xi'an, 710049 China
E-mail: [email protected]
Search for more papers by this authorYanpeng Zhang
Key Laboratory for Physical Electronics and Devices of the Ministry of Education & Shaanxi Key Lab of Information Photonic Technique, Xi'an Jiaotong University, Xi'an, 710049 China
Yin Cin and Yanpeng Zhang are Co-corresponding author.
Search for more papers by this authorAbstract
Multipartite quantum correlation plays a vital role in potential applications of quantum technologies. In this paper, using energy-level cascaded four-wave mixing (EC-FWM) process, a scheme to produce quantum correlated three-mode light beams within a single device of hot atomic medium of rubidium is proposed. Two- and three-mode amplitude, phase quadrature squeezing and intensity difference squeezing using energy-level simultaneous cascaded FWM (ESC-FWM) method and energy-level ordinal cascaded FWM (EOC-FWM) method, respectively, is theoretically reported. Via investigating their covariance matrix properties, the comparison has been made between the two methods, which shows the ESC-FWM method has a more stable mode structure than EOC-FWM method. Moreover, versatile gain dependent squeezing via EC-FWM is studied and analytical expressions are given. These results show a simplified and efficient experimental scheme producing multipartite quantum correlation among multiple spatially separated beams.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
Research data are not shared.
References
- 1N. J. Cerf, G. Leuchs, Quantum Information with Continuous Variables of Atoms and Light, Imperial College Press, London 2007.
10.1142/p489 Google Scholar
- 2A. Heidmann, R. J. Horowicz, S. Reynaud, E. Giacobino, C. Fabre, G. Camy, Phys. Rev. Lett. 1987, 59, 2555.
- 3P. H. Ribeiro, C. Schwob, A. Maître, C. Fabre, Opt. Lett. 1997 , 22, 1893.
- 4K. S. Zhang, T. Coudreau, M. Martinelli, A. Maître, C. Fabre, Phys. Rev. A 2001, 64, 033815.
- 5P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V.Sergienko, Y. H. Shih, Phys. Rev. Lett. 1995, 75, 4337.
- 6H. Hübel, D. R. Hamel, A. Fedrizzi, S. Ramelow, K. J. Resch, T. Jennewein, Nature 2010, 466, 601.
- 7L. K. Shalm, D. R. Hamel, Z. Yan, C. Simon, K. J. Resch, T. Jennewein, Nat. Phys. 2013, 9, 19.
- 8G. B. Lemos, V. Borish, G. D. Cole, S. Ramelow, R. Lapkiewicz, A. Zeilinger, Nature 2014, 512, 409.
- 9Z. Y. Zhang, F. Wen, J. L. Che, D. Zhang, C. B. Li, Y. P. Zhang, Sci. Rep. 2015, 5, 15058.
- 10K. K. Li, R. Bu, D. Zhang, X. H. Li, M. Y. Wen, T. H. Nan, Y. P. Zhang, Opt. Express 2017, 25, 23556.
- 11L. Cheng, D. Zhang, J. L. Che, I. Ahmed, H. J. Tang, Z. Y. Zhang, Y. P. Zhang, Laser Phys. 2018, 28, 095401.
- 12C. B. Li, B. L. Gu, D. Zhang, W. J. Chen, Z. Shen, G. C. Lan, Y. P. Zhang, Laser Phys. Lett. 2019, 16, 055401.
- 13X. H. Xing, Z. D, M. Sun, K. K. Li, Z. G. Wang, Y. P. Zhang, Europhys. Lett. 2018, 122, 14005.
10.1209/0295-5075/122/14005 Google Scholar
- 14C. F. McCormick, V. Boyer, E. Arimonda, P. D. Lett, Opt. Lett. 2007, 32, 178.
- 15V. Boyer, A. M. Marino, R. C. Pooser, P. D. Lett, Science 2008, 321, 544.
- 16A. M. Marino, R. C. Pooser, V. Boyer, P. D. Lett, Nature 2009, 457, 859.
- 17A. I. Lvovsky, M. G. Raymer, Rev. Mod. Phys. 2009, 81, 299.
- 18M. Napolitano, M. Koschorreck, B. Dubost, N. Behbood, R. J. Sewell, M. W. Mitchell, Nature 2011, 471, 486.
- 19F. Hudelist, J. Kong, C. Liu, J. Jing, Z. Y. Ou, W. Zhang, Nat. Commun. 2014, 5, 3049.
- 20R. C. Pooser, B. J. Lawrie, ACS Photonics 2016, 3, 8.
- 21B. J. Lawrie, P. G. Evans, R. C. Pooser, Phys. Rev. Lett. 2013, 110, 156802.
- 22U. Vogl, R. T. Glasser, J. B. Clark, Q. Glorieux, T. Li, N. V. Corzo, P. D. Lett, New J. Phys. 2014, 16, 013011.
- 23Q. Glorieux, L. Guidoni, S. Guibal, J.-P. Likforman, T. Coudreau, Phys. Rev. A 2011, 84, 053826.
- 24S. Liu, Y. Lou, J. Jing, Phys. Rev. Lett. 2019, 123, 113602.
- 25N. Treps, U. Andersen, B. Buchler, P. K. Lam, A. Maitre, H.-A. Bachor, C. Fabre, Phys. Rev. Lett. 2002, 88, 203601.
- 26G. J. de Valcarcel, G. Patera, N. Treps, C. Fabre, Phys. Rev. A 2006, 74, 061801.
- 27B. Chalopin, F. Scazza, C. Fabre, N. Treps, Phys. Rev. A 2010, 81, 061804.
- 28J. D. Swaim, E. M. Knutson, O. Danaci, R. T. Glasser, Opt. Lett. 2018, 43, 2716.
- 29M. Lassen, V. Delaubert, J. Janousek, H. A. B. K.Wagner, P. K. Lam, N. Treps, P. Buchhave, C. Fabre, C. C. Harb, Phys. Rev. Lett. 2007, 98, 083602.
- 30D. M. Greenberger, M. A. Horne, A. Zeilinger, Phys. Today 1993, 46, 22.
- 31P. van Loock, S. L. Braunstein, Phys. Rev. Lett. 2000, 84, 3482.
- 32T. Aoki, N. Takei, H. Yonezawa, K. Wakui, T. Hiraoka, A. Furusawa, P. van Loock, Phys. Rev. Lett. 2003, 91, 080404.
- 33H. Yonezawa, T. Aoki, A. Furusawa, Nature 2004, 431, 430.
- 34X. Jia, Z. Yan, Z. Duan, X. Su, H. Wang, C. Xie, K. Peng, Phys. Rev. Lett. 2012, 109, 253604.
- 35H. Wang, C. Fabre, J. Jing, Phys. Rev. A 2017, 95, 051802.
- 36Z. Qin, L. Cao, H. Wang, A. M. Marino, W. Zhang, J. Jing, Phys. Rev. Lett. 2014, 113, 023602.
- 37W. Wang, L. M. Cao, Y. B. Lou, J. J. Du, J. T. Jing, Appl. Phys. Lett. 2018, 112, 034101.
- 38E. M. Knutson, J. D. Swaim, S. Wyllie, R. T. Glasser, Phys. Rev. A 2018, 98, 013828.
- 39S. Liu, H. Wang, J. Jing, Phys. Rev. A 2018, 97, 043846.
- 40S. Liu, Y. Lou, J. Jing, Opt. Express 2019, 27, 37999.
- 41K. Zhang, W. Wang, S. S. Liu, X. Z. Pan, J. J. Du, Y. B. Lou, S. Yu, S. C. Lv, N. Treps, C. Fabre, J. T. Jing, Phys. Rev. Lett. 2020, 124, 090501.
- 42W. Wang, K. Zhang, J. T. Jing, Phys. Rev. Lett. 2020, 125, 140501.
- 43Y. Cai, L. Hao, D. Zhang, Y. Liu, B. S. Luo, Z. Zheng, F. Li, Z. Y. Zhang, Opt. Express 2020, 28, 25278.
- 44D. Zhang, C. B. Li, Z. Y. Zhang, Y. Q. Zhang, Y. P. Zhang, Phys. Rev. A 2017, 96, 043847.
- 45C. B. Li, W. Li, D. Zhang, Z. Y. Zhang, B. L. Gu, K. K. Li, Y. P. Zhang, Laser Phys. Lett. 2020, 17, 015401.
- 46R. C. Pooser, A. M. Marino, V. Boyer, K. M. Jones, P. D. Lett, Opt. Express 2009, 19, 16722.
- 47Y. Cai, J. L. Feng, H. L. Wang, G. Ferrini, X. Y. Xu, J. T. J, N. Treps, Phys. Rev. A 2015, 91, 013843.
- 48S. L. Braunstein, P. van Loock, Rev. Mod. Phys. 2005, 77, 513.