Generation of N-particle W State with Trapped Λ-Type Ions by Transitionless Quantum Driving
Yang Liu
Fujian Key Laboratory of Quantum Information and Quantum Optics (Fuzhou University), Fuzhou, 350116 China
Department of Physics, Fuzhou University, Fuzhou, 350116 China
Search for more papers by this authorZhi-Cheng Shi
Fujian Key Laboratory of Quantum Information and Quantum Optics (Fuzhou University), Fuzhou, 350116 China
Department of Physics, Fuzhou University, Fuzhou, 350116 China
Search for more papers by this authorJie Song
Department of Physics, Harbin Institute of Technology, Harbin, 150001 China
Search for more papers by this authorCorresponding Author
Yan Xia
Fujian Key Laboratory of Quantum Information and Quantum Optics (Fuzhou University), Fuzhou, 350116 China
Department of Physics, Fuzhou University, Fuzhou, 350116 China
E-mail: [email protected]
Search for more papers by this authorYang Liu
Fujian Key Laboratory of Quantum Information and Quantum Optics (Fuzhou University), Fuzhou, 350116 China
Department of Physics, Fuzhou University, Fuzhou, 350116 China
Search for more papers by this authorZhi-Cheng Shi
Fujian Key Laboratory of Quantum Information and Quantum Optics (Fuzhou University), Fuzhou, 350116 China
Department of Physics, Fuzhou University, Fuzhou, 350116 China
Search for more papers by this authorJie Song
Department of Physics, Harbin Institute of Technology, Harbin, 150001 China
Search for more papers by this authorCorresponding Author
Yan Xia
Fujian Key Laboratory of Quantum Information and Quantum Optics (Fuzhou University), Fuzhou, 350116 China
Department of Physics, Fuzhou University, Fuzhou, 350116 China
E-mail: [email protected]
Search for more papers by this authorAbstract
An efficient scheme to generate multiparticle W state based on transitionless quantum driving (TQD) with trapped ions is proposed. In the TQD scheme, the effective Hamiltonian can be obtained with the help of quantum Zeno dynamics and large off-resonance condition, and the multiparticle W state can be generated with high fidelity. The influence of decoherence induced by the ionic spontaneous emission and the ambient heating, and the sensitivity of the TQD scheme to some experimental errors are discussed by numerical simulation. The result demonstrates that the TQD scheme is faster than that only via the fractional stimulated Raman adiabatic passage and robust against decoherence and operation imperfection.
Conflict of Interest
The authors declare no conflict of interest.
References
- 1G. Torun, A. Yildiz, Phys. Rev. A 2019, 100, 022320.
- 2M. Ikram, S. Y. Zhu, M. S. Zubairy, Phys. Rev. A 2000, 62, 022307.
- 3R. A. Malaney, Phys. Rev. A 2010, 81, 042319.
- 4S. Muralidharan, P. K. Panigrahi, Phys. Rev. A 2008, 78, 062333.
- 5S. Liu, D. Ran, Y. H. Kang, Z. C. Shi, J. Song, Y. Xia, Ann. der Phys. 2020, 532, 2000002.
- 6X. Q. Shao, L. Chen, S. Zhang, Y. F. Zhao, K. H. Yeon, EPL 2010, 90, 50003.
- 7D. X. Li, X. Q. Shao, J. H. Wu, X. X. Yi, Opt. Lett. 2017, 42, 3904.
- 8S. L. Su, X. Q. Shao, Q. Guo, L. Y. Cheng, H. F. Wang, S. Zhang, Eur. Phys. J. D 2015, 69, 123.
- 9M. Gong, M. C. Chen, Y. Zheng, S. Wang, C. Zha, H. Deng, Z. Yan, H. Rong, Y. Wu, S. Li, F. Chen, Y. Zhao, F. Liang, J. Lin, Y. Xu, C. Guo, L. Sun, A. D. Castellano, H. Wang, C. Peng, C.-Y. Lu, X. Zhu, J. W. Pan, Phys. Rev. Lett. 2019, 122, 110501.
- 10X. Q. Shao, H. F. Wang, L. Chen, S. Zhang, Y. F. Zhao, K. H. Yeon, Phys. Rev. A 2009, 80, 062323.
- 11Y. H. Kang, Y. H. Chen, Z. C. Shi, J. Song, Y. Xia, Phys. Rev. A 2016, 94, 052311.
- 12C. Joshi, J. Larson, M. Jonson, E. Andersson, P. Öhberg, Phys. Rev. A 2012, 85, 033805.
- 13M. Aspelmeyer, T. J. Kippenberg, F. Marquardt, Rev. Mod. Phys. 2014, 86, 1391.
- 14D. Vitali, S. Gigan, A. Ferreira, H. R. öhm, P. Tombesi, A. Guerreiro, V. Vedral, A. Zeilinger, M. Aspelmeyer, Phys. Rev. Lett. 2007, 98, 030405.
- 15H. Jo, Y. Song, M. Kim, J. Ahn, Phys. Rev. Lett. 2020, 124, 033603.
- 16S. L. Su, F. Q. Guo, L. Tian, X. Y. Zhu, L. L. Yan, E. J. Liang, M. Feng, Phys. Rev. A 2020, 101, 012347.
- 17R. H. Zheng, Y. H. Kang, S. L. Su, J. Song, Y. Xia, Phys. Rev. A 2020, 102, 012609.
- 18S. L. Su, F. Q. Guo, J. L. Wu, Z. Jin, X. Q. Shao, S. Zhang, EPL 2020, 131, 53001.
- 19C. P. Shen, J. L. Wu, S. L. Su, E. Liang, Opt. Lett. 2019, 44, 2036.
- 20D. Leibfried, R. Blatt, C. Monroe, D. Wineland, Rev. Mod. Phys. 2003, 75, 281.
- 21W. Ge, B. C. Sawyer, J. W. Britton, K. Jacobs, J. J. Bollinger, M. Foss-Feig, Phys. Rev. Lett. 2019, 122, 030501.
- 22R. Blatt, C. F. Roos, Nat. Phys. 2012, 8, 277.
- 23T. P. Harty, D. T. C. Allcock, C. J. Ballance, L. Guidoni, H. A. Janacek, N. M. Linke, D. N. Stacey, D. M. Lucas, Phys. Rev. Lett. 2014, 113, 220501.
- 24S. B. Zheng, Phys. Rev. A 2004, 70, 045804.
- 25S. B. Zheng, Phys. Rev. A 2006, 74, 054303.
- 26H. Häffner, W. Hänsel, C. F. Roos, J. Benhelm, D. Chek-al kar, M. Chwalla, T. Körber, U. D. Rapol, M. Riebe, P. O. Schmidt, C. Becher, O. Gühne, W. Dür, R. Blatt, Nature 2005, 438, 643.
- 27Y. Lin, J. P. Gaebler, F. Reiter, T. R. Tan, R. Bowler, Y. Wan, A. Keith, E. Knill, S. Glancy, K. Coakley, A. S. Sørensen, D. Leibfried, D. J. Wineland, Phys. Rev. Lett. 2016, 117, 140502.
- 28T. P. Gujarati, Phys. Rev. A 2018, 98, 062326.
- 29L. B. Chen, M. Y. Ye, G. W. Lin, Q. H. Du, X. M. Lin, Phys. Rev. A 2007, 76, 062304.
- 30M. Amniat-Talab, S. Guérin, H. R. Jauslin, Phys. Rev. A 2005, 72, 012339.
- 31D. Sugny, L. Bomble, T. Ribeyre, O. Dulieu, M. Desouter-Lecomte, Phys. Rev. A 2009, 80, 042325.
- 32J. L. Wu, S. L. Su, J. Phys. A: Math. Theor. 2019, 52, 335301.
- 33J. Qian, W. Zhang, H. Y. Ling, Phys. Rev. A 2010, 81, 013632.
- 34J. Wei, C. Chen, H. Jiang, W. Li, T. Han, Phys. Rev. A 2013, 88, 023806.
- 35M. V. Berry, J. Phys. A: Math. Theor. 2009, 42, 365303.
- 36A. Emmanouilidou, X. G. Zhao, P. Ao, Q. Niu, Phys. Rev. Lett. 2000, 85, 1626.
- 37A. Baksic, H. Ribeiro, A. A. Clerk, Phys. Rev. Lett. 2016, 116, 230503.
- 38F. Petiziol, B. Dive, F. Mintert, S. Wimberger, Phys. Rev. A 2018, 98, 043436.
- 39S. Ibáñez, X. Chen, E. Torrontegui, J. G. Muga, A. Ruschhaupt, Phys. Rev. Lett. 2012, 109, 100403.
- 40M. Demirplak, S. A. Rice, J. Chem. Phys. 2008, 129, 154111.
- 41D. Guéry-Odelin, A. Ruschhaupt, A. Kiely, E. Torrontegui, S. Martínez-Garaot, J. G. Muga, Rev. Mod. Phys. 2019, 91, 045001.
- 42J. Kölbl, A. Barfuss, M. S. Kasperczyk, L. Thiel, A. A. Clerk, H. Ribeiro, P. Maletinsky, Phys. Rev. Lett. 2019, 122, 090502.
- 43H. Zhou, Y. Ji, X. Nie, X. Yang, X. Chen, J. Bian, X. Peng, Phys. Rev. Appl. 2020, 13, 044059.
- 44Y. H. Chen, Y. Xia, J. Song, Q. Q. Chen, Sci. Rep. 2015, 5, 15616.
- 45Z. R. Zhong, X. J. Huang, Z. B. Yang, L. T. Shen, S. B. Zheng, Phys. Rev. A 2018, 98, 032311.
- 46P. Marte, P. Zoller, J. L. Hall, Phys. Rev. A 1991, 44, R4118.
- 47P. Facchi, S. Pascazio, Phys. Rev. Lett. 2002, 89, 080401.
- 48X. Q. Shao, L. Chen, S. Zhang, K. H. Yeon, J. Phys. B 2009, 42, 165507.
- 49X. Q. Shao, H. F. Wang, L. Chen, S. Zhang, Y. F. Zhao, K. H. Yeon, New J. Phys. 2010, 12, 023040.
- 50C. Yang, D. Li, X. Shao, Sci. China Phys.: Mech. Astron. 2019, 62, 110312.
- 51X. Chen, I. Lizuain, A. Ruschhaupt, D. Guéry-Odelin, J. G. Muga, Phys. Rev. Lett. 2010, 105, 123003.
- 52D. F. James, J. Jerke, Canadian J. Phys. 2007, 85, 625.
- 53R. T. Sutherland, R. Srinivas, S. C. Burd, H. M. Knaack, A. C. Wilson, D. J. Wineland, D. Leibfried, D. T. C. Allcock, D. H. Slichter, S. B. Libby, Phys. Rev. A 2020, 101, 042334.