Multiple Nonvolatile Resistance States Tuned by Electric Pulses in the Hysteresis Temperature Range of 1T-TaS2
Corresponding Author
Yongchang Ma
School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384 China
Tianjin Key Lab for Photoelectric Materials and Devices, Tianjin, 300384 China
E-mail: [email protected]
Search for more papers by this authorDong Wu
Songshan Lake Materials Laboratory, Dongguan, Guangdong, 523808 China
Search for more papers by this authorYajun Li
School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384 China
Search for more papers by this authorRui Chen
School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384 China
Search for more papers by this authorCuimin Lu
School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384 China
Tianjin Key Lab for Photoelectric Materials and Devices, Tianjin, 300384 China
Search for more papers by this authorCorresponding Author
Yongchang Ma
School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384 China
Tianjin Key Lab for Photoelectric Materials and Devices, Tianjin, 300384 China
E-mail: [email protected]
Search for more papers by this authorDong Wu
Songshan Lake Materials Laboratory, Dongguan, Guangdong, 523808 China
Search for more papers by this authorYajun Li
School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384 China
Search for more papers by this authorRui Chen
School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384 China
Search for more papers by this authorCuimin Lu
School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384 China
Tianjin Key Lab for Photoelectric Materials and Devices, Tianjin, 300384 China
Search for more papers by this authorAbstract
Compared with systematically investigated resistance switching, nonvolatile multi-level memristors are highly desired due to their stochastic or analog ability for artificial intelligence. Here, electric-pulses-induced responses of 1T-TaS2 crystals in hysteresis temperature range are reported. These investigations clearly show that the resistance of the system can be precisely tuned by electric pulses (∼100 V cm−1), forming multiple nonvolatile states in less than 200 ns. The origin of these states and the occurrence of the obstinate triclinic phase activated by pulses are discussed and simulated, implying the rearrangements of the textures composed of commensurate charged-density-wave domains separated by discommensurabilities. The multiple nonvolatile resistance states activated conveniently by electric pulses may shed light on the potential applications of artificial synapse devices.
Conflict of Interest
The authors declare no conflict of interest.
Supporting Information
Filename | Description |
---|---|
andp202000507-sup-0001-SuppMat.pdf925.4 KB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1E. Janod, J. Tranchant, B. Corraze, M. Querré, P. Stoliar, M. Rozenberg, T. Cren, D. Roditchev, V. Ta Phuoc, M. Besland, L. Cario, Adv. Funct. Mater. 2015, 25, 6287.
- 2S. H. Jo, T. Chang, I. Ebong, B. B. Bhadviya, P. Mazumder, W. Lu, Nano Lett. 2010, 10, 1297.
- 3R. Waser, M. Aono, Nat. Mater. 2007, 6, 833.
- 4M. Lüben, F. Cüppers, J. Mohr, M. von Witzleben, U. Breuer, R. Waser, C. Neumann, I. Valov, Sci. Adv. 2020, 6, eaaz9079.
- 5S. Bae, S. Lee, H. Koo, L. Lin, B. H. Jo, C. Park, Z. L. Wang, Adv. Mater. 2013, 25, 5908.
- 6W. Yi, K. K. Tsang, S. K. Lam, X. Bai, J. A. Crowell, E. A. Flores, Nat. Commun. 2018, 9, 4661.
- 7L. Zhao, H.-Y. Chen, S.-C. Wu, Z. Jiang, S. Yu, T.-H. Hou, H. P. Wonga, Y. Nishi, Nanoscale 2014, 6, 5698.
- 8W. Kim, A. Chattopadhyay, A. Siemon, E. Linn, R. Waser, V. Rana, Sci. Rep-UK 2016, 6, 36652.
- 9G. Park, Y. Kim, S. Park, X. Li, S. Heo, M. Lee, M. Chang, J. Kwon, M. Kim, U.-I. Chung, R. Dittmann, R. Waser, K. Kim, Nat. Commun. 2013, 4, 2382.
- 10Y. B. Nian, J. Strozier, N. J. Wu, X. Chen, A. Ignatiev, Phys. Rev. Lett. 2007, 98, 146403.
- 11M. J. Rozenberg, I. H. Inoue, M. J. Sanchez, Phys. Rev. Lett. 2004, 92, 178302.
- 12B. Sipos, A. F. Kusmartseva, A. Akrap, H. Berger, L. Forro, E. Tuti, Nat. Mater. 2008, 7, 960.
- 13L. Stojchevska, I. Vaskivskyi, T. Mertelj, P. Kusar, D. Svetin, S. Brazovskii, D. Mihailovic, Sci. Adv. 2014, 344, 177.
- 14I. Vaskivskyi, J. Gospodaric, S. Brazovskii, D. Svetin, P. Sutar, E. Goreshnik, I. A. Mihailovic, T. Mertelj, D. Mihailovic, Sci. Adv. 2015, 1, e1500168.
- 15M. Yoshida, R. Suzuki, Y. J. Zhang, M. Nakano, Y. Iwasa, Sci. Adv. 2015, 1, e1500606.
- 16M. J. Hollander, Y. Liu, W. J. Lu, L. J. Li, Y. P. Sun, J. A. Robinson, S. Datta, Nano Lett. 2015, 15, 1861.
- 17Y. Yu, F. Yang, X. F. Lu, Y. J. Yan, Y. Cho, L. Ma, X. Niu, S. Kim, Y. Son, D. Feng, S. Li, S. Cheong, X. H. Chen, Y. Zhang, Nat. Nanotechnol. 2015, 10, 270.
- 18I. Vaskivskyi, I. A. Mihailovic, S Brazovskii, J. Gospodaric, T. Mertelj, D. Svetin, P. Sutar, D. Mihailovic, Nat. Commun. 2016, 7, 11442.
- 19A. K. Geremew, S. Rumyantsev, F. Kargar, B. Debnath, A. Nosek, M. A. Bloodgood, M. Bockrath, T. T. Salguero, R. K. Lake, A. A. Balandin, ACS Nano 2019, 13, 7231.
- 20M. Mahajan, K. Murali, N. Kawatra, K. Majumdar, Phys. Rev. Applied 2019, 11, 024031.
- 21C. Zhu, Y. Chen, F. Liu, S. Zheng, X. Li, A. Chaturvedi, J. Zhou, Q. Fu, Y. He, Q. Zeng, H. Fan, H. Zhang, W. Liu, T. Yu, Z. Liu, ACS Nano 2018, 12, 11203.
- 22J. Vodeb, V. V. Kabanov, Y. A. Gerasimenko, R. Venturini, J. Ravnik, M. A. van Midden, E. Zupanic, P. Sutar, D. Mihailovic, New J. Phys. 2019, 21, 083001.
- 23L. Ma, C. Ye, Y. Yu, X. F. Lu, X. Niu, S. Kim, D. Feng, D. Tomanek, Y. Son, X. H. Chen, Y. Zhang, Nat. Commun. 2016, 7, 10956.
- 24P. Karpov, S. Brazovskii, Sci. Rep. 2018, 8, 4043.
- 25D. Cho, S. Cheon, K. Kim, S. Lee, Y. Cho, S. Cheong, H. W. Yeom, Nat. Commun. 2016, 7, 10453.
- 26A. W. Tsen, R. Hovden, D. Z. Wang, Y. D. Kim, J. Okamoto, K. A. Spoth, Y. Liu, W. J. Lu, Y. P. Sun, J. Hone, L. F. Kourkoutis, P. Kim, A. N. Pasupathy, Proc. Natl Acad. Sci. U. S. A. 2015, 112, 15054.
- 27T. Patel, J. Okamoto, T. Dekker, B. Yang, J. Gao, X. Luo, W. Lu, Y. Sun, A. W. Tsen, Nano Lett. 2020, 20, 7200.
- 28Y. Ma, D. Wu, C. Lu, C. Petrovic, Appl. Phys. Lett. 2020, 116, 171906.
- 29F. J. Di Salvo, J. A. Wilson, B. G. Bagley, J. V. Waszczak, Phys. Rev. B 1975, 12, 2220.
- 30J. A. Wilson, F. J. Di Salvo, S. Mahajan, Adv. Phys. 1975, 24, 117.
- 31R. E. Thomson, B. Burk, A. Zettl, J. Clarke, Phys. Rev. B. 1994, 49, 16899.
- 32T. Tani, S. Tanaka, J. Phys. Soc. Jpn. 1984, 53, 1790.
- 33S. Tanda, T. Sabonge, T. Tani, S. Tanaka, J. Phys. Soc. Jpn. 1984, 53, 476.
- 34X. L. Wu, C. M. Lieber, Science 1990, 243, 1703.
- 35K. Nakanishi, H. Shiba, J. Phys. Soc. Jpn. 1977, 43, 1839.
- 36T. Ishiguro, H. Sato, Phys. Rev. B 1991, 44, 2046.
- 37K. Nakatsugawa, S. Tanda, T. N. Ikeda, Sci. Rep. 2020, 10, 1239.
- 38M. Yoshida, T. Sato, F. Kagawa, Y. Iwasa, Phys. Rev. B 2019, 100, 155125.
- 39D. Wu, Y. C. Ma, Y. Y. Niu, Q. M. Liu, Tao Dong, S. J. Zhang, J. S. Niu, H. B. Zhou, Jian Wei, Y. X. Wang, Z. R. Zhao, N. L. Wang, Sci. Adv. 2018, 4, eaao3057.
- 40S. Lee, J. S. Goh, D. Cho, Phys. Rev. Lett. 2019, 122, 106404.
- 41Y. Ma, Z. Wang, Y. Hou, D. Wu, C. Lu, C. Petrovic, Phys. Rev. B 2019, 99, 045102.
- 42If the specimen is heated to a temperature outside of the hysteretic range, no pulse-induced resistance change can be identified in our experiments (see the results at T = 130 and 240 K shown in Figure 2b).
- 43A. J. Gross, G. S. Hwang, B. Huang, H. Yang, N. Ghafouri, H. Kim, R. L. Peterson, C. Uher, M. Kaviany, K. Najafi, J. MicroElect. Mech. System 2011, 20, 1201.
- 44J. Mao, Z. Liu, J. Zhou, H. Zhu, Q. Zhang, G. Chen, Z. Ren, Adv. Phys. 2018, 67, 69.
- 45V. Guiot, L. Cario, E. Janod, B. Corraze, V. Ta Phuoc, M. Rozenberg, P. Stoliar, T. Cren, D. Roditchev, Nat. Commun. 2013, 4, 1722.
- 46R. Ang, Y. Miyata, E. Ieki, K. Nakayama, T. Sato, Y. Liu, W. J. Lu, Y. P. Sun, T. Takahashi, Phys. Rev. B 2013, 88, 115145.
- 47K. Ludwiczak, E. Lacinska, J. Binder, I. Lutsyk, M. Rogala, P. Dabrowski, Z. Klusek, R. Stepniewski, A. Wysmolek, Solid State Comm. 2020, 305, 113749.
- 48T. Driscoll, H.-T. Kim, B.-G. Chae, M. Di Ventra, D. N. Basov, Appl. Phys. Lett. 2009, 95, 043503.
- 49R. Landauer, J. Appl. Phys. 1952, 23, 779.
- 50L. Cario, C. Vaju, B. Corraze, V. Guiot, E. Janod, Adv. Mater. 2010, 22, 5193.
- 51J.-J. Kim, W. Yamaguchi, T. Hasegawa, K. Kitazawa, Phys. Rev. Lett. 1994, 73, 2103.
- 52D. Cho, Y. Cho, S. Cheong, K. Kim, H. W. Yeom, Phys. Rev. B 2015, 92, 085132.
- 53Q. Stahl, M. Kusch, F. Heinsch, G. Garbarino, N. Kretzschmar, K. Hanff, K. Rossnagel, J. Geck, T. Ritschel, Nat. Commun. 2020, 11, 1247.
- 54C. J. Butler, M. Yoshida, T. Hanaguri, Y. Iwasa, Nat. Commun. 2020, 11, 2477.
- 55M. Yoshida, Y. Zhang, J. Ye, R. Suzuki, Y. Imai, S. Kimura, A. Fujiwara, Y. Iwasa, Sci. Rep. 2015, 4, 7302.
- 56F.-T. Huang, S.-W. Cheng, Nat. Rev. Mater. 2017, 2, 17004.