Differential distribution of the normal and mutated forms of huntingtin in the human brain
Isabelle Gourfinkel-An MD
INSERM U289, Hocpitl de la Salpetrière, Paris, France
Search for more papers by this authorGéraldine Cancel BS
INSERM U289, Hocpitl de la Salpetrière, Paris, France
Search for more papers by this authorYvon Trottier PhD
Institut de Genetique et de Biologie Moleire et Cellulaire (IGBMC), CNRS, INSERM, Univeristé Louis Pasteur, CU de Strasbourg, France
Search for more papers by this authorDidier Devys PhD
Institut de Genetique et de Biologie Moleire et Cellulaire (IGBMC), CNRS, INSERM, Univeristé Louis Pasteur, CU de Strasbourg, France
Search for more papers by this authorLaszlo Tora PhD
Institut de Genetique et de Biologie Moleire et Cellulaire (IGBMC), CNRS, INSERM, Univeristé Louis Pasteur, CU de Strasbourg, France
Search for more papers by this authorYves Lutz PhD
Institut de Genetique et de Biologie Moleire et Cellulaire (IGBMC), CNRS, INSERM, Univeristé Louis Pasteur, CU de Strasbourg, France
Search for more papers by this authorGeorges Imbert BS
Institut de Genetique et de Biologie Moleire et Cellulaire (IGBMC), CNRS, INSERM, Univeristé Louis Pasteur, CU de Strasbourg, France
Search for more papers by this authorFrédéric Saudou PhD
Institut de Genetique et de Biologie Moleire et Cellulaire (IGBMC), CNRS, INSERM, Univeristé Louis Pasteur, CU de Strasbourg, France
Search for more papers by this authorGiovanni Stevanin BS
INSERM U289, Hocpitl de la Salpetrière, Paris, France
Search for more papers by this authorYves Agid MD, PhD
INSERM U289, Hocpitl de la Salpetrière, Paris, France
Search for more papers by this authorAlexis Brice MD
INSERM U289, Hocpitl de la Salpetrière, Paris, France
Search for more papers by this authorJean-Louis Mandel MD, PhD
Institut de Genetique et de Biologie Moleire et Cellulaire (IGBMC), CNRS, INSERM, Univeristé Louis Pasteur, CU de Strasbourg, France
Search for more papers by this authorCorresponding Author
Dr. Etienne C. Hirsch PhD
INSERM U289, Hocpitl de la Salpetrière, Paris, France
INSERM U289, Hocpital de la Salpetrière, 47 boulevard de l'Hocpital, 75651 Paris Cedex 13, FranceSearch for more papers by this authorIsabelle Gourfinkel-An MD
INSERM U289, Hocpitl de la Salpetrière, Paris, France
Search for more papers by this authorGéraldine Cancel BS
INSERM U289, Hocpitl de la Salpetrière, Paris, France
Search for more papers by this authorYvon Trottier PhD
Institut de Genetique et de Biologie Moleire et Cellulaire (IGBMC), CNRS, INSERM, Univeristé Louis Pasteur, CU de Strasbourg, France
Search for more papers by this authorDidier Devys PhD
Institut de Genetique et de Biologie Moleire et Cellulaire (IGBMC), CNRS, INSERM, Univeristé Louis Pasteur, CU de Strasbourg, France
Search for more papers by this authorLaszlo Tora PhD
Institut de Genetique et de Biologie Moleire et Cellulaire (IGBMC), CNRS, INSERM, Univeristé Louis Pasteur, CU de Strasbourg, France
Search for more papers by this authorYves Lutz PhD
Institut de Genetique et de Biologie Moleire et Cellulaire (IGBMC), CNRS, INSERM, Univeristé Louis Pasteur, CU de Strasbourg, France
Search for more papers by this authorGeorges Imbert BS
Institut de Genetique et de Biologie Moleire et Cellulaire (IGBMC), CNRS, INSERM, Univeristé Louis Pasteur, CU de Strasbourg, France
Search for more papers by this authorFrédéric Saudou PhD
Institut de Genetique et de Biologie Moleire et Cellulaire (IGBMC), CNRS, INSERM, Univeristé Louis Pasteur, CU de Strasbourg, France
Search for more papers by this authorGiovanni Stevanin BS
INSERM U289, Hocpitl de la Salpetrière, Paris, France
Search for more papers by this authorYves Agid MD, PhD
INSERM U289, Hocpitl de la Salpetrière, Paris, France
Search for more papers by this authorAlexis Brice MD
INSERM U289, Hocpitl de la Salpetrière, Paris, France
Search for more papers by this authorJean-Louis Mandel MD, PhD
Institut de Genetique et de Biologie Moleire et Cellulaire (IGBMC), CNRS, INSERM, Univeristé Louis Pasteur, CU de Strasbourg, France
Search for more papers by this authorCorresponding Author
Dr. Etienne C. Hirsch PhD
INSERM U289, Hocpitl de la Salpetrière, Paris, France
INSERM U289, Hocpital de la Salpetrière, 47 boulevard de l'Hocpital, 75651 Paris Cedex 13, FranceSearch for more papers by this authorAbstract
Huntington's disease is an inherited disorder caused by expansion of a CAG trinucleotide repeat in the IT15 gene, which leads to expansion of a polyglutamine tract within the protein called huntingtin. Despite the characterization of the IT15 gene and the mutation involved in the disease, the normal function of huntingtin and the effects of the mutation on its function and on its neuronal location remain unknown. To study whether mutated huntingtin has the same neuronal distribution and intracellular location as normal huntingtin, we analyzed immunohistochemically both forms of this protein in the brain of 5 controls and 5 patients with Huntington's disease. We show that the distribution of mutated huntingtin is, like that of the normal form, heterogeneous throughout the brain, but is not limited to vulnerable neurons in Huntington's disease supporting the hypothesis that the presence of the mutated huntingtin in a neuron is not in itself sufficient to lead to neuronal death. Moreover, whereas normal huntingtin is detected in some neuronal perikarya, nerve fibers, and nerve endings, the mutated form is observed in some neuronal perikarya and proximal nerve processes but is not detectable in nerve endings. Our results suggest that the expression or processing of the mutated huntingtin in perikarya and nerve endings differs quantitatively or qualitatively from the expression of the normal form in the same neuronal compartments.
References
- 1 Hayden MR. Huntington's chorea. New York: Springer Verlag, 1981
- 2 La Spada AR, Wilson EM, Lubahn DB, et al. Androgen receptor gene mutations in X-linked spinal and bulbar muscular atrophy. Nature 1991; 352: 77–79
- 3 Orr HT, Chung M-Y, Banfi S, et al. Expansion of an unstable trinucleotide CAG repeat in spinocerebellar ataxia type 1. Nat Genet 1993; 4: 221–226
- 4 Imbert G, Saudou F, Yvert G, et al. Cloning of the gene for spinocerebellar ataxia 2 reveals a locus with high sensitivity to expanded CAG/glutamine repeats. Nat Genet 1996; 14: 285–291
- 5 Pulst S-M, Nechiporuk A, Nechiporuk T, et al. Moderate expansion of a normally biallelic trinucleotide repeat in spinocerebellar ataxia type 2. Nat Genet 1996; 14: 269–276
- 6 Sanpei K, Takano H, Igarashi S, et al. Identification of the spinocerebellar ataxia type 2 gene using a direct identification of repeat expansion and cloning technique, DIRECT. Nat Genet 1996; 14: 277–284
- 7 Kawaguchi Y, Okamoto T, Taniwaki M, et al. CAG expansions in a novel gene from Machado-Joseph disease at chromosome 14q32.1. Nat Genet 1994; 8: 221–227
- 8 Zhuchenko O, Bailey J, Bonnen P, et al. Autosomal dominant cerebellar ataxia (SCA6) associated with small expansions in the α1A-voltage-dependent calcium channel. Nat Genet 1997; 15: 62–69
- 9 Koide R, Ikeuchi T, Onodera O, et al. Unstable expansion of CAG repeat in hereditary dentatorubral-pallidoluysian atrophy (DRPLA). Nat Genet 1994; 6: 9–13
- 10 Nagafuchi S, Yanagisawa H, Ohsaki E, et al. Structure and expression of the gene responsible for the triplet repeat disorder, dentatorubral and pallidoluysian atrophy (DRPLA). Nat Genet 1994; 8: 177–182
- 11 The Huntington's Disease Collaborative Research Group. A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington's disease chromosomes. Cell 1993; 72: 971–983
- 12 Vonsattel JP, Myers RH, Stevens TJ, et al. Neuropathological classification of Huntington's disease. J Neuropathol Exp Neurol 1985; 44: 559–577
- 13 Ferrante RJ, Beal MF, Kowall NW, et al. Sparing of acetylcholinesterase-containing striatal neurons in Huntington's disease. Brain Res 1987; 411: 162–166
- 14 Harper PS, Morris MJ, Quarrell O, et al. Huntington's disease. Philadelphia: WB Saunders, 1991
- 15 Hedreen JC, Peyser CE, Folstein SE, Ross CA. Neuronal loss in layers V and VI of cerebral cortex in Huntington's disease. Neurosci Lett 1991; 133: 257–261
- 16 Li SH, Schilling G, Young WS, et al. Huntington's disease gene (IT15) is widely expressed in human and rat tissues. Neuron 1993; 11: 985–993
- 17 Strong TV, Tagle DA, Valdes JM, et al. Widespread expression of the human and rat Huntington's disease gene in brain and nonneural tissues. Nat Genet 1993; 5: 259–265
- 18 Landwehrmeyer GB, McNeil SM, Dure LSIV, et al. Huntington's disease gene: regional and cellular expression in brain of normal and affected individuals. Ann Neurol 1995; 37: 218–230
- 19 Difiglia M, Sapp E, Chase K, et al. Huntingtin is a cytoplasmic protein associated with vesicles in human and rat brain neurons. Neuron 1995; 14: 1075–1081
- 20 Gutekunst C-A, Levey AI, Heilman CS, et al. Identification and localization of huntingtin in brain and human lymphoblastoid cell lines with anti-fusion protein antibodies. Proc Natl Acad Sci USA 1995; 92: 8710–8714
- 21 Sharp AH, Loev SJ, Shilling G, et al. Widespread expression of Huntington's disease gene (IT15) protein product. Neuron 1995; 14: 1065–1074
- 22 Trottier Y, Devys D, Imbert G, et al. Cellular localization of the Huntington disease protein and discrimination of the normal and mutated form. Nat Genet 1995; 10: 104–110
- 23 Aronin N, Chase K, Young C, et al. CAG expansion affects the expression of mutant huntingtin in the Huntington's disease brain. Neuron 1995; 15: 1193–1201
- 24 Schilling G, Sharp AH, Loev SJ, et al. Expression of the Huntington's disease (IT15) protein product in HD patients. Hum Mol Genet 1995; 4: 1365–1371
- 25 Wood JD, MacMillan JC, Harper PS, et al. Partial characterisation of murine huntingtin and apparent variations in the subcellular localisation of huntingtin in human, mouse, and rat brain. Hum Mol Genet 1996; 5: 481–487
- 26 Trottier Y, Lutz Y, Stevanin G, et al. Polyglutamine expansion as a pathological epitope in Huntington's disease and four dominant cerebellar ataxias. Nature 1995; 378: 403–406
- 27 Monfort JC, Javoy-Agid F, Hauw JJ, et al. Brain glutamate decarboxylase in Parkinson's disease with particular reference to a premortem severity index. Brain 1985; 108: 301–313
- 28 Goldberg YP, Andrew SE, Clarke LA, Hayden MR. A PCR method for accurate assessment of trinucleotide repeat expansion in Huntington disease. Hum Mol Genet 1993; 2: 635–636
- 29 Hirsch EC, Graybiel AM, Agid Y. Melanized dopaminergic neurons are differentially susceptible to degeneration in Parkinson's disease. Nature 1988; 334: 345–348
- 30 Green H. Human genetic diseases due to codon reiteration: relationship to an evolutionary mechanism. Cell 1993; 74: 955–956
- 31 Li X-J, Li S-H, Sharp AH, et al. A huntingtin-associated protein enriched in brain with implications for pathology. Nature 1995; 378: 398–402
- 32 Bao J, Sharp AH, Wagster MV, et al. Expansion of polyglutamine repeat in huntingtin leads to abnormal protein interactions involving calmodulin. Proc Natl Acad Sci USA 1996; 93: 5037–5042
- 33 Burke JR, Enghild JJ, Martin ME, et al. Huntingtin and DRPLA proteins selectively interact with the enzyme GAPDH. Nat Med 1996; 2: 347–350
- 34 Telenius H, Kremer B, Goldberg YP, et al. Somatic and gonadal mosaicism of the Huntington disease gene CAG repeat in brain and sperm. Nat Genet 1994; 6: 409–414
- 35 Brandel JPA, Hirsch EC, Hersh LB, Javoy-Agid F. Compartmental ordering of cholinergic innervation in the mediodorsal nucleus of thalamus in the human brain. Brain Res 1990; 515: 117–125
- 36 Ferrante RJ, Kowall NW, Beal MF, et al. Selective sparing of a class of striatal neurons in Huntington's disease. Science 1985; 230: 561–563
- 37 Wexler NS, Young AB, Tanzi RE, et al. Homozygotes for Huntington's disease. Nature 1987; 326: 194–197
- 38 Ambrose CM, Duyao MP, Barnes G, et al. Structure and expression of the Huntington's disease gene: evidence against simple inactivation due to an expanded CAG repeat. Somat Cell Mol Genet 1994; 20: 27–38
- 39 Duyao MP, Auerbach AB, Ryan A, et al. Inactivation of the mouse Huntington's disease gene homolog Hdh. Science 1995; 269: 407–410
- 40 Nasir J, Floresco SB, O'Kusky JR, et al. Targeted disruption of the Huntington's disease gene results in embryonic lethality and behavioral and morphological changes in heterozygotes. Cell 1995; 81: 811–823
- 41 Zeitlin S, Liu J-P, Chapman DL, et al. Increased apoptosis and early embryonic lethality in mice nullizygous for the Huntington's disease gene homologue. Nat Genet 1995; 11: 155–163