Apoptosis (Programmed Cell Death) Studied by Fluorescence Spectroscopy
Michelle M. Martinez
Texas Tech University, Lubbock, TX, USA
These authors contributed equally to this work.Search for more papers by this authorGrishma Khanal
Texas Tech University, Lubbock, TX, USA
These authors contributed equally to this work.Search for more papers by this authorMichelle M. Martinez
Texas Tech University, Lubbock, TX, USA
These authors contributed equally to this work.Search for more papers by this authorGrishma Khanal
Texas Tech University, Lubbock, TX, USA
These authors contributed equally to this work.Search for more papers by this authorAbstract
Several analytical methods have been developed to study apoptosis (programmed cell death), many of which rely on fluorescence processes. Apoptosis is a highly regulated biological event and is a vital process that helps regulate tissue growth, normal cell turnover, immune response, and tissue development. However, diseases such as cancer and heart disease are associated with malfunctions in the apoptosis machinery. There is, therefore, a need to elucidate the processes of apoptosis induction and inhibition. Fluorescence assays continue to play a major role in apoptosis assays, and probe and method development are ongoing. There are several standard techniques such as flow cytometry and confocal microscopy for apoptosis study in cells. In addition, new techniques such as super-resolution microscopy, multiphoton excitation, and single cell-single molecule spectroscopy are quickly emerging. This updated article will explore several fluorescence approaches used in apoptosis studies as well as describe the mechanisms and hallmarks of the apoptosis cascade. Since apoptosis plays such an important role in both healthy and diseased organism function, the need to develop and apply sensitive analytical methods continues to be of the utmost importance.
References
- 1B. Favaloro, N. Allocati, V. Graziano, C. Di Ilio, V. De Laurenzi, ‘Role of Apoptosis in Disease’, Aging, 4(5), 330–349 (2012).
- 2Y. Otsuki, Z. Li, M.A. Shibata, ‘Apoptotic Detection methods—From Morphology to Gene’, Prog. Histochem. Cytochem., 38(3), 275–339 (2003).
- 3E. Gavathiotis, L.D. Walensky, ‘Tracking BAX Once its Trigger is Pulled’, Cell Cycle, 10(6), 868–870 (2011).
- 4D.R. Green, G. Kroemer, ‘The Pathophysiology of Mitochondrial Cell Death’, Science, 305(5684), 626–629 (2004).
- 5H.H. Cheung, M. St Jean, S.T. Beug, R. Lejmi-Mrad, E. LaCasse, S.D. Baird, D.F. Stojdl, R.A. Screaton, R.G. Korneluk, ‘SMG1 and NIK Regulate Apoptosis Induced by Smac Mimetic Compounds’, Cell Death Dis., 2, e146 (2011).
- 6M. Gyrd-Hansen, P. Meier, ‘IAPs: From Caspase Inhibitors to Modulators of NF-kappaB, Inflammation and Cancer’, Nat. Rev. Cancer, 10(8), 561–574 (2010).
- 7D. Iyer, R.D. Ray, D. Pappas, ‘High Temporal Resolution Fluorescence Measurements of a Mitochondrial Dye for Detection of Early Stage Apoptosis’, Analyst, 138(17), 4892–4897 (2013).
- 8G. Khanal, H. Somaweera, M. Dong, T. Germain, M. Ansari, D. Pappas, ‘ Detection of Apoptosis Using Fluorescent Probes’, in Stress Responses: Methods and Protocols, ed. C.M. Oslowski, Springer, New York, 151–161, 2015.
10.1007/978-1-4939-2522-3_11 Google Scholar
- 9Y. Liu, W.B. Butler, D. Pappas, ‘Spatially Selective Reagent Delivery into Cancer Cells Using a Two-Layer Microfluidic Culture System’, Anal. Chim. Acta, 743, 125–130 (2012).
- 10M.M. Martinez, R.D. Reif, D. Pappas, ‘Early Detection of Apoptosis in Living Cells by Fluorescence Correlation Spectroscopy’, Anal. Bioanal. Chem., 396(3), 1177–1185 (2010).
- 11M.M. Martinez, R.D. Reif, D. Pappas, ‘Detection of Apoptosis: A Review of Conventional and Novel Techniques’, Anal. Methods, 2(8), 996–1004 (2010).
- 12I.N. Lavrik, P.H. Krammer, ‘Regulation of CD95/Fas Signaling at the DISC’, Cell Death Differ., 19(1), 36–41 (2012).
- 13D.J. Taatjes, B.E. Sobel, R.C. Budd, ‘Morphological and Cytochemical Determination of Cell Death by Apoptosis’, Histochem. Cell Biol., 129(1), 33–43 (2008).
- 14S. Elmore, ‘Apoptosis: A Review of Programmed Cell Death’, Toxicol. Pathol., 35(4), 495–516 (2007).
- 15M.C. Dong, M.M. Martinez, M.F. Mayer, D. Pappas, ‘Single Molecule Fluorescence Correlation Spectroscopy of Single Apoptotic Cells Using a Red-Fluorescent Caspase Probe’, Analyst, 137(13), 2997–3003 (2012).
- 16G. Khanal, K. Chung, X. Solis-Wever, B. Johnson, D. Pappas, ‘Ischemia/Reperfusion Injury of Primary Porcine Cardiomyocytes in a Low-Shear Microfluidic Culture and Analysis Device’, Analyst, 136(17), 3519–3526 (2011).
- 17M. Kressel, P. Groscurth, ‘Distinction of Apoptotic and Necrotic Cell Death by In Situ Labelling of Fragmented DNA’, Cell Tissue Res., 278(3), 549–556 (1994).
- 18H. Lovborg, P. Nygren, R. Larsson, ‘Multiparametric Evaluation of Apoptosis: Effects of Standard Cytotoxic Agents and the Cyanoguanidine CHS 828’, Mol. Cancer Ther., 3(5), 521–526 (2004).
- 19Y.Y. Lu, T.S. Chen, X.P. Wang, L. Li, ‘Single-Cell Analysis of Dihydroartemisinin-Induced Apoptosis Through Reactive Oxygen Species-Mediated Caspase-8 Activation and Mitochondrial Pathway in ASTC-a-1 Cells Using Fluorescence Imaging Techniques’, J. Biomed. Opt., 15(4), 046028 (2010).
- 20M. Poot, R.H. Pierce, ‘Detection of Changes in Mitochondrial Function During Apoptosis by Simultaneous Staining with Multiple Fluorescent Dyes and Correlated Multiparameter Flow Cytometry’, Cytometry, 35(4), 311–317 (1999).
10.1002/(SICI)1097-0320(19990401)35:4<311::AID-CYTO3>3.0.CO;2-E CAS PubMed Web of Science® Google Scholar
- 21J.F. Kerr, A.H. Wyllie, A.R. Currie, ‘Apoptosis: A Basic Biological Phenomenon with Wide-Ranging Implications in Tissue Kinetics’, Br. J. Cancer, 26(4), 239–257 (1972).
- 22R. Gatti, S. Belletti, G. Orlandini, O. Bussolati, V. Dall'Asta, G.C. Gazzola, ‘Comparison of Annexin V and Calcein-AM as Early Vital Markers of Apoptosis in Adherent Cells by Confocal Laser Microscopy’, J. Histochem. Cytochem., 46(8), 895–900 (1998).
- 23R.M. Zucker, S.C. Jeffay, ‘Confocal Laser Scanning Microscopy of Whole Mouse Ovaries: Excellent Morphology, Apoptosis Detection, and Spectroscopy’, Cytometry A, 69(8), 930–939 (2006).
- 24C. Soldani, A.I. Scovassi, U. Canosi, E. Bramucci, D. Ardissino, E. Arbustini, ‘Multicolor Fluorescence Technique to Detect Apoptotic Cells in Advanced Coronary Atherosclerotic Plaques’, Eur. J. Histochem., 49(1), 47–52 (2005).
- 25P.D. Bhola, A. Letai, ‘Mitochondria-Judges and Executioners of Cell Death Sentences’, Mol. Cell, 61(5), 695–704 (2016).
- 26M.H. Harris, C.B. Thompson, ‘The Role of the Bcl-2 Family in the Regulation of Outer Mitochondrial Membrane Permeability’, Cell Death Differ., 7(12), 1182–1191 (2000).
- 27G. Loor, J. Kondapalli, H. Iwase, N.S. Chandel, G.B. Waypa, R.D. Guzy, T.L. Vanden Hoek, P.T. Schumacker, ‘Mitochondrial Oxidant Stress Triggers Cell Death in Simulated Ischemia-Reperfusion’, Biochim. Biophys. Acta, 1813(7), 1382–1394 (2011).
- 28S. Wu, D. Xing, F. Wang, T. Chen, W.R. Chen, ‘Mechanistic Study of Apoptosis Induced by High-Fluence Low-Power Laser Irradiation Using Fluorescence Imaging Techniques’, J. Biomed. Opt., 12(6), 064015 (2007).
- 29Y. Liu, T. Germain, D. Pappas, ‘Microfluidic Antibody Arrays for Simultaneous Cell Separation and Stimulus’, Anal. Bioanal. Chem., 406(30), 7867–7873 (2014).
- 30V.A. Fadok, D.L. Bratton, S.C. Frasch, M.L. Warner, P.M. Henson, ‘The Role of Phosphatidylserine in Recognition of Apoptotic Cells by Phagocytes’, Cell Death Differ., 5(7), 551–562 (1998).
- 31H.O. van Genderen, H. Kenis, L. Hofstra, J. Narula, C.P. Reutelingsperger, ‘Extracellular Annexin A5: Functions of Phosphatidylserine-Binding and Two-Dimensional Crystallization’, Biochim. Biophys. Acta, 1783(6), 953–963 (2008).
- 32D. Baskic, S. Popovic, P. Ristic, N.N. Arsenijevic, ‘Analysis of Cycloheximide-Induced Apoptosis in Human Leukocytes: Fluorescence Microscopy Using Annexin V/Propidium Iodide Versus Acridin Orange/Ethidium Bromide’, Cell Biol. Int., 30(11), 924–932 (2006).
- 33H.P. Dong, A. Holth, M.G. Ruud, E. Emilsen, B. Risberg, B. Davidson, ‘Measurement of Apoptosis in Cytological Specimens by Flow Cytometry: Comparison of Annexin V, Caspase Cleavage and dUTP Incorporation Assays’, Cytopathology, 22(6), 365–372 (2011).
- 34R.D. Reif, M.M. Martinez, K. Wang, D. Pappas, ‘Simultaneous Cell Capture and Induction of Apoptosis Using an Anti-CD95 Affinity Microdevice’, Anal. Bioanal. Chem., 395(3), 787–795 (2009).
- 35S.Y. Hwang, S.H. Cho, D.Y. Cho, M. Lee, J. Choo, K.H. Jung, J.H. Maeng, Y.G. Chai, W.J. Yoon, E.K. Lee, ‘Time-Lapse, Single Cell Based Confocal Imaging Analysis of Caspase Activation and Phosphatidylserine Flipping During Cellular Apoptosis’, Biotech. Histochem., 86(3), 181–187 (2011).
- 36Y. Gao, P. Li, D. Pappas, ‘A Microfluidic Localized, Multiple Cell Culture Array Using Vacuum Actuated Cell Seeding: Integrated Anticancer Drug Testing’, Biomed. Microdevices, 15(6), 907–915 (2013).
- 37T. Germain, M. Ansari, D. Pappas, ‘Observation of Reversible, Rapid Changes in Drug Susceptibility of Hypoxic Tumor Cells in a Microfluidic Device’, Anal. Chim. Acta, 936, 179–184 (2016).
- 38G. Khanal, S. Hiemstra, D. Pappas, ‘Probing Hypoxia-Induced Staurosporine Resistance in Prostate Cancer Cells with a Microfluidic Culture System’, Analyst, 139(13), 3274–3280 (2014).
- 39H. Wang, B. Huwaimel, K. Verma, J. Miller, T.M. Germain, N. Kinarivala, D. Pappas, P.S. Brookes, P.C. Trippier, ‘Synthesis and Antineoplastic Evaluation of Mitochondrial Complex II (Succinate Dehydrogenase) Inhibitors Derived from Atpenin A5’, ChemMedChem, 12(13), 1033–1044 (2017).
- 40M. Luan, J. Chang, W. Pan, Y. Chen, N. Li, B. Tang, ‘Simultaneous Fluorescence Visualization of Epithelial–Mesenchymal Transition and Apoptosis Processes in Tumor Cells for Evaluating the Impact of Epithelial–Mesenchymal Transition on Drug Efficacy’, Anal. Chem., 90(18), 10951–10957 (2018).
- 41N.A. Thornberry, Y. Lazebnik, ‘Caspases: Enemies Within’, Science, 281(5381), 1312–1316 (1998).
- 42H. Hug, M. Los, W. Hirt, K.M. Debatin, ‘Rhodamine 110-Linked Amino Acids and Peptides as Substrates to Measure Caspase Activity Upon Apoptosis Induction in Intact Cells’, Biochemistry, 38(42), 13906–13911 (1999).
- 43R.D. Reif, C. Aguas, M.M. Martinez, D. Pappas, ‘Temporal Dynamics of Receptor-Induced Apoptosis in an Affinity Microdevice’, Anal. Bioanal. Chem., 397(8), 3387–3396 (2010).
- 44K. Bacia, S.A. Kim, P. Schwille, ‘Fluorescence Cross-Correlation Spectroscopy in Living Cells’, Nat. Methods, 3(2), 83–89 (2006).
- 45B. Angres, H. Steuer, P. Weber, M. Wagner, H. Schneckenburger, ‘A Membrane-Bound FRET-Based Caspase Sensor for Detection of Apoptosis Using Fluorescence Lifetime and Total Internal Reflection Microscopy’, Cytometry A, 75(5), 420–427 (2009).
- 46J. Lin, Z. Zhang, J. Yang, S. Zeng, B.F. Liu, Q. Luo, ‘Real-Time Detection of Caspase-2 Activation in a Single Living HeLa Cell During Cisplatin-Induced Apoptosis’, J. Biomed. Opt., 11(2), 024011 (2006).
- 47S.C. Vashishtha, A.J. Nazarali, J.R. Dimmock, ‘Application of Fluorescence Microscopy to Measure Apoptosis in Jurkat T cells After Treatment with a New Investigational Anticancer Agent (N.C.1213)’, Cell. Mol. Neurobiol., 18(4), 437–445 (1998).
- 48C. Muñoz-Pinedo, D.R. Green, A. van den Berg, ‘Confocal Restricted-Height Imaging of Suspension Cells (CRISC) in a PDMS Microdevice During Apoptosis’, Lab Chip, 5(6), 628–633 (2005).
- 49M. Fernandez-Suarez, A.Y. Ting, ‘Fluorescent Probes for Super-Resolution Imaging in Living Cells’, Nat. Rev. Mol. Cell Biol., 9(12), 929–943 (2008).
- 50B. Huang, ‘Super-Resolution Optical Microscopy: Multiple Choices’, Curr. Opin. Chem. Biol., 14(1), 10–14 (2010).
- 51B. Huang, M. Bates, X. Zhuang, ‘Super-Resolution Fluorescence Microscopy’, Annu. Rev. Biochem., 78, 993–1016 (2009).
- 52G. Patterson, M. Davidson, S. Manley, J. Lippincott-Schwartz, ‘Superresolution Imaging Using Single-Molecule Localization’, Annu. Rev. Phys. Chem., 61, 345–367 (2010).
- 53T. Kohl, E. Haustein, P. Schwille, ‘Determining Protease Activity In Vivo by Fluorescence Cross-Correlation Analysis’, Biophys. J., 89(4), 2770–2782 (2005).
- 54D. Shcherbo, E.A. Souslova, J. Goedhart, T.V. Chepurnykh, A. Gaintzeva, I.I. Shemiakina, T.W. Gadella, S. Lukyanov, D.M. Chudakov, ‘Practical and Reliable FRET/FLIM Pair of Fluorescent Proteins’, BMC Biotechnol., 9, 24 (2009).
- 55M. Shamsipur, F. Molaabasi, S. Hosseinkhani, F. Rahmati, ‘Detection of Early Stage Apoptotic Cells Based on Label-Free Cytochrome c Assay Using Bioconjugated Metal Nanoclusters as Fluorescent Probes’, Anal. Chem., 88(4), 2188–2197 (2016).
- 56W. Becker, ‘Fluorescence Lifetime Imaging—Techniques and Applications’, J. Microsc., 247(2), 119–136 (2012).
- 57X. Li, T. Uchimura, S. Kawanabe, T. Imasaka, ‘Use of a Fluorescence Lifetime Imaging Microscope in an Apoptosis Assay of Ewing's Sarcoma Cells with a Vital Fluorescent Probe’, Anal. Biochem., 367(2), 219–224 (2007).
- 58H.W. Wang, V. Gukassyan, C.T. Chen, Y.H. Wei, H.W. Guo, J.S. Yu, F.J. Kao, ‘Differentiation of Apoptosis from Necrosis by Dynamic Changes of Reduced Nicotinamide Adenine Dinucleotide Fluorescence Lifetime in Live Cells’, J. Biomed. Opt., 13(5), 054011 (2008).
- 59H.C. Ishikawa-Ankerhold, R. Ankerhold, G.P. Drummen, ‘Advanced Fluorescence Microscopy Techniques—FRAP, FLIP, FLAP, FRET and FLIM’, Molecules, 17(4), 4047–4132 (2012).
- 60L.J. Buccellato, M. Tso, O.I. Akinci, N.S. Chandel, G.R. Budinger, ‘Reactive Oxygen Species are Required for Hyperoxia-Induced Bax Activation and Cell Death in Alveolar Epithelial Cells’, J. Biol. Chem., 279(8), 6753–6760 (2004).
- 61J.Y. Byun, M.J. Kim, D.Y. Eum, C.H. Yoon, W.D. Seo, K.H. Park, J.W. Hyun, Y.S. Lee, J.S. Lee, M.Y. Yoon, S.J. Lee, ‘Reactive Oxygen Species-Dependent Activation of Bax and Poly(ADP-Ribose) Polymerase-1 is Required for Mitochondrial Cell Death Induced by Triterpenoid Pristimerin in Human Cervical Cancer Cells’, Mol. Pharmacol., 76(4), 734–744 (2009).
- 62D. Zhai, C. Jin, Z. Huang, A.C. Satterthwait, J.C. Reed, ‘Differential Regulation of Bax and Bak by Anti-Apoptotic Bcl-2 Family Proteins Bcl-B and Mcl-1’, J. Biol. Chem., 283(15), 9580–9586 (2008).
- 63N. Zurgil, Y. Shafran, D. Fixler, M. Deutsch, ‘Analysis of Early Apoptotic Events in Individual Cells by Fluorescence Intensity and Polarization Measurements’, Biochem. Biophys. Res. Commun., 290(5), 1573–1582 (2002).
- 64R. Jessel, S. Haertel, C. Socaciu, S. Tykhonova, H.A. Diehl, ‘Kinetics of Apoptotic Markers in Exogeneously Induced Apoptosis of EL4 Cells’, J. Cell. Mol. Med., 6(1), 82–92 (2002).
- 65R.K. Benninger, M. Hao, D.W. Piston, ‘Multi-Photon Excitation Imaging of Dynamic Processes in Living Cells and Tissues’, Rev. Physiol. Biochem. Pharmacol., 160, 71–92 (2008).
- 66D.G. Buschke, J.M. Squirrell, J.J. Fong, K.W. Eliceiri, B.M. Ogle, ‘Cell Death, Non-Invasively Assessed by Intrinsic Fluorescence Intensity of NADH, is a Predictive Indicator of Functional Differentiation of Embryonic Stem Cells’, Biol. Cell, 104(6), 352–364 (2012).
- 67H.S. Thatte, J.H. Rhee, S.E. Zagarins, P.R. Treanor, V. Birjiniuk, M.D. Crittenden, S.F. Khuri, ‘Acidosis-Induced Apoptosis in Human and Porcine Heart’, Ann. Thorac. Surg., 77(4), 1376–1383 (2004).
- 68H.M. Shapiro, Practical Flow Cytometry, John Wiley and Sons, New York, 2003.
10.1002/0471722731 Google Scholar
- 69D. Pappas, ‘ Flow Cytometry: Cell Analysis in the Fast Lane’, in Practical Cell Analysis, John Wiley & Sons, Ltd, 165–193, 2010.
10.1002/9780470688441.ch6 Google Scholar
- 70J. Dobrucki, Z. Darzynkiewicz, ‘Chromatin Condensation and Sensitivity of DNA In Situ to Denaturation During Cell Cycle and Apoptosis—A Confocal Microscopy Study’, Micron, 32(7), 645–652 (2001).
- 71M.G. Ormerod, F. Paul, M. Cheetham, X.M. Sun, ‘Discrimination of Apoptotic Thymocytes by Forward Light Scatter’, Cytometry, 21(3), 300–304 (1995).
- 72W. Swat, L. Ignatowicz, P. Kisielow, ‘Detection of Apoptosis of Immature CD4+8+ Thymocytes by Flow Cytometry’, J. Immunol. Methods, 137(1), 79–87 (1991).
- 73Z. Darzynkiewicz, G. Juan, X. Li, W. Gorczyca, T. Murakami, F. Traganos, ‘Cytometry in Cell Necrobiology: Analysis of Apoptosis and Accidental Cell Death (Necrosis)’, Cytometry, 27(1), 1–20 (1997).
10.1002/(SICI)1097-0320(19970101)27:1<1::AID-CYTO2>3.0.CO;2-L CAS PubMed Web of Science® Google Scholar
- 74F. Belloc, M.A. Belaud-Rotureau, V. Lavignolle, E. Bascans, E. Braz-Pereira, F. Durrieu, F. Lacombe, ‘Flow Cytometry Detection of Caspase 3 Activation in Preapoptotic Leukemic Cells’, Cytometry, 40(2), 151–160 (2000).
10.1002/(SICI)1097-0320(20000601)40:2<151::AID-CYTO9>3.0.CO;2-9 CAS PubMed Web of Science® Google Scholar
- 75L. He, X. Wu, F. Meylan, D.P. Olson, J. Simone, D. Hewgill, R. Siegel, P.E. Lipsky, ‘Monitoring Caspase Activity in Living Cells Using Fluorescent Proteins and Flow Cytometry’, Am. J. Pathol., 164(6), 1901–1913 (2004).
- 76M. Suzuki, S. Tanaka, Y. Ito, M. Inoue, T. Sakai, K. Nishigaki, ‘Simple and Tunable Forster Resonance Energy Transfer-Based Bioprobes for High-Throughput Monitoring of Caspase-3 Activation in Living Cells by Using Flow Cytometry’, Biochim. Biophys. Acta, 1823(2), 215–226 (2012).
- 77A. Vejux, G. Lizard, Y. Tourneur, J.-M. Riedinger, F. Frouin, E. Kahn, ‘Effects of Caspase Inhibitors (z-VAD-fmk, z-VDVAD-fmk) on Nile Red Fluorescence Pattern in 7-Ketocholesterol-Treated Cells: Investigation by Flow Cytometry and Spectral Imaging Microscopy’, Cytometry A, 71A(8), 550–562 (2007).
- 78D. Wlodkowic, S. Faley, M. Zagnoni, J.P. Wikswo, J.M. Cooper, ‘Microfluidic Single-Cell Array Cytometry for the Analysis of Tumor Apoptosis’, Anal. Chem., 81(3), 5517–5523 (2009).
Encyclopedia of Analytical Chemistry: Applications, Theory and Instrumentation
Browse other articles of this reference work: