Apoptosis (Programed Cell Death) Studied by Fluorescence Spectroscopy
This is not the most recent version, view other versions
Apoptosis (Programed Cell Death) Studied by Fluorescence Spectroscopy
Abstract
Several analytical methods, many of which rely on fluorescence processes, have been developed to study apoptosis (programmed cell death). Apoptosis is a highly regulated biological event and is a vital process that helps regulate tissue growth, normal cell turnover, immune response, and tissue development. However, diseases such as cancer and heart disease are associated with malfunctions in the apoptosis machinery. There is therefore a need to elucidate the processes of apoptosis induction and inhibition. Fluorescence assays continue to play a major role in apoptosis assays, and developments in probe and fluorescent methods for assaying apoptosis are ongoing. There are several standard techniques, such as flow cytometry and confocal microscopy, for apoptosis study in cells. In addition, new techniques such as superresolution microscopy, multiphoton excitation, and single-cell−single-molecule spectroscopy are quickly emerging. This article explores several fluorescence approaches used in apoptosis studies as well as describes the mechanisms and hallmarks of the apoptotic cascade. As apoptosis plays a very important role in both healthy and diseased organism functions, the need to develop and apply sensitive analytical methods continues to be of the utmost importance.
References
- 1
O. Yoshinori, L. Zhonglian, S. Masa-Ai, Apoptotic Detection Methods-from Morphology to Gene, J. Histochem. Cytochem., 38, 275–340 (2003).
10.1016/S0079-6336(03)80002-5 Google Scholar
- 2 B. Favaloro, N. Allocati, V. Graziano, C. Di Ilio, V. De Laurenzi, Role of Apoptosis in Disease, Aging, 4, 330–349 (2012).
- 3 E. Gavathiotis, L.D. Walensky, Tracking BAX Once Its Trigger is Pulled, Cell Cycle, 10, 868–870 (2011).
- 4 D.R. Green, G. Kroemer, The Pathophysiology of Mitochondrial Cell Death, Science, 305, 626–629 (2004).
- 5 H.H. Cheung, M. St Jean, S.T. Beug, R. Lejmi-Mrad, E. LaCasse, S.D. Baird, D.F. Stojdl, R.A. Screaton, R.G. Korneluk, SMG1 and NIK regulate Apoptosis induced by Smac Mimetic Compounds, Cell Death Dis., 2, 146 (2011).
- 6 M. Gyrd-Hansen, P. Meier, IAPs: From Caspase Inhibitors to Modulators of NK-KappaB, Inflammation and Cancer, Nat. Rev. Cancer, 10, 561–574 (2010).
- 7 M.M. Martinez, R.D. Reif, D. Pappas, Detection of Apoptosis: A Review of Conventional and Novel Techniques, Anal. Methods, 2, 996–1004 (2010).
- 8 I.N. Lavrik, P.H. Krammer, Regulation of CD95/Fas Signaling at the DISC, Cell Death Differ., 19, 36–41 (2012).
- 9 D.J. Taatjes, B.E. Sobel, R.C. Budd, Morphological and Cytochemical Determination of Cell Death by Apoptosis, Histochem. Cell Biol., 129, 33–43 (2008).
- 10 S. Elmore, Apoptosis: A Review of Programmed Cell Death, Toxicol. Pathol., 35, 495–516 (2007).
- 11 M.M. Martinez, R.D. Reif, D. Pappas, Early Detection of Apoptosis in Living Cells by Fluorescence Correlation Spectroscopy, Anal. Bioanal. Chem., 396, 1177–1185 (2010).
- 12 M. Dong, M.M. Martinez, M.F. Mayer, D. Pappas, Single Molecule Fluorescence Correlation Spectroscopy of Single Apoptotic Cells Using a Red-Fluorescent Caspase Probe, Analyst, 137, 2997–3003 (2012).
- 13 G. Khanal, K. Chung, X. Solis-Wever, B. Johnson, D. Pappas, Ischemia/Reperfusion Injury of Primary Porcine Cardiomyocytes in a Low-Shear Microfluidic Culture and Analysis Device, Analyst, 136, 3519–3526 (2011).
- 14 M. Kressel, P. Groscurth, Distinction of Apoptotic and Necrotic Cell-Death by in-Situ Labeling of Fragmented DNA, Cell Tissue Res., 278, 549–556 (1994).
- 15
M. Poot, R.H. Pierce, Detection of Changes in Mitochondrial Function During Apoptosis by Simultaneous Staining with Multiple Fluorescent Dyes and Correlated Multiparameter Flow Cytometry, Cytometry, 35, 311–317 (1999).
10.1002/(SICI)1097-0320(19990401)35:4<311::AID-CYTO3>3.0.CO;2-E CAS PubMed Web of Science® Google Scholar
- 16 H. Lövborg, P. Nygren, R. Larsson, Multiparametric Evaluation of Apoptosis: Effects of Standard Cytotoxic Agents and the Cyanoguanidine Chs 828, Mol. Cancer Ther., 3, 521–526 (2004).
- 17 Y.-Y. Lu, T.-S. Chen, X.-P. Wang, L. Li, Single-Cell Analysis of Dihydroartemisinin-Induced Apoptosis through Reactive Oxygen Species-Mediated Caspase-8 Activation and Mitochondrial Pathway in Astc-a-1 Cells Using Fluorescence Imaging Techniques, J. Biomed. Opt., 15, (2010).
- 18 J.F. Kerr, A.H. Wyllie, A.R. Currie, Apoptosis: A Basic Biological Phenomenon with Wide-Ranging Implications in Tissue Kinetics, Br. J. Cancer, 26, 239–257 (1972).
- 19 R. Gatti, S. Belletti, G. Orlandini, O. Bussolati, V. Dall'Asta, G.C. Gazzola, Comparison of Annexin V and Calcein-AM as Early Vital Markers of Apoptosis in Adherent Cells by Confocal Laser Microscopy, J. Histochem. Cytochem., 46, 895–900 (1998).
- 20 R.M. Zucker, S.C. Jeffay, Confocal Laser Scanning Microscopy of Whole Mouse Ovaries: Excellent Morphology, Apoptosis Detection, and Spectroscopy, Cytometry A, 69A, 930–939 (2006).
- 21 C. Soldani, A.I. Scovassi, U. Canosi, E. Bramucci, D. Ardissino, E. Arbustini, Multicolor Fluorescence Technique to Detect Apoptotic Cells in Advanced Coronary Atherosclerotic Plaques, Eur. J. Histochem.', 49, 47–52 (2005).
- 22
G.P. McStay, D.R. Green, Mitochondria and Cell Death, in Apoptosis: Physiology and Pathology, eds D.R. Green, John C. Reed, Cambridge University Press, New York, 2011, pp. 37–43.
10.1017/CBO9780511976094.004 Google Scholar
- 23 M.H. Harris, C.B. Thompson, The Role of the Bcl-2 Family in the Regulation of Outer Mitochondrial Membrane Permeability, Cell Death Differ., 7, 1182–1191 (2000).
- 24 G. Loor, J. Kondapalli, H. Iwase, N.S. Chandel, G.B. Waypa, R.D. Guzy, T.L. Vanden Hoek, P.T. Schumacker, Mitochondrial Oxidant Stress Triggers Cell Death in Simulated Ischemia—Reperfusion, Biochim. Biophys. Acta, 1813, 1382–1394 (2011).
- 25 S. Wu, D. Xing, F. Wang, T. Chen, W.R. Chen, Mechanistic Study of Apoptosis Induced by High-Fluence Low-Power Laser Irradiation Using Fluorescence Imaging Techniques, J. Biomed. Opt., 12, 064015 (2007).
- 26 V.A. Fadok, D.L. Bratton, S.C. Frasch, M.L. Warner, P.M. Henson, The Role of Phosphatidylserine in Recognition of Apoptotic Cells by Phagocytes, Cell Death Differ., 5, 551–562 (1998).
- 27 H.O. van Genderen, H. Kenis, L. Hofstra, J. Narula, C.P.M. Reutelingsperger, Extracellular Annexin A5: Functions of Phosphatidylserine-Binding and Two-Dimensional Crystallization, Biochim. Biophys. Acta, 1783, 953–963 (2008).
- 28 D. Baskic, S. Popovic, P. Ristic, N.N. Arsenijevic, Analysis of Cycloheximide-Induced Apoptosis in Human Leukocytes: Fluorescence Microscopy Using Annexin V/Propidium Iodide Versus Acridin Orange/Ethidium Bromide, Cell Biol. Int., 30, 924–932 (2006).
- 29 R.D. Reif, M.M. Martinez, W. Kelong, D. Pappas, Simultaneous Cell Capture and Induction of Apoptosis Using an Anti-Cd95 Affinity Microdevice, Anal. Bioanal. Chem., 395, 787–795 (2009).
- 30 H.P. Dong, A. Holth, M.G. Ruud, E. Emilsen, B. Risberg, B. Davidson, Measurement of Apoptosis in Cytological Specimens by Flow Cytometry: Comparison of Annexin V, Caspase Cleavage and Dutp Incorporation Assays, Cytopathology, 22, 365–372 (2011).
- 31 S.Y. Hwang, S.H. Cho, D.Y. Cho, M. Lee, J. Choo, K.H. Jung, J.H. Maeng, Y.G. Chai, W.J. Yoon, E.K. Lee, Time-Lapse, Single Cell Based Confocal Imaging Analysis of Caspase Activation and Phosphatidylserine Flipping During Cellular Apoptosis, Biotech. Histochem., 86, 181–187 (2011).
- 32 N.A. Thornberry, Y. Lazebnik, Caspases: Enemies Within, Science (New York, N.Y.), 281, 1312–1316 (1998).
- 33 H. Hug, M. Los, W. Hert, K.-M. Debatin, Rhodamine 110-Linked Amino Acids and Peptides as Substrates To Measure Caspase Activity upon Apoptosis Induction in Intact Cells, Biochemistry, 38, 13906–13911 (1999).
- 34 R. Reif, C. Aguas, M. Martinez, D. Pappas, Temporal Dynamics of Receptor-Induced Apoptosis in an Affinity Microdevice, Anal. Bioanal. Chem., 397, 3387–3396 (2010).
- 35 K. Bacia, S.A. Kim, P. Schwille, Fluorescence Cross-Correlation Spectroscopy in Living Cells, Nat. Methods, 3, 83–89 (2006).
- 36 B. Angres, H. Steuer, P. Weber, M. Wagner, H. Schneckenburger, A Membrane-Bound Fret-Based Caspase Sensor for Detection of Apoptosis Using Fluorescence Lifetime and Total Internal Reflection Microscopy, Cytometry A, 75A, 420–427 (2009).
- 37 J. Lin, Z. Zhang, J. Yang, S. Zeng, B.-F. Liu, Q. Luo, Real-Time Detection of Caspase-2 Activation in a Single Living Hela Cell During Cisplatin-Induced Apoptosis, J. Biomed. Opt., 11, 024011–024016 (2006).
- 38 S.C. Vashishtha, A.J. Nazarali, J.R. Dimmock, Application of Fluorescence Microscopy to Measure Apoptosis in Jurkat T Cells after Treatment with a New Investigational Anticancer Agent (N.C.1213), Cell. Mol. Neurobiol., 18, 437–445 (1998).
- 39 C. Munoz-Pinedo, D.R. Green, A. van den Berg, Confocal Restricted-Height Imaging of Suspension Cells (Crisc) in a Pdms Microdevice During Apoptosis, Lab Chip, 5, 628–633 (2005).
- 40 M. Fernández-Suárez, A.Y. Ting, Fluorescent probes for super-resolution imaging in living cells, Nat. Rev., 9, 929–943 (2008).
- 41 B. Huang, M. Bates, X. Zhuang, Super-Resolution Fluorescence Microscopy, Annu. Rev. Biochem., 78, 993–1016 (2009).
- 42 G. Patterson, M. Davidson, S. Manley, J. Lippincott-Schwartz, Superresolution Imaging using Single-Molecule Localization, Annu. Rev. Phys. Chem., 61, 345–367 (2010).
- 43 B. Huang, Super-resolution optical microscopy: multiple choices, Curr. Opin. Chem. Biol., 14, 10–14 (2010).
- 44 T. Kohl, E. Haustein, P. Schwille, Determining Protease Activity in Vivo by Fluorescence Cross-correlation Analysis, Biophys. J., 89, 2770–2782 (2005).
- 45 D. Shcherbo, E.A. Souslova, J. Goedhart, T.V. Chepurnykh, A. Gaintzeva, Shemiakina, II, T.W.J. Gadella, S. Lukyanov, D.M. Chudakov, Practical and Reliable Fret/Flim Pair of Fluorescent Proteins, BMC Biotechnol., 9, 24 (2009).
- 46 W. Becker, Fluorescence Lifetime Imaging—Techniques and Applications, J. Microsc., 247, 119–136 (2012).
- 47 X. Li, T. Uchimura, S. Kawanabe, T. Imasaka, Use of a Fluorescence Lifetime Imaging Microscope in an Apoptosis Assay of Ewing's Sarcoma Cells with a Vital Fluorescent Probe, Anal. Biochem., 367, 219–224 (2007).
- 48 H.-W. Wang, V. Gukassyan, C.-T. Chen, Y.-H. Wei, H.-W. Guo, J.-S. Yu, F.-J. Kao, Differentiation of Apoptosis from Necrosis by Dynamic Changes of Reduced Nicotinamide Adenine Dinucleotide Fluorescence Lifetime in Live Cells, J. Biomed. Opt., 13, 054011 (2008).
- 49 H.C. Ishikawa-Ankerhold, R. Ankerhold, G.P.C. Drummen, Advanced Fluorescence Microscopy Techniques-FRAP, FLIP, FLAP, FRET, and FLIM, Molecules, 17, 4047–4132 (2012).
- 50 L.J. Buccellato, M. Tso, O.I. Akinci, N.S. Chandel, G.R. Budinger, Reactive Oxygen Species are Required for Hyperoxia-Induced BAX Activation and Cell Death in Alveolar Epithelial Cells, J. Biol. Chem., 279, 6753–6760 (2004).
- 51 J.Y. Byun, M.J. Kim, D.Y. Eum, C.H. Yoon, W.D. Seo, K.H. Park, J.W. Hyun, Y.S. Lee, J.S. Lee, M.Y. Yoon, S.J. Lee, Reactive Oxygen Species-Dependent Activation of BAX and PARP-1 is Required for Mitochondrial Cell Death Induced by Triterpenoid Prestimerin in Human Cervical Cancer Cells, Mol. Pharmacol., 76, 734–744 (2009).
- 52 D. Zhai, C. Jin, Z. Huang, A.C. Satterthwait, J.C. Reed, Differential Regulation of Bax and Bak by Anti-Apoptotic Bcl-2 Family Proteins Bcl-B and Mcl-1, J. Biol. Chem., 283, 9580–9586 (2008).
- 53 N. Zurgil, Y. Shafran, D. Fixler, M. Deutsch, Analysis of Early Apoptotic Events in Individual Cells by Fluorescence Intensity and Polarization Measurements, Biochem. Biophys. Res. Commun., 290, 1573–1582 (2002).
- 54 R. Jessel, S. Haertel, C. Socaciu, S. Tykhonova, H.A. Diehl, Kinetics of Apoptotic Markers in Exogeneously Induced Apoptosis of El4 Cells, J. Cell. Mol. Med., 6, 82–92 (2002).
- 55 R.K.P. Benninger, M. Hao, D.W. Piston, Multi-Photon Excitation Imaging of Dynamic Processes in Living Cells and Tissues, Rev. Physiol. Biochem. Pharmacol., 160, 71–92 (2008).
- 56 D.G. Buschke, J.M. Squirrell, J.J. Fong, K.W. Eliceiri, B.M. Ogle, Cell Death, Non-Invasively Assessed by Intrinsic Fluorescence Intensity of NADH, is a Predicative Indicator of Functional Differentiation of Embryonic Stem Cells, Biol. Cell, 104, 352–364 (2012).
- 57 H.S. Thatte, J.H. Rhee, S.E. Zagarins, P.R. Treanor, V. Birjiniuk, M.D. Crittenden, S.F. Khuri, Acidosis-Induced Apoptosis in Human and Porcine Heart, Ann. Thorac. Surg., 77, 1376–1383 (2012).
- 58
H.M. Shapiro, Practical Flow Cytometry, John Wiley & Sons, Inc., New York, 2003.
10.1002/0471722731 Google Scholar
- 59
D. Pappas, Practical Cell Analysis, John Wiley & Sons, Inc., New York, 2010.
10.1002/9780470688441 Google Scholar
- 60 J. Dobrucki, Z. Darzynkiewicz, Chromatin Condensation and Sensitivity of DNA in situ to Denaturation During Cell Cycle and Apoptosis-A Confocal Microscopy Study, Micron, 32, 645–652 (2001).
- 61 M.G. Ormerod, F.P.M. Cheetham, X.M. Sun, Discrimination of Apoptotic Thymoctyes by Forward Light Scatter, Cytometry, 21, 300–304 (1995).
- 62 W. Swat, L. Ignatowicz, P. Kisielow, Detection of Apoptosis of Immature CD4+8+ Thymocytes by Flow Cytometry, J. Immunol. Methods, 137, 79–87 (1981).
- 63
Z. Darzynkiewicz, G. Juan, X. Li, W. Gorczyca, T. Murakami, F. Traganos, Cytometry in Cell Necrobiology: Analysis of Apoptosis and Accidental Cell Death (Necrosis), Cytometry, 27, 1–20 (1997).
10.1002/(SICI)1097-0320(19970101)27:1<1::AID-CYTO2>3.0.CO;2-L CAS PubMed Web of Science® Google Scholar
- 64 D. Wlodkowic, S. Faley, M. Zagnoni, J.P. Wiskwo, J.M. Cooper, Microfluidic Single-Cell Array Cytometry for the Analysis of Tumor Apoptosis, Anal. Chem., 81, 5517–5523 (2009).
- 65 H.P. Dong, A. Holth, M.G. Ruud, E. Emilsen, B. Risberg, B. Davidson, Measurement of Apoptosis in Cytological Specimens by Flow Cytometry: Comparison of Annexin V, Caspase Cleavage and dUTP Incorporation Assays, Cytopathology, 22, 365–372 (2011).
- 66 M. Suzuki, S. Tanaka, Y. Ito, M. Inoue, T. Sakai, K. Nishigaki, Simple and Tunable Forster Resonance Energy Transfer-Based Bioprobes for High-Throughput monitoring of Caspase-3 Activation in Living Cells by using Flow Cytometry, Biochim. Biophys. Acta, 1823, 215–226, (2012).
- 67 A. Vejux, G. Lizard, Y. Tourneur, J.M. Riedinger, F. Frouin, E. Kahn, Effects of Caspase Inhibitors (z-VAD-fmk, z-VDVAD-fmk) on Nile Red Fluorescence Pattern in 7-Ketocholesterol-Treated cells: Investigations by Flow Cytometry and Spectral Imaging Microscopy, Cytometry A, 71A, 550–562 (2007).
- 68 L.S. He, X.L. Wu, F. Meylan, D.P. Olson, J. Simone, D. Hewgill, R. Siegel, P.E. Lipsky, Monitoring Caspase Activity in Living Cells Using Fluorescent Proteins and Flow Cytometry, Am. J. Pathol., 164, 1901–1913 (2004).
- 69
F. Belloc, M.A. Belaud-Rotureau, V. Lavignolle, E. Bascans, E. Braz-Pereira, F. Durrieu, F. Lacombe, Flow Cytometry Detection of Caspase 3 Activation in Preapoptotic Leukemic Cells, Cytometry, 40, 151–160 (2000).
10.1002/(SICI)1097-0320(20000601)40:2<151::AID-CYTO9>3.0.CO;2-9 CAS PubMed Web of Science® Google Scholar
Citing Literature
Encyclopedia of Analytical Chemistry: Applications, Theory and Instrumentation
Browse other articles of this reference work: