Methods to Reveal the Structure of Humic Substances
Part 1. Lignin, Humic Substances and Coal
Prof. Dr. André Amblès,
Prof. Dr. André Amblès
- [email protected]
- +33-549453866 | Fax: +33-549-45350
Université de Poitiers, Laboratoire Chimie UMR 6514, Synthèse et Réactivité des Substances Naturelles, Faculté des Sciences, 40 avenue du Recteur-Pineau, Poitiers, France, 86022
Search for more papers by this authorProf. Dr. André Amblès,
Prof. Dr. André Amblès
- [email protected]
- +33-549453866 | Fax: +33-549-45350
Université de Poitiers, Laboratoire Chimie UMR 6514, Synthèse et Réactivité des Substances Naturelles, Faculté des Sciences, 40 avenue du Recteur-Pineau, Poitiers, France, 86022
Search for more papers by this authorFirst published: 15 January 2005
Abstract
- Introduction
- Historical Outline
- Chemical Analyses
- Elemental Analysis
- Chemical Degradation
- Chemical Oxidation Methods
- Selective Chemical Degradations
- Other Reduction Methods
- Pyrolysis GC/MS
- Analytical and Preparative Pyrolysis
- Analytical and Preparative Thermochemolysis
- Application to Soil Organic Matter Study
- Spectroscopic Methods
- UV/Visible Spectroscopy
- Infrared Spectroscopy
- Nuclear Magnetic Resonance (NMR) Spectroscopy
- Solution NMR
- Solid-State NMR
- Other Spectroscopic Methods
- Fluorescence Spectroscopy
- Surface-Enhanced Raman Spectroscopy (SERS)
- Electron Spin Resonance (ESR) Spectrometry
- Molecular Weight Analysis
- Gel Filtration
- Ultrafiltration Techniques
- Flat Ultrafilters
- Hollow-Fiber Ultrafiltration
- Other Methods
- Outlook and Perspectives
- Acknowledgments
References
- Aiken, G. R. (1988) A critical evaluation of the use of macroporous resins, in: Humic Substances and Their Role in the Environment ( F. H. Frimmel, R. F. Christman, Eds.), pp. 15–28. Chichester: John Wiley & Sons.
- Almendros, G., González-Vila, F. J. (1987) Degradative studies on a soil humin fraction – sequential degradation of inherited humin, Soil Biol. Biochem. 19, 513–520.
- Almendros, G., Sanz, J. (1991) Structural study of soil humin fraction – boron trifluoride–methanol transesterification of soil humin preparations, Soil Biol. Biochem. 23, 1147–1154.
- Amblès, A., Dupas, G., Jacquesy, J. C. (1987) Solubilization of Timahdit (Morocco) oil shale kerogen catalysed by 18-crown-6, Tetrahedron Lett. 28, 6449–6452.
- Amblès, A., Jacquesy, J. C., Jambu, P., Joffre, J., Maggi-Churin, R. (1991) Polar lipid fraction in soil: a kerogen-like matter, Org. Geochem. 17, 341–349.
- Amblès, A., Baudet, N., Jacquesy, J. C. (1993a) Structural study of the kerogen from Brazilian Irati Oil Shale by selective degradations, Tetrahedron Lett. 34, 1783–1786.
- Amblès, A., Jacquesy, J. C., Jambu, P., Mayoungou, P., Okomé-Mintsa, M., Hita, C., Parlanti, E. (1993b) High molecular weight lipids present in soil. Nature and origin, in: Organic Geochemistry ( K. Øygard, Ed.), pp. 668–671. Oslo: F. Hurtigtrykk.
- Ashby, E. C., Welder, W. O., Doctorovich, F. (1993) Single electron transfer in the reaction of an alkyl iodide with LiAlH4 and LiAlD4 in the absence of a halogen atom radical chain process, Tetrahedron Lett. 34, 7235–7238.
- Augris, N., Balesdent, J., Mariotti, A., Derenne, S., Largeau, C. (1998) Structure and origin of insoluble and non-hydrolyzable, aliphatic organic matter in a forest soil, Org. Geochem. 28, 119–124.
- Béhar, F., Pelet, R. (1985) Pyrolysis gas chromatography applied to organic geochemistry. Structural similarities between kerogens and asphaltenes from related rock extracts and oils, J. Anal. Appl. Pyrolysis 8, 173–187.
- van Bergen, P. F., Bull, I. D., Poulton, P. R., Evershed, R. P. (1997) Organic geochemical studies of soils from the Rothamsted Classical Experiments – I. Total lipid extracts, solvent insoluble residues and humic acids from Broadbalk Wilderness, Org. Geochem. 26, 117–135.
- Bortiatynski, J. M., Hatcher, P. G., Knicker, H. (1996) NMR techniques (C, N, and H) in studies of humic substances, in: Humic and Fulvic Acids. Isolation, Structure and Environmental Role ( J. S. Gaffney, N. A. Marley, S. B. Clark, Eds), pp. 57–77. Washington, DC: American Chemical Society.
- Calderoni, G., Schnitzer, M. (1984) Effects of age on the chemical structure of paleosol humic acids and fulvic acids, Geochim. Cosmochim. Acta 48, 2045–2051.
- Challinor, J. M. (1989) A pyrolysis–derivation–gas chromatography technique for the structural elucidation of some synthetic polymers, J. Anal. Appl. Pyrolysis 16, 323–333.
- Challinor, J. M. (1991) The scope of pyrolysis methylation reactions, J. Anal. Appl. Pyrolysis 20, 15–24.
- Challinor, J. M. (1994) Comment on the mechanism of high temperature reactions of quaternary ammonium hydroxides with polymers, J. Anal. Appl. Pyrolysis 29, 223–224.
- Challinor, J. M. (1996) A rapid simple pyrolysis–derivatisation–gas chromatography–mass spectrometry method for profiling of fatty acids in trace quantities of lipids, J. Anal. Appl. Pyrolysis 37, 185–197.
- Chappe, B., Michaelis, W., Albrecht, P. (1981) Molecular fossils of Archaebacteria as selective degradation products of kerogen, in: Advances in Organic Geochemistry 1979 ( A. G. Douglas, J. R. Maxwell, Eds), pp. 265–274. Oxford: Pergamon Press.
- Choi, C. Y., Wang, S. H., Stock, L. M. (1987) Ruthenium tetroxide catalyzed oxidation of maceral groups, Energy and Fuels 2, 37–48.
- Christman, R. F., Nordwood, D. L., Seo, Y., Frimmel, F. H. (1989) Oxidative degradation of humic substances from freshwater environments, in: Humic Substances II. In Search of Structure ( M. H. B. Hayes, P. MacCarthy, R. L. Malcom, R. S. Swift, Eds), pp. 33–67. Chichester: John Wiley & Sons.
- Dixon, I. R., Hayes, M. H. B., Burdon, J., Grocott, S. C. (1997) Reductive degradation of humic-type substances isolated from the Bayer process: a comparison between new and classical techniques, in: The role of Humic Substances in the Ecosystem and in Environmental Protection ( J. Drodz, S. S. Gonet, N. Senesi, J. Weber, Eds.), pp. 103–108. Wroclav: Polish Society of Humic Substances.
- Dragojlovic, V., Amblès, A., Vitorovic, D. (1993) Characterization of ester and ether moieties in the kerogen from Aleksinac oil shale by hydrolysis and ruthenium tetroxide oxidation, J. Serb. Chem. Soc. 58, 25–38.
- Durand, B. (1980) Kerogen. Insoluble Organic Matter from Sedimentary Rocks, Paris: Technip.
- Dworzanski, J. P., Berwald, L., Meuzelaar, H. L. C. (1990) Pyrolytic methylation gas chromatography of whole bacterial cells for rapid profiling of cellular fatty acids, Appl, Environ. Microbiol. 56, 1717–1724.
- Dworzanski, J. P., Berwald, L., McClennen, W. H., Meuzelaar, H. L. C. (1991) Mechanistic aspects of the pyrolytic methylation and transesterification of bacterial cell wall lipids, J. Anal. Appl. Pyrolysis 21, 221–232.
- Ertel, J. R., Hedges, J. I. (1984) The lignin component of humic substances: distribution among soil and sedimentary humic, fulvic, and base-insoluble fractions, Geochim. Cosmochim. Acta 48, 2065–2074.
- Fakoussa, R. M., Frost, P. J. (1999) In vivo-decolorization of coal-derived humic acids by laccase-excreting fungus Trametes versicolor, Appl. Microbiol. Biotechnol. 52, 60–65.
- Fakoussa, R. M., Hofrichter, M. (1999) Biotechnology and microbiology of coal degradation Appl. Microbiol. Biotechnol. 52, 25–45.
- Filley, T. R., Minard, R. D., Hatcher, P. D. (1999) Tetramethylammonium hydroxide (TMAH) thermochemolysis: proposed mechanisms based upon the application of 13C-labeled TMAH to a synthetic model lignin dimer, Org. Geochem. 30, 607–621.
- Filley, T. R., Hatcher, P. D., Shortle, W. C., Praseuth, R. T. (2000) The application of 13C-labeled tetramethylammonium hydroxide (13C-TMAH) thermochemolysis to the study of fungal degradation of wood, Org. Geochem. 31, 181–198.
- Frossard, E., Tekely, P., Grimal, J. Y. (1994) Characterization of phosphate species in urban sewage sludges by high-resolution solid state 31P NMR, Eur. J. Soil Sci. 45, 403–408.
- Gaffney, J. S., Marley, N. A., Clark, S. B. (1996a) Humic and fulvic acids and organic colloidal materials in the Environment, in: Humic and Fulvic Acids. Isolation, Structure and Environmental Role ( J. S. Gaffney, N. A. Marley, S. B. Clark, Eds), pp. 2–16. Washington, DC: American Chemical Society.
- Gaffney, J. S., Marley, N. A., Orlandini, K. A. (1996b) The use of hollow-fiber ultrafilters for the isolation of natural humic and fulvic acids, in: Humic and Fulvic Acids. Isolation, Structure and Environmental Role ( J. S. Gaffney, N. A. Marley, S. B. Clark, Eds), pp. 27–40. Washington, DC: American Chemical Society.
- Gelin, F., de Leeuw, J. W., Sinninghe-Damste, J. S., Derenne, S., Largeau, C., Metzger, P. (1994) Scope and limitation of flash pyrolysis–gas chromatography/mass spectrometry as revealed by the thermal behaviour of high-molecular-weight lipids derived from the green microalga Botryococcus braunii, J. Anal. Appl. Pyrolysis 28, 183–204.
- Gelin, F., Boogers, I., Noordeloos, A. A. M., Sinninghe-Damsté, J. S., Hatcher, P. G., de Leeuw, J. W. (1996) Novel, resistant microalgal polyethers: an important sink of organic carbon in the marine environment ?, Geochim. Cosmochim. Acta 60, 1275–1280.
- Gobé, V., Lemée, L., Amblès, A. (2000) Structure elucidation of soil macromolecular lipids by preparative pyrolysis and thermochemolysis, Org. Geochem. 31, 409–419.
- Goñi, M. A., Hedges, J. I. (1995) Sources and reactivity of marine-derived organic matter in coastal sediments as determined by alkaline CuO oxidation, Geochim. Cosmochim. Acta 59, 2965–2981.
- Gonzalez-Vila, F. J., Lentz, H., Lüdermann, H. D. (1976) FT-13C nuclear magnetic resonance spectra of natural humic substances, Biochem. Biophys. Res. Commun. 72, 1063–1070.
- Gonzalez-Vila, F. J., del Rio, J. C., Martin, F., Verdejo, T. (1996) Pyrolytic alkylation–gas chromatography–mass spectrometry of model polymers. Further insights into the mechanism and scope of the technique, J. Chromatogr. A 750, 155–160.
- Götz, G. K. E., Fakoussa, R. M. (1999) Fungal biosolubilization of Rhenish brown coal monitored by Curie-point/gas chromatography/mass spectrometry using tetraethylammonium hydroxide, Appl. Microbiol. Biotechnol. 52, 41–48.
- Grasset, L. (1997) Etude de l'humine et des acides humiques des sols: importance de la composante lipidique, PhD thesis dissertation, University of Poitiers.
- Grasset, L., Amblès, A. (1998a) Structure of humin and humic acid from an acidic soil as revealed by phase transfer hydrolysis, Org. Geochem. 29, 881–891.
- Grasset, L., Amblès, A. (1998b) Structural study of soil humic acids and humin using a new preparative thermochemolysis technique, Org. Geochem. 47, 1–12.
- Grasset, L., Amblès, A. (1998c) Aliphatic lipids released from a soil humin after enzymatic degradation of cellulose, Org. Geochem. 4, 893–897.
- Griffith, S. M., Schnitzer, M. (1976) The alkaline cupric oxide oxidation of humic and fulvic acids extracted from tropical volcanic soils, Soil Sci. 122, 191–201.
- Griffith, S. M., Schnitzer, M. (1989) Oxidative degradation of soil humic substances, in: Humic Substances II. In Search of Structure ( M. H. B. Hayes, P. MacCarthy, R. L. Malcom, R. S. Swift, Eds), pp. 69–98. Chichester: John Wiley & Sons.
- Hardell, H. L., Nilvebrant, N. O. (1999) A rapid method to discriminate between free and esterified fatty acids by pyrolytic methylation using tetramethylammonium acetate or hydroxide, J. Anal. Appl. Pyrolysis 52, 1–14.
- Hatcher, P. G., Dennis, L. W., Maciel, E. (1981) Aliphatic structure of humic acids; a clue to their origin, Org. Geochem. 3, 43–48.
- Hatcher, P., Clifford, D. J. (1994) Flash pyrolysis and in situ methylation of humic acids from soil, Org. Geochem. 21, 1081–1092.
- Hatcher, P. G., Nanny, M. A., Minard, R. M., Dible, S. D., Carson, D. M. (1995) Comparison of two thermochemolytic methods for the analysis of lignin in decomposing gymnosperm wood: the CuO oxidation method and the method of thermochemolysis with tetramethylammonium hydroxide (TMAH), Org. Geochem. 23, 881–888.
- Hayes, M. H. B., O'Callaghan, M. R. (1989) Degradation with sodium sulfide and with phenol, in: Humic Substances II. In Search of Structure ( M. H. B. Hayes, P. MacCarthy, R. L. Malcom, R. S. Swift, Eds), pp. 3–31. Chichester: John Wiley & Sons.
- Hayes, M. H. B. (1989) Concepts of the origins, composition and structure of humic substances, in: Advances in Soil Organic matter Research: The Impact on the Agriculture and the Environment ( W. S. Wilson, Ed.), pp. 3–32. Cambridge: Royal Society of Chemistry
- Hedges, J. I., Ertel, J. R. (1982) Characterization of lignins by capillary gas chromatography of cupric oxidation products, Anal. Chem. 57, 174–178.
- Hertkorn, N., Günzl, A., Wang, C., Freitag, D., Kettrup, A. (1997) NMR investigation of silylated humic substances, in: The Role of Humic Substances in the Ecosystems and in Environmental Protection ( J. Drodz, S. S. Gonet, N. Senesi, J. Weber, Eds), pp. 139–146. Wroclaw: Polish Society of Humic Substances.
- Holzer, G., Bourne, T. F., Bertch, W. (1989) Analysis of in situ methylated microbial fatty acids constituents by Curie-point pyrolysis–gas chromatography–mass spectrometry, J. Chromatogr. 468, 181–190.
- Ishiwatari, R., Hanniken, K., Lehto, O., Tirronen, A., Tuhkanen, M., Malkonen, P., Pohjala, E. (1983) Chemical degradation and oxidation studies of Finnish peat and peat humic fractions, qualitative analysis, in: Proc. Int. Symp. on Peat Utilization (Fuchsman, C. H., Spigarelli, S. A., Eds), pp. 457–476. Bemidji: Bemidji State University.
- Kögel-Knabner, I. (1997) 13C and 15N spectroscopy as a tool in soil organic matter studies, Geoderma 80, 243–270.
- Kollatukudy, P. E., Kronman, K., Poulose, A. J. (1975) Determination of structure and composition of the suberin from the roots of carrot, parsnip, rutabaga, turnip, red beet and sweet potato by combined gas–liquid chromatography and mass spectrometry, Plant Physiol. 55, 567–573.
- Kribii, A., Baudet, N., Amblès, A. (1996) Kerogen structural study by a combination of specific reactions J. Serb. Chem. Soc. 61, 137–147.
- Lai, Y. Z., Sarkanen, K. V. (1971) Isolation and structural studies, in: Lignins ( K. V. Sarkanen, C. H. Ludwig, Eds), pp. 165–240. New York: John Wiley & Sons.
- Largeau, C., Derenne, S., Casadevall, E., Kadouri, A., Sellier, N. (1986) Pyrolysi of immature Torbanite and of resistant biopolymer (PRBA) isolated from extant alga Botryococcus braunii. Mechanism of formation and structure of Torbanite, Org. Geochem. 10, 1023–1032.
-
Larter, S. R.,
Horsfield, B.
(1993)
Determination of structural components of kerogens by the use of analytical pyrolysis methods, in: Organic Geochemistry ( M. H. Engel, S. A. Macko, Eds), pp. 271–287. New York: Plenum Press.
10.1007/978-1-4615-2890-6_13 Google Scholar
- Lead, J. R., Balnois, E., Hosse, M., Menghetti, R., Wilkinson, K. J. (1999) Characterization of Norwegian natural organic matter: size, diffusion coefficients, and electrophoretic mobilities, Environmental Int. 25, 245–258.
- de Leeuw, J. W., Baas, M. (1993) The behaviour of esters in the presence of tetramethylammonium salts at elevated temperatures: flash pyrolysis or flash chemolysis? J. Anal. Appl. Pyrolysis 26, 175–184.
-
de Leeuw, J. W.,
Largeau, C.
(1993)
A review of macromolecular organic compounds that comprise living organisms and their role in kerogen, coal and petroleum formation, in: Organic Geochemistry ( M. H. Engel, S. A. Macko, Eds), pp. 23–72. New York: Plenum Press.
10.1007/978-1-4615-2890-6_2 Google Scholar
- MacCarthy, P., Rice, J. A. (1985) Spectrometric methods (other than NMR) for determining functionality in humic substances, in: Humic Substances in Soil, Sediment and Water ( G. R. Aiken, D. M. McKnight, D. L Wershaw, P. MacCarthy, Eds), pp. 527–559. New York: John Wiley & Sons.
- Marley, N. A., Gaffney, J. S., Orlandini, K. A. (1996) Characterization of aquatic humic and fulvic material by cylindrical internal reflectance infrared spectroscopy, in: Humic and Fulvic Acids. Isolation, Structure and Environmental Role ( J. S. Gaffney, N. A. Marley, S. B. Clark, Eds), pp. 96–107. Washington, DC: American Chemical Society.
- Martin, F., Gonzalez-Vila, F. J., del Rio, J. C., Verdejo, T. (1994) Pyrolysis derivatization of humic substances. I. Pyrolysis of fulvic acids in the presence of tetramethylammonium hydroxide, J. Anal. Appl. Pyrolysis 28, 71–80.
- Martin, C., del Rio, J. C., Gonzalez-Vila, F. J., Verdejo, T. (1995) Thermally assisted hydrolysis and alkylation of lignins in the presence of tetra-alkylammonium hydroxides, J. Anal. Appl. Pyrolysis 35, 1–13.
- McKinney, D. E., Carson, D. M., Clifford, D. J., Minard, R. D., Hatcher, P. G. (1995) Off-line thermochemolysis versus flash pyrolysis for the in situ methylation of lignin: is pyrolysis necessary?, J. Anal. Appl. Pyrolysis 34, 41–46.
- van de Meent, Brown, S. C. Philp, R. P., Simoneit, B. R. T. (1980) Pyrolysis high resolution chromatography and pyrolysis–gas chromatography mass spectrometry of kerogen precursors, Geochim. Cosmochim. Acta 44, 999–1014.
- Neyroud, J. A., Schnitzer, M. (1972) The chemistry of high molecular weight fulvic acid fractions, Can. J. Chem. 52, 4123–4132.
- Neyroud, J. A., Schnitzer, M. (1975) The alkaline hydrolysis of humic substances, Geoderma 13, 171–188.
-
Nuñez, T. M.,
Martin, V. S.
(1990)
Efficient oxidation of phenyl groups to carboxylic acids with ruthenium tetroxide. A simple synthesis of (R-)-γ-caprolactone, the pheromone of Trogoderma granarium,
J. Org. Chem. 55,
1928–1932.
10.1021/jo00293a044 Google Scholar
- Olson, E. S., Diehl, J. W., Froehlich, M. L., Miller, D. J. (1987) Elucidation of aliphatic structures in low rank coals with ruthenium tetroxide oxidation, Fuel 66, 968–972.
- Opsahl, S., Benner, R. (1995) Early diagenesis of plant tissues: lignin and cutin decomposition and biogeochemical implication, Geochim. Cosmochim. Acta 59, 4889–4904.
- Parsons, J. W. (1989) Hydrolytic degradations of humic substances, in: Humic Substances II. In Search of Structure ( M. H. B. Hayes, P. MacCarthy, R. L. Malcom, R. S. Swift, Eds), pp. 99–120. Chichester: John Wiley & Sons.
- Pedersen, C. J. (1967) Cyclic polyethers and their complexes with metal salts, J. Am.Chem. Soc. 89, 7017–7035.
- Poirier, N., Derenne, S., Rouzaud, J. N., Largeau, C., Mariotti, A., Balesdent, J., Maquet, J. (2000) Chemical structure and sources of the macromolecular, resistant, organic fraction isolated from a forest-soil (Lacadée, South-West France) Org. Geochem. 39, 813–827.
- Pouwels, A. D., Eijkel, G. B., Boon, J. J. (1989) Curie-point pyrolysis–capillary gas chromatography–high-resolution mass spectroscopy of microcrystalline cellulose, J. Anal. Appl. Pyrolysis 14, 237–280.
- Reiss, C., Blanc, P., Albrecht, P. (1993) New structural information on Messel shale kerogen based on selective chemical degradation, in: Organic Geochemistry ( K. Øygard, Ed.) pp. 543–546. Oslo: F. Hurtigtrykk.
- del Rio, J. C., Hatcher, P. G. (1996) Structural characterization of humic substances using thermochemolysis with teramethylammonium hydroxide, in: Humic and Fulvic Acids ( J. S. Gaffney, N. A. Marley, S. B. Clark, Eds), pp. 79–95. Washington: American Chemical Society.
- del Rio, J. C., Martin, F., Gonzalez-Vila, F. J. (1996) Thermally assisted hydrolysis and alkylation as a novel pyrolytic approach for the structural characterization of natural biopolymers and geo-macromolecules, Trends Anal. Chem. 15, 71–79 and cited references.
- del Rio, J. C., McKinney, H., Nanny, M. A., Minard, R. D., Hatcher, P. G. (1998) Structural characterization of bio- and geo-macromolecules by off-line thermochemolysis with tetramethylammonium hydroxide, J. Chromatog, A 823, 433–448.
-
Ryan, D. K.,
Shia, C. P.,
O'Connor, D. V.
(1996)
Fluorescence spectroscopic studies of Al-fulvic acid complexation in acidic solutions, in: Humic and Fulvic Acids. Isolation, Structure and Environmental Role ( J. S. Gaffney, N. A. Marley, S. B. Clark, Eds), pp. 125–139. Washington, DC: American Chemical Society.
10.1021/bk-1996-0651.ch009 Google Scholar
- Saiz-Jimenez, C. (1995) The deterioration of monuments, Sci. Tot. Environ. 167, 273–286.
- Saiz-Jimenez, C., de Leeuw, J. W. (1984) Pyrolysis–gas chromatography–mass spectrometry of isolated, synthetic and degraded lignins, Org. Geochem. 6, 417–422.
- Saiz-Jimenez, C, de Leeuw, J. W. (1987) Chemical structure of a soil humic acid as revealed by analytical pyrolysis, J. Anal. Appl. Pyrolysis 11, 367–376.
- Sanchèz-Cortès, S., Francioso, O., Ciavatta, C., Govi, M., Gessa, C. (1997) Surface-enhanced Raman spectroscopy of peat humic acids fractions, in: The Role of Humic Substances in the Ecosystem and in Environmental Protection ( J. Drodz, S. S. Gonet, N. Senesi, J. Weber, Eds), pp. 133–137. Wroclav: Polish Society of Humic Substances.
- Schnitzer, M. (1974) Alkaline cupric oxidation of a methylated fulvic acid, Soil Biol. Biochem. 6, 1–6.
- Schnitzer, M., Skinner, S. I. M. (1968) Gel filtration of fulvic acid, a soil humic compound, in: Isotopes and Radiations of Soil Organic Matter Studies, pp. 41–55. Vienna: IAEA.
- Schnitzer, M., Khan, S. U. (1972) Humic Substances in the Environment, New York: Marcel Dekker.
- Schnitzer, M., Neyroud, J. A. (1975) Further investigation of fungal “humic acids”, Soil Biol. Biochem. 7, 365–371.
- Schuda, P. F., Cichowicz, M. B., Heimann, M. R. (1983) A facile method for the oxidative removal of benzyl ethers: the oxidation of benzyl ethers to benzoates by ruthenium tetroxide, Tetrahedron Lett. 24, 3829–3830.
- Schulten, H. R. (1995) The three-dimensional structure of soil organo-mineral complexes studied by analytical pyrolysis, J. Anal. Appl. Pyrolysis 32, 111–126.
- Schwoerer, V. (1998) Matière organique des sols: étude structurale et interactions avec des substances xénobiotiques, PhD thesis dissertation, University Louis Pasteur, Strasbourg.
- Steinbüchel, A., Füchtenbusch, A. (1997) PHA from coal? In: Proc. 9th Int. Conf. on Coal Science (Ziegler, A., van Heek, K. H., Klein, J., Wanzl, W., Eds), Vol. III, pp. 1673–1676. Essen: P & W.
- Stevenson, F. J. (1982) Humus Chemistry. Genesis, Composition, Reactions, New York: John Wiley & Sons.
- Stevenson, F. J. (1989) Reductive cleavage of humic substances, in: Humic Substances II. In Search of Structure ( M. H. B. Hayes, P. MacCarthy, R. L. Malcom, R. S. Swift, Eds), pp. 121–142. Chichester: John Wiley & Sons.
- Stock, L. M., Wang, S. H. (1986) Ruthenium tetroxide catalysed oxidation of coals. The formation of aliphatic and benzene carboxylic acids, Fuel 65, 1552–1562.
- Tanczos, I., Schöflinger, M., Schmidt, H., Balla, J. (1997) Cannizzaro reaction of aldehydes in TMAH thermochemolysis, J. Anal. Appl. Pyrolysis 42, 21–31.
- Tekely, P. (1994) Application of high resolution carbon-13 nuclear magnetic resonance to heterogeneous macromolecular solids, Trends Phys. Chem. 4, 181–201.
- Vitorovic, D. (1980) Structure elucidation of kerogen by chemical methods, in: Kerogen. Insoluble Organic Matter from Sedimentary Rocks ( B. Durand, Ed.), pp. 301–338. Paris: Technip.
- Vitorovic, D., Amblès, A., Djordjevic, M. (1984) Correlation between kerogens of various structural types and the products of their multi-step oxidative degradation, Org. Geochem. 6, 333–342.
- Wilson, M. A., Vasssalo, A. M., Perdue, E. M., Keuter, J. H. (1987) Compositional and solid state nuclear magnetic resonance study of humic and fulvic acid fractions of soil organic matter, Anal. Chem. 59, 551–558.
- Wright, J. R., Schnitzer, M. (1959) Alkaline permanganate oxidation of the organic matter of the A0 and B21 horizons of a podzol, Can. J. Soil Sci. 39, 44–53.
Biopolymers Online: Biology • Chemistry • Biotechnology • Applications
Browse other articles of this reference work: