Homoepitaxial SiC Growth by Molecular Beam Epitaxy
R. S. Kern
Department of Materials Science and Engineering, North Carolina State University, NC-27695-7907, USA
Search for more papers by this authorK. Järrendahl
Department of Materials Science and Engineering, North Carolina State University, NC-27695-7907, USA
Search for more papers by this authorS. Tanaka
Department of Materials Science and Engineering, North Carolina State University, NC-27695-7907, USA
Search for more papers by this authorR. F. Davis
Department of Materials Science and Engineering, North Carolina State University, NC-27695-7907, USA
Search for more papers by this authorR. S. Kern
Department of Materials Science and Engineering, North Carolina State University, NC-27695-7907, USA
Search for more papers by this authorK. Järrendahl
Department of Materials Science and Engineering, North Carolina State University, NC-27695-7907, USA
Search for more papers by this authorS. Tanaka
Department of Materials Science and Engineering, North Carolina State University, NC-27695-7907, USA
Search for more papers by this authorR. F. Davis
Department of Materials Science and Engineering, North Carolina State University, NC-27695-7907, USA
Search for more papers by this authorAbstract
The homoepitaxial growth of SiC thin films by solid- and gas-source molecular beam epitaxy is reviewed and discussed. Our recent results regarding the homoepitaxial growth of single crystal 3C-SiC(111) and 6H-SiC(0001) thin films are also presented. The 3C-SiC(111) films were grown on both vicinal and on-axis 6H-SiC(0001) substrates at temperatures between 1000 and 1500 °C using SiH4 and C2H4. They contained double positioning boundaries and stacking faults and the surface morphology and growth rate depended strongly on temperature. Films of 6H-SiC(0001) with low defect densities were deposited at high growth rates on vicinal 6H-SiC(0001) substrates by adding H2 to the reactant mixture at temperatures between 1350 and 1500 °C. At temperatures below 1350 °C, only the cubic phase was formed. A kinetic analysis of the SiC deposition process is also presented. The SiC films were resistive with an n-type character and a lower N concentration than the p-type CVD-grown epilayers of the substrate. Undoped 6H-SiC films with the lowest atomic nitrogen and electron concentration had a mobility of 434 cm2 V—1 s—1, the highest room temperature value ever reported for this polytype. Both the 6H-SiC(0001) and the 3C-SiC(111) epilayers were controllably doped using a NH3/H2 mixture (for lighly n-doped films), pure N2 (for heavily n-doped SiC epilayers) and Al evaporated from a standard effusion cell (for p-type doping).
References
- 1 S. Kaneda, Y. Sakamoto, T. Mihara, and T. Tanaka, J. crystal Growth 81, 536 (1987).
- 2 A. Fissel, B. Schröter, and W. Richter, Appl. Phys. Lett. 66, 3182 (1995).
- 3 A. Fissel, U. Kaiser, E. Ducke, B. Schröter, and W. Richter, J. Crystal Growth 154, 72 (1995).
- 4 A. Fissel, U. Kaiser, K. Pfennighaus, E. Ducke, B. Schröter, and W. Rcihter, in: Silicon Carbide and Related Materials 1995, Proc. of the sixth International Conf. Kyoto, Japan, Sept. 18–21, 1995. Eds. S. Nakashima, H. Matsunami, S. Yoshida, and H. Marima (p. 21).
- 5 A. Fissel, U. Kaiser, K. Pfennighaus, B. Schröter, and W. Richter, Appl. Phys. Lett. 68, 1204 (1996).
- 6 A. Fissel, U. Kaiser, K. Pfennighaus, E. Ducke, B. Schröter, and W. Richter, Inst. Phys. Conf. Ser. No. 142, 121 (1996).
- 7 T. Fuyuki, M. Nakayama, T. Yoshinobu, H. Shiomi, and H. Matsunami, J. Crystal Growth 95, 461 (1989).
- 8 T. Fuyuki, T. Yoshinobu, and H. Matsunami, Thin Solid Films 225, 225 (1993).
- 9 T. Yoshinobu, M. Nakayama, H. Shiomi, T. Fuyuki, and H. Matsunami, J. Crystal Growth 99, 520 (1990).
- 10 T. Yoshinobu, H. Mitsui, I. Izumikawa, T. Fuyuki, and H. Matsunami, Appl. Phys. Lett. 60, 824 (1992).
- 11 L. B. Rowland, PhD Thesis, North Carolina State University, Raleigh (NC), 1992.
- 12 L. B. Rowland, R. S. Kern, S. Tanaka, and R. F. Davis, J. Mater. Res. 8, 2753 (1993).
- 13 S. Tanaka, PhD Thesis, North Carolina State University, Raleigh (NC), 1995.
- 14 S. Tanaka, R. S. Kern, and R. F. Davis, Appl. Phys. Lett. 65, 2851 (1994).
- 15 R. S. Kern, PhD Thesis, North Carolina State University, Raleigh (NC), 1996.
- 16 R. S. Kern, S. Tanaka, L. B. Rowland, and R. F. Davis, submitted to J. Crystal Growth.
- 17 R. S. Kern and R. F. Davis, to appear in Appl. Phys. Lett.
- 18 N. Kuroda, K. Shibahara, W. Yoo, S. Nishino, and H. Matsunami, in: Extended Abstracts 19th Conf. Solid State Devices and Materials, 1987 (p. 227).
- 19 H. S. Kong, J. T. Glass, and R. F. Davis, J. Appl. Phys. 64, 2672 (1988).
- 20 Y. C. Wang and R. F. Davis, J. Electronic Mater. 20, 869 (1991).
- 21 A. I. Kingon, L. J. Lutz, P. Liaw, and R. F. Davis, J. Amer. Ceram. Soc. 66, 558 (1983).
- 22 M. I. Chaudhry and R. L. Wright, J. Mater. Res. 5, 1595 (1990).
- 23 M. I. Chaudhry, R. J. McCluskey, and R. L. Wright, J. Crystal. Growth 113, 120 (1991).
- 24 G. B. Kruaval and J. D. Parsons, J. Electrochem. Soc. 141, 765 (1994).
- 25 J. D. Parsons and G. B. Kruaval, J. Electrochem. Soc. 141, 771 (1994).
- 26 O. Kordina, Linköping University, private communication.
- 27 A. Reisman and M. Berkenblit, J. Electrochem. Soc. 113, 146 (1966).
- 28 S. Karmann, C. Haberstroh, F. Engelbrecht, W. Suttrop, A. Schöner, M. Schadt, R. Helbig, G. Pensl, R. A. Stein, and S. Leibenzeder, Physica 185B, 75 (1993).
- 29 C. H. J. van der Berkel, Philips Res. Rep. 32, 118 (1977).
- 30 H. S. Kong, J. T. Glass, and R. F. Davis, J. Mater. Res. 4, 204 (1989).
- 31 M. E. Jones and D. W. Shaw, in: Treatise on Solid State Chemistry, Ed. N. B. Hanney, Plenum Press, New York 1975 (p. 283).
- 32 R. J. Buss, P. Ho, W. G. Breiland, and M. E. Coltrin, J. Appl. Phys. 63, 2808 (1987).
- 33 F. Bozso, J. T. Yates, Jr., W. J. Choyke, and L. Muehlhoff, J. Appl. Phys. 57, 2771 (1985).
- 34 V. M. Bermudez and R. Kaplan, Phys. Rev. B 44, 11149 (1991).
- 35 H. Froitzheim, U. Köhler, and H. Lammering, J. Phys. C 19, 2767 (1986).
- 36 T. Yoshinobu, H. Tsuda, M. Onchi, and M. Nishijima, Solid State Commun. 60, 801 (1986).
- 37 T. Yoshinobu, H. Tsuda, M. Onchi, and M. Nishijima, J. Chem. Phys. 87, 7332 (1987).
- 38 C. C. Cheng, R. M. Wallace, P. A. Taylor, W. J. Choyke, and J. T. Yates, Jr., J. Appl. Phys. 67, 3693 (1990).
- 39 P. Badziag, Phys. Rev. B 44, 11143 (1991).
- 40 J. M. Powers, A. Wander, P. J. Rous, M. A. Van Hove, and G. A. Somorjai, Phys. Rev. B 44, 11159 (1991).
- 41 B. I. Craig and P. V. Smith, Surf. Sci. 276, 174 (1992).
- 42 M. N. Piancastelli, M. K. Kelly, D. G. Kilday, G. Margaritondo, D. J. Frankel, and G. J. Lapeyre, Phys. Rev. B 35, 1461 (1987).
- 43 C. D. Stinespring and J. C. Wormhoudt, J. Appl. Phys. 65, 1377 (1989).
- 44 S. Motoyama and S. Kaneda, Appl. Phys. Lett. 54, 242 (1989).
- 45 S. Motoyama, N. Morikawa, M. Nasu, and S. Kaneda, J. Appl. Phys. 68, 101 (1990).
- 46 T. Hatayama, Y. Tarui, T. Fuyuki, and H. Matsunami, J. Crystal Growth 150, 934 (1995).
- 47 S. Motoyama, N. Morikawa, and S. Kaneda, J. Crystal Growth 100, 615 (1990).
- 48 T. Hatayama, T. Fuyuki, and H. Matsunami, Jpn. J. Appl. Phys. 34, L1117 (1995).
- 49 Yu. M. Tairov, Mater. Sci. Engng. B 29, 83 (1995).
- 50 R. F. Rutz, U. S. Patent 3,577,285, May 4, 1971.
- 51 T. Kimoto and H. Matsunami, J. Appl. Phys. 76, 7322 (1994).
- 52 S. Tanaka and H. Komiyama, J. Amer. Ceram. Soc. 73, 3046 (1990).
- 53 M. Copel and R. M. Tromp, Appl. Phys. Lett. 58, 2648 (1991).
- 54 N. Ohtani, S. M. Mokler, M. H. Xie, J. Zhang, and B. A. Joyce, Surf. Sci. 284, 305 (1993).
- 55 K. Sumitomo, T. Kobyahi, F. Shoji, K. Oura, and I. Katayama, Phys. Rev. Lett. 66, 1193 (1991).
- 56 A. Sakai and T. Tatsumi, Appl. Phys. Lett. 64, 52 (1994).
- 57 M. D. Allendorf and D. A. Outka, Surf. Sci. 258, 177 (1991).
- 58 Y. Kim and D. R. Olander, Surf. Sci. 313, 399 (1994).
- 59 A. A. Burk, Jr. and L. B. Rowland, J. Crystal Growth, to be published.
- 60 C. Hallin, A. S. Bakin, F. Owman, P. Mårtensson, O. Kordina, and E. Janzén, see [4] (p. 613).
- 61 A. A. Burk, Jr., L. B. Rowland, A. K. Agarwal, S. Sriram, R. C. Glass, and C. D. Brandt, see [4] (p. 201).
- 62 F. Gendron, L. M. Porter, C. Porte, and E. Bringuier, Appl. Phys. Lett. 67, 1253 (1995).
- 63 B. Clerjaud, F. Gendron, C. Porte, and W. Wilkening, Solid State Commun. 93, 463 (1995).
- 64 M. J. Bozack, W. J. Choyke, L. Muehlhoff, and J. T. Yates, Jr., J. Appl. Phys. 60, 3750 (1986).
- 65 M. J. Bozack, P. A. Taylor, W. J. Choyke, and J. T. Yates, Jr., Surf. Sci. 179, 132 (1987).
- 66 J. A. Powell, D. J. Larkin, L. G. Matus, W. J. Choyke, J. L. Bradshaw, L. Henderson, M. Yoganathan, J. Yang, and P. Pirouz, Appl. Phys. Lett. 56, 1353 (1990).
- 67 J. A. Powell, J. B. Petit, J. H. Edgar, I. G. Jenkins, L. G. Matus, J. W. Yang, P. Pirouz, W. J. Choyke, L. Clemen, and M. Yoganathan, Appl. Phys. Lett. 59, 333 (1991).
- 68
J. A. Powell,
D. J. Larkin,
J. B. Petit, and
J. H. Edgar,
in:
Amorphous and Crystalline Silicon Carbide IV,
Ed. C. Y. Yang,
M. M. Rahman, and
G. L. Harris,
Springer-Verlag, Berlin
1992
(p. 23).
10.1007/978-3-642-84804-9_3 Google Scholar
- 69 G. F. Froment and K. B. Bischoff, in: Chemical Reactor Analysis and Design, John Wiley & Sons, New York 1990.
- 70 T. Kimoto, PhD Thesis, Kyoto University, Kyoto (Japan), 1995.
- 71 T. Kimoto, H. Nishino, A. Yamashita, W. S. Yoo, and H. Matsunami, see [68] (p. 31).
- 72 T. Kimoto, A. Yamashita, A. Itoh, and H. Matsunami, Jpn. J. Appl. Phys. 32, 1045 (1993).
- 73 D. J. Larkin, S. G. Sridhara, R. P. Devaty, and W. J. Choyke, J. Electronic Mater. 24, 289 (1995).
- 74 D. J. Larkin, P. G. Neudeck, J. A. Powell, and L. G. Matus, Appl. Phys. Lett. 65, 1659 (1994).
- 75 D. J. Larkin, P. G. Neudeck, J. A. Powell, and L. G. Matus, in: Silicon Carbide and Related Materials, Ed. M. G. Spencer, R. P. Devaty, J. A. Edmond, M. A. Khan, R. Kaplan, and M. Rahman, Institute of Physics, Bristol 1994 (p. 51).
- 76 D. J. Larkin, see [4] (p. 23).