Sigmatropic Shiftamers: Fluxionality in Broken Ladderane Polymers
Dean J. Tantillo Dr.
Department of Chemistry Baker Laboratory Cornell University, Ithaca NY 14853-1301 (USA) Fax: (+1) 607-255-5707
Search for more papers by this authorRoald Hoffmann Prof.
Department of Chemistry Baker Laboratory Cornell University, Ithaca NY 14853-1301 (USA) Fax: (+1) 607-255-5707
Search for more papers by this authorDean J. Tantillo Dr.
Department of Chemistry Baker Laboratory Cornell University, Ithaca NY 14853-1301 (USA) Fax: (+1) 607-255-5707
Search for more papers by this authorRoald Hoffmann Prof.
Department of Chemistry Baker Laboratory Cornell University, Ithaca NY 14853-1301 (USA) Fax: (+1) 607-255-5707
Search for more papers by this authorWe gratefully acknowledge support from the National Science Foundation (through research grant CHE 99-70089) and the National Computational Science Alliance.
Graphical Abstract
Supporting Information
Supporting information for this article (Coordinates and energies for computed structures from Scheme 2, as well as structures involved in the Cope rearrangements of 6 and 7.) is available on the WWW under http://www.angewandte.com or from the authors.
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1 Studies on [n]-ladderanes include:
- 1a
M. A. Miller, J. M. Schulman, J. Mol. Struct. (THEOCHEM) 1988, 163, 133–141;
10.1016/0166-1280(88)80385-3 Google Scholar
- 1b G. Mehta, M. B. Viswanath, G. N. Sastry, E. D. Jemmis, D. S. K. Reddy, A. C. Kunwar, Angew. Chem. 1992, 104, 1557; Angew. Chem. Int. Ed. Engl. 1992, 31, 1488–1490;
- 1c R. N. Warrener, I. G. Pitt, E. E. Nunn, C. H. L. Kennard, Tetrahedron Lett. 1994, 35, 621–624;
- 1d R. N. Warrener, G. Abbenante, C. H. L. Kennard, J. Am. Chem. Soc. 1994, 116, 3645–3646;
- 1e G. Mehta, M. B. Viswanath, A. C. Kunwar, K. R. Kumar, D. S. K. Reddy, J. Chem. Soc. Chem. Commun. 1994, 739–740;
- 1f G. Mehta, M. B. Viswanath, A. C. Kunwar, J. Org. Chem. 1994, 59, 6131–6132;
- 1g G. Mehta, M. B. Viswanath, A. C. Kunwar, Synlett 1995, 317–318;
- 1h G. Mehta, M. B. Viswanath, J. Braz. Chem. Soc. 1996, 7, 219–224;
- 1i J. Delaunay, A. Orliac, J. Simonet, C. R. Acad. Sci. Ser. II B 1997, 324 269–273;
- 1j
H. Hopf, H. Greiving, P. G. Jones, P. Bubenitschek, Angew. Chem. 1995, 107, 742;
10.1002/ange.19951070623 Google ScholarAngew. Chem. Int. Ed. Engl. 1995, 34, 685–687.
- 2 Infinite ladderane substructures are present in hundreds of Zintl phases crystallizing in the BaIn2 (CeCu2) and TiNiSi structures:
- 2a G. Nuspl, K. Polborn, J. Evers, G. A. Landrum, R. Hoffmann, Inorg. Chem. 1996, 35, 6922–6932;
- 2b G. A. Landrum, R. Hoffmann, J. Evers, H. Boysen, Inorg. Chem. 1998, 37, 5754–5763. The orbitals of ladderane polymers are discussed in a).
- 3 The language of solitons (or polarons) is not an accident here; sigmatropic shiftamers can be also viewed in the context of this language, developed for polyacetylene and other conjugated polymers: J. C. W. Chien, Polyacetylene, Academic Press, Orlando, 1984.
- 4 For leading references, see:
- 4a
H. Quast, M. Seefelder, C. Becker, M. Heubes, E.-M. Peters, K. Peters, Eur. J. Org. Chem. 1999, 2763–2779;
10.1002/(SICI)1099-0690(199911)1999:11<2763::AID-EJOC2763>3.0.CO;2-4 CAS Web of Science® Google Scholar
- 4b W. v. E. Doering, B. M. Ferrier, E. T. Fossel, J. H. Hartenstein, M. Jones, Jr., G. Klumpp, R. M. Rubin, M. Saunders, Tetrahedron 1967, 23, 3943;
- 4c R. V. Williams, Chem. Rev. 2001, 101, 1185–1204.
- 5 Both 2 and 4 would be [3,3]-shiftamers.
- 6 Results on derivatives of 4 will be reported in due course.
- 7 Gaussian 98 (Revision A.7), M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, V. G. Zakrzewski, J. A. Montgomery, R. E. Stratmann, J. C. Burant, S. Dapprich, J. M. Millam, A. D. Daniels, K. N. Kudin, M. C. Strain, O. Farkas, J. Tomasi, V. Barone, M. Cossi, R. Cammi, B. Mennucci, C. Pomelli, C. Adamo, S. Clifford, J. Ochterski, G. A. Petersson, P. Y. Ayala, Q. Cui, K. Morokuma, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. Cioslowski, J. V. Ortiz, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. Gomperts, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, C. Gonzalez, M. Challacombe, P. M. W. Gill, B. G. Johnson, W. Chen, M. W. Wong, J. L. Andres, M. Head-Gordon, E. S. Replogle, J. A. Pople, Gaussian, Inc., Pittsburgh, PA, 1998.
- 8
- 8a A. D. Becke, J. Chem. Phys. 1993, 98, 5648–5652;
- 8b A. D. Becke, J. Chem. Phys. 1993, 98, 1372–1377;
- 8c C. Lee, W. Yang, R. G. Parr, Phys. Rev. B 1988, 37, 785–789;
- 8d P. J. Stephens, F. J. Devlin, C. F. Chabalowski, M. J. Frisch, J. Phys. Chem. 1994, 98, 11 623–11 627.
- 9 Reviews:
- 9a O. Wiest, D. C. Montiel, K. N. Houk, J. Phys. Chem. A 1997, 101, 8378–8388;
- 9b K. N. Houk, B. R. Beno, M. Nendel, K. Black, H. Y. Yoo, S. Wilsey, J. K. Lee, J. Mol. Struct. (THEOCHEM) 1997, 398–399, 169–179;
- 9c D. A. Hrovat, B. R. Beno, H. Lange, H.-Y. Yoo, K. N. Houk, W. T. Borden, J. Am. Chem. Soc. 2000, 122, 7456–7460.
- 10 Representative recent calculations on Cope rearrangements:
- 10a D. J. Tantillo, R. Hoffmann, J. Org. Chem. 2002, in press;
- 10b O. Wiest, K. A. Black, K. N. Houk, J. Am. Chem. Soc. 1994, 116, 10 336–10 337;
- 10c H. Jiao, P. von R. Schleyer, Angew. Chem. 1995, 107, 329; Angew. Chem. Int. Ed. Engl. 1995, 34, 334–337.
- 11 A. P. Scott, L. Radom, J. Phys. Chem. 1996, 100, 16 502–16 513.
- 12 Only “chairlike” (as opposed to “twist”) isomers[13] of 1,5-cyclooctadiene substructures were considered due to the geometric constraints of the polymers.
- 13 Experiments and force-field calculations on 1,5-cyclooctadiene:
- 13a G. M. Whitesides, G. L. Goe, A. C. Cope, J. Am. Chem. Soc. 1967, 89, 7136–7137;
- 13b D. Boeckh, R. Huisgen, H. Noeth, J. Am. Chem. Soc. 1987, 109, 1248–1249;
- 13c N. L. Allinger, J. T. Sprague, J. Am. Chem. Soc. 1972, 94, 5734–5747.
- 14 Barriers for Cope rearrangement of species with terminal acyclic hexadiene units were found to converge rapidly upon cyclobutane fusion to approximately 30 kcal mol−1 (from 42 kcal mol−1 in the parent boatlike cyclohexadiene,[10] Scheme 2). Also, [n]-ladderane oligomers were generally found to be <4 kcal mol−1 more stable than the broken [n]-ladderane isomers with central cyclooctadiene substructures derived from them (i.e. those species whose relative energies are set to 0.0 in Scheme 2).
- 15 We have not yet investigated substituent effects on this rearrangement; appropriately designed, they may lower the barrier even further.
- 16a R. Pettit, J. S. McKennis, L. Brener, J. S. Ward, J. Am. Chem. Soc. 1971, 93, 4857–4958;
- 16b previous calculations predict similar rearrangement barriers: B. Das, K. L. Sebastian, Chem. Phys. Lett. 2000, 330, 433–439, and references therein.
- 17
- 17a N. C. C. Yang, B. J. Hrnjez, M. G. Horner, J. Am. Chem. Soc. 1987, 109, 3158–3159;
- 17b N. C. C. Yang, M. G. Horner, Tetrahedron Lett. 1986, 27, 543–546;
- 17c HF/6-31G* calculations on the structure and energy of 7 relative to other C12H12 isomers have also been reported: G. W. Schriver, D. J. Gerson, J. Am. Chem. Soc. 1990, 112, 4723–4728.
- 18 Such systems include, for example, the asteranes[1a]—isomers of large prismanes with combinations of cis and trans fused cyclobutanes.
- 19 The size of these molecules has, so far, precluded computations on their putative fluxionality.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.