Lipid Oxidation: New Perspectives on an Old Reaction
Abstract
After lying in the doldrums during the no/low fat era, lipid oxidation is once again attracting intense interest for its effects on food quality, stability of personal care products, impairment of functional properties, and nutrition in foods, as well as toxic potential in tissues. Advanced analytical methods now detect lipid oxidation products with greater sensitivity and in more molecular detail, which provides greater power in elucidating reactions. At the same time, the comparative timing for the development of various products as well as the distribution of products under different conditions cannot be explained by the traditional free radical chain reaction driven solely by hydrogen abstractions. The previous edition of this article provided arguments for considering a number of alternate reactions of peroxyl and alkoxyl radicals that compete with hydrogen abstraction and alter outcomes of lipid oxidation, and then integrated these alternate pathways into a coherent reaction scheme that shows there interdependence and interrelationships. This article builds on that base, provides evidence for epoxides a product equal to hydroperoxides in importance, and introduces thinking about pathway changes induced by solvents, oxidation catalysts, and other environmental conditions.
References
- 1Spickett, C. and Forman, H. (2015). Lipid Oxidation in Health and Disease. Boca Raton, FL: CRC Press.
10.1201/b18138-2 Google Scholar
- 2Sevanian, A. and Hochstein, P. (1985). Annu. Rev. Nutr. 5: 365–390.
- 3Sevanian, A. (1988). Lipid Peroxidation in Biological Systems. Champaign, IL: AOCS Press.
- 4Calder, P.C. (2010). Nutrients 2: 355–374.
- 5Yadav, U.C.S. and Ramana, K.V. (2013). Oxid. Med. Cell. Longev. 2013: 11.
10.1155/2013/690545 Google Scholar
- 6Jessup, W., Kritharides, L., and Stocker, R. (2004). Biochem. Soc. Trans. 32: 134–138.
- 7Shao, B. and Heinecke, J.W. (2009). J. Lipid Res. 50: 599–601.
- 8Ahotupa, M. (2017). Free Radic. Res. 51: 439–447.
- 9McBrien, D.C.H. and Slater, T.F. (1982). Free Radicals, Lipid Peroxidation, and Cancer. London: Academic Press.
- 10Sultana, R., Perluigi, M., and Butterfield, D.A. (2013). Free Radic. Biol. Med. 62: 157–169.
- 11Niki, E. (2009). Free Radic. Biol. Med. 47: 469–484.
- 12Gorkum, R. (2005). Manganese complexes as drying catalysts for alkyd paints. PhD dissertation, Department of Chemistry, Leiden University, Leiden, Netherlands.
- 13Juita, B., Dlugogorski, Z., Kennedy, E.M., and Mackie, J.C. (2012). Fire Sci. Rev. 1: 3/1–3/36.
- 14Kumarathasan, R., Rajkumar, A.B., Hunter, N.R., and Gesser, H.D. (1992). Prog. Lipid Res. 31: 109–126.
- 15Thomsen, B.R., Taylor, R., Madsen, R. et al. (2018). J. Am. Oil Chem. Soc. 95: 185–196.
- 16Thomsen, B.R., Horn, A.F., Hyldig, G. et al. (2017). J. Am. Oil Chem. Soc. 94: 1287–1300.
- 17Oldfield, T. and Carter, T. (2005). SOFW J. 131: 38,40–38,41.
- 18Arquette, D.J., Cummings, M., Dwyer, K. et al. (1997). Cosmet. Toiletries 112: 67–72.
- 19Khanum, R. and Thevanayagam, H. (2017). Asian J. Pharm. Sci. 12: 401–411.
- 20Schaich, K.M. (2005). In: Bailey's Industrial Fats and Oils, 6e (ed. F. Shahidi), 2681–2767. New York: Wiley.
- 21Schaich, K.M., Shahidi, F., Zhong, Y., and Eskin, N.A.M. (2013). In: Biochemistry of Foods, 3e (ed. N.A.M. Eskin and F. Shahidi), 419–478. Amsterdam: Elsevier.
10.1016/B978-0-08-091809-9.00011-X Google Scholar
- 22Schaich, K.M. (2013). In: Lipid Oxidation: Challenges in Food Systems (ed. U. Nienaber, A. Logan and X. Pan), 1–52. Champaign, IL: AOCS Press.
10.1016/B978-0-9830791-6-3.50004-7 Google Scholar
- 23Frankel, E.N. (1984). J. Am. Oil Chem. Soc. 61: 1908–1917.
- 24Frankel, E.N. (1987). Chem. Phys. Lipids 44: 73–85.
- 25Frankel, E.N. (1991). J. Sci. Food Agric. 54: 495–511.
- 26Gardner, H.W. (1989). Free Radic. Biol. Med. 7: 65–86.
- 27Zielinski, Z.A.M. and Pratt, D.A. (2017). J. Org. Chem. 82: 2817–2825.
- 28Porter, N.A. (1990). In: Membrane Lipid Oxidation, vol. I (ed. C. Vigo-Pelfrey), 33–62. Boca Raton, FL: CRC Press.
- 29Porter, N.A., Caldwell, S.E., and Mills, K.A. (1995). Lipids 30: 277–290.
- 30Dix, T.A. and Aikens, J. (1993). Chem. Res. Toxicol. 6: 2–18.
- 31Xu, L., Davis, T.A., and Porter, N.A. (2009). J. Am. Chem. Soc. 131: 13037–13044.
- 32Frankel, E.N. (2012). Lipid Oxidation, 2e. Cambridge, UK: Woodhead Publishing.
- 33Kamal-Eldin, A. and Min, D. (2010). Lipid Oxidation Pathways, vol. 2. Champaign, IL: AOCS Press.
- 34Chan, H.W.-S. (1987). Autoxidation of Unsaturated Lipids. London: Academic Press.
- 35Farmer, E.H. (1946). Trans. Faraday Soc. 42: 228–236.
- 36Bolland, J.L. (1949). Q. Rev. 3: 1–21.
- 37Bolland, J.L. (1945). J. Chem. Soc. 445–447.
- 38Swern, D. (1961). In: Autoxidation and Antioxidants, vol. 1 (ed. W.O. Lundberg), 1–54. New York: Interscience.
- 39Farmer, E.H., Koch, H.P., and Sutton, D.A. (1943). J. Chem. Soc. 541–547.
- 40Cosgrove, J.P., Church, D.F., and Pryor, W.A. (1987). Lipids 22: 299–304.
- 41Bors, W., Erben-Russ, M., and Saran, M. (1987). Bioelectrochem. Bioenerg. 18: 37–49.
- 42Howard, J.A. and Ingold, K.U. (1967). Can. J. Chem. 45: 793–802.
- 43Ingold, K.U. (1969). Acc. Chem. Res. 2: 1–9.
- 44Porter, N.A., Lehman, L.S., Weber, B.A., and Smith, K.J. (1981). J. Am. Chem. Soc. 103: 6447–6455.
- 45Tallman, K.A., Pratt, D.A., and Porter, N.A. (2001). J. Am. Chem. Soc. 123: 11827–11828.
- 46Campbell, I.M., Caton, R.B., and Crozier, D.N. (1974). Lipids 9: 916–920.
- 47Tallman, K.A., Roschek, B., and Porter, N.A. (2004). J. Am. Chem. Soc. 126: 9240–9247.
- 48Porter, N.A. and Wujek, D.G. (1984). J. Am. Chem. Soc. 106: 2626–2629.
- 49Brash, A.R. (2000). Lipids 35: 947–952.
- 50Tallman, K.A., Rector, C.L., and Porter, N.A. (2009). J. Am. Chem. Soc. 131: 5635–5641.
- 51Bascetta, E., Gunstone, F.D., Scrimgeour, C.M., and Walton, J.C. (1982). J. Chem. Soc. Chem. Commun. 110–112.
- 52Porter, N.A., Mills, K.A., Caldwell, S.E., and Dubay, G.R. (1994). J. Am. Chem. Soc. 116: 6697–6705.
- 53Porter, N.A., Mills, K.A., and Carter, R.L. (1994). J. Am. Chem. Soc. 116: 6690–6696.
- 54Porter, N.A. and Nixon, J.R. (1978). J. Am. Chem. Soc. 100: 7116–7117.
- 55Porter, N.A., Weber, B.A., Weenan, H., and Kahn, J.A. (1980). J. Am. Chem. Soc. 102: 5597–5601.
- 56Porter, N.A. and Wujek, J.S. (1987). J. Org. Chem. 52: 5085–5089.
- 57Roschek, B., Tallman, K.A., Rector, C.L. et al. (2006). J. Org. Chem. 71: 3527–3532.
- 58Pratt, D.A., Tallman, K.A., and Porter, N.A. (2011). Acc. Chem. Res. 44: 458–467.
- 59Porter, N.A. (2013). J. Org. Chem. 78: 3511–3524.
- 60Kerr, J.A. (1966). Chem. Rev. 66: 465–500.
- 61Luo, Y.-R. (2007). Comprehensive Handbook of Chemical Bond Energies. Boca Raton, FL: CRC Press.
10.1201/9781420007282 Google Scholar
- 62Scott, G. (1965). Atmospheric Oxidation and Antioxidants. London: Elsevier.
- 63Denisov, E. and Denisova, T. (2011). In: Application of Thermodynamics to Biological and Materials Science (ed. M. Tadashi). Rijeka, Croatia: InTech.
- 64Abraham, M.H. and Platts, J.A. (2001). J. Org. Chem. 66: 3484–3491.
- 65Abraham, M.H. (1993). Chem. Soc. Rev. 22: 73–83.
- 66Bockman, T.M., Hubig, S.M., and Kochi, J.K. (1998). J. Am. Chem. Soc. 120: 2826–2830.
- 67Bors, W., Erben-Russ, M., and Saran, M. (1987). J. Electroanal. Chem. 232: 37–49.
- 68Bors, W., Tait, D., Michel, C. et al. (1984). Isr. J. Chem. 24: 17–24.
- 69Small, R.D. Jr., Scaiano, J.C., and Patterson, L.K. (1979). Photochem. Photobiol. 29: 49–51.
- 70Hendry, D.G., Mill, T., Piszkiewicz, L. et al. (1974). J. Phys. Chem. Ref. Data 3: 937–978.
- 71Howard, J.A., Schwalm, W.J., and Ingold, K.U. (1968). In: Oxidation of Organic Compounds (ed. F.R. Mayo), 6–23. Washington, DC: American Chemical Society.
- 72Møller, K.H., Tram, C.M., and Kjaergaard, H.G. (2017). J. Phys. Chem. A 121: 2951–2959.
- 73Howard, J.A. and Ingold, K.U. (1968). Can. J. Chem. 46: 2661–2666.
- 74Hendry, D.G. and Russell, G.A. (1964). J. Am. Chem. Soc. 86: 2368–2374.
- 75Borg, D.C. and Schaich, K.M. (1984). Isr. J. Chem. 24: 38–53.
- 76Schaich, K.M. (2008). In: Lipid Oxidation Pathways, vol. 2 (ed. A. Kamal-Eldin and D.B. Min), 183–274. Boca Raton, FL: CRC Press.
- 77Porter, N.A., Funk, M.O., Gilmore, D. et al. (1976). J. Am. Chem. Soc. 98: 6000–6005.
- 78Baldwin, J.E. (1975). J. Chem. Soc. Chem. Commun. 734–736.
- 79Frankel, E.N., Neff, W.E., and Bessler, T.R. (1979). Lipids 14: 961–967.
- 80Chan, H.W.-S. and Levett, G. (1977). Lipids 12: 837–840.
- 81Terao, J. and Matsushita, S. (1980). J. Food Process. Preserv. 3: 329–337.
10.1111/j.1745-4549.1980.tb00590.x Google Scholar
- 82Terao, J. and Matsushita, S. (1981). Agric. Biol. Chem. 45: 587–593.
- 83Frankel, E.N., Neff, W.E., Selke, E., and Weisleder, D. (1982). Lipids 17: 11–18.
- 84Mihelich, E.D. (1980). J. Am. Chem. Soc. 102: 7143–7145.
- 85Chan, H.W.-S., Matthew, J.A., and Coxon, D.T. (1980). J. Chem. Soc. Chem. Commun. 235–236.
- 86Porter, N.A. (1986). Acc. Chem. Res. 19: 262–268.
- 87Howard, J.A. (1973). In: Free Radicals, vol. II (ed. J.K. Kochi), 3–62. New York: Wiley-Interscience.
- 88Funk, M.O., Isaac, R., and Porter, N.A. (1975). J. Am. Chem. Soc. 97: 1281–1282.
- 89Hamberg, M. and Samuelsson, B. (1966). J. Am. Chem. Soc. 88: 2349–2350.
- 90Porter, N.A. and Funk, M.O. (1975). J. Org. Chem. 40: 3614–3615.
- 91Brill, W.F. (1963). J. Am. Chem. Soc. 85: 141–145.
- 92Hiatt, R. and McCarrick, T. (1975). J. Am. Chem. Soc. 97: 5234–5237.
- 93Lewis, S.E. and Mayo, F.R. (1958). J. Am. Chem. Soc. 70: 1533–1536.
- 94Mayo, F.R. (1958). J. Am. Chem. Soc. 80: 2500–2507.
- 95Mayo, F.R. (1968). Acc. Chem. Res. 1: 193–201.
- 96Xie, J. (2015). Evidence for multiple oxidation pathways from non-volatile products of methyl linoleate. PhD dissertation, Food Science. Rutgers University, New Brunswick, NJ.
- 97Barceló-Coblijn, G. and Murphy, E.J. (2009). Prog. Lipid Res. 48: 355–374.
- 98Hendry, D.G. and Schuetzle, D. (1976). J. Org. Chem. 41: 3179–3182.
- 99Hasegawa, K. and Patterson, L.K. (1978). Photochem. Photobiol. 28: 817–823.
- 100Erben-Russ, M., Bors, W., and Saran, M. (1987). Int. J. Radiat. Biol. 52: 393–412.
- 101Heijman, M.G.J., Nauta, H., and Levine, Y.K. (1985). Radiat. Phys. Chem. 26: 73–82.
- 102Neta, P., Huie, R.E., and Ross, A.B. (1990). J. Phys. Chem. Ref. Data 19: 413–513.
- 103Witting, I.A., Chang, S.S., and Kummerow, F.A. (1957). J. Am. Oil Chem. Soc. 34: 470–473.
- 104Sims, R.P. and Hoffman, W.H. (1962). In: Autoxidation and Antioxidants, vol. II (ed. W.O. Lundberg), 629–694. London: Interscience.
- 105Privett, O.S. (1959). J. Am. Oil Chem. Soc. 36: 507–512.
- 106Adamic, K., Howard, J.A., and Ingold, K.U. (1969). Can. J. Chem. 47: 3803–3808.
- 107Thomas, J.R. (1965). J. Am. Chem. Soc. 87: 3935–3940.
- 108Lindsay, D.A., Howard, J.A., Horswill, E.C. et al. (1973). Can. J. Chem. 51: 870–880.
- 109Bennett, J.E., Brown, D.B., and Mile, B. (1970). Trans. Faraday Soc. #566 66: 386–396.
- 110Rao, P.S., Ayres, S.M., and Mueller, H.S. (1982). Biochem. Biophys. Res. Commun. 104: 1532–1536.
- 111Howard, J.A. (1978). J. Am. Chem. Soc. 122: 12412–12412.
10.1021/ja004759m Google Scholar
- 112Kochi, J.K. (1973). In: Free Radicals, vol. 2 (ed. J.K. Kochi), 665–710. New York: Wiley.
- 113Erben-Russ, M., Michael, C., Bors, W., and Saran, M. (1987). J. Phys. Chem. 91: 2362–2365.
- 114Baignee, A., Howard, J.A., Scaiano, J.C., and Stewart, L.C. (1983). J. Am. Chem. Soc. 105: 6120–6123.
- 115Hiatt, R. and Zigmund, L. (1970). Can. J. Chem. 48: 3967–3969.
- 116Hiatt, R. and Szilagyi, S. (1970). Can. J. Chem. 48: 616.
- 117Gilbert, B.C., Holmes, R.G.G., and Norman, R.O.C. (1977). J. Chem. Res. 8 (1).
- 118Paul, H., Small, R.D. Jr., and Scaiana, J.C. (1978). J. Am. Chem. Soc. 100: 4520–4527.
- 119Avila, D.V., Ingold, K.U., Lusztyk, J. et al. (1995). J. Am. Chem. Soc. 117: 2929–2930.
- 120Avila, D.V., Ingold, K.U., and Kusztyk, J. (1995). J. Am. Chem. Soc. 117.
- 121Bors, W., Michel, W., and Saran, M. (1984). BBA Lipid Lipid Met. 796: 312–319.
- 122Walling, C. and Padwa, A. (1963). J. Am. Chem. Soc. 85: 1597–1601.
- 123Frankel, E.N. (1982). Prog. Lipid Res. 22: 1–33.
- 124Newman, J.W., Watanabe, T., and Hammock, B.D. (2002). J. Lipid Res. 43: 1563–1578.
- 125Logan, A., Golding, M., and Wijesundera, C. (2010). J. Am. Oil Chem. Soc. 88: 65–73.
- 126Jacobsen, C. (2016). In: Oxidative Stability and Shel Life of Foods Containing Oils and Fats (ed. M. Hu and C. Jacobsen), 287–312. London, UK: Elsevier/Academic/AOCS Press.
- 127Schaich, K.M. (2019). In: Bailey's Industrial Oil and Fat Products, 7e (ed. b.F. Shahidi). Hoboken, NJ: Wiley.
- 128Kochi, J.K. (1962). J. Am. Chem. Soc. 84: 1193–1197.
- 129Wilcox, A.L. and Marnett, L.J. (1993). Chem. Res. Toxicol. 6: 413–416.
- 130Neff, W.E. (1980). Lipids 15: 587–590.
- 131Gardner, H.W. and Kleiman, R. (1981). Biochim. Biophys. Acta 665: 113–125.
- 132Gardner, H.W. and Crawford, C.G. (1981). Biochim. Biophys. Acta 665: 126–133.
- 133Chan, H.W.S., Prescott, F.A.A., and Swoboda, P.A.T. (1976). J. Am. Oil Chem. Soc. 53: 572–576.
- 134Nawar, W.W. (1969). J. Agric. Food Chem. 17: 18–21.
- 135Baciocchi, E., Bietti, M., Salamone, M., and Steenken, S. (2002). J. Org. Chem. 67: 2266–2270.
- 136Fukuzumi, S. and Kochi, J.K. (1981). J. Am. Chem. Soc. 103: 2783–2791.
- 137Wilsey, S., Dowd, P., and Houk, K.N. (1999). J. Org. Chem. 64: 8801–8811.
- 138Russell, G.A. (1956). J. Am. Chem. Soc. 78: 1047–1054.
- 139Avila, D.V., Brown, C.E., Ingold, K.U., and Lusztyk, J. (1993). J. Am. Chem. Soc. 115: 466–470.
- 140O'Dell, D.E., Loper, J.T., and Macdonald, T.L. (1988). J. Org. Chem. 53: 5225–5229.
- 141Walling, C. and Padwa, A. (1963). J. Am. Chem. Soc. 85: 1593–1597.
- 142Gilbert, B.C., Marshall, P.D.R., Norman, R.O.C. et al. (1981). J. Chem. Soc. Perkin II: 1392–1400.
10.1039/p29810001392 Google Scholar
- 143Farmer, E.H. and Sutton, D.A. (1943). J. Chem. Soc. 119–122.
- 144Neta, P., Dizdaroglu, M., and Simic, M. (1984). Isr. J. Chem. 24: 25–28.
- 145Walling, C. and Wagner, P.J. (1963). J. Am. Chem. Soc. 85: 2333–2334.
- 146Kochi, J.K. (1973). Free Radicals, vol. I. New York: Wiley.
- 147Tsentalovich, Y.P., Kulik, L.V., Gritsan, N.P., and Yurkovskaya, A.V. (1998). J. Phys. Chem. 102.
10.1021/jp9822236 Google Scholar
- 148Neville, A.G., Brown, C.E., Rayner, D.M. et al. (1989). J. Am. Chem. Soc. 111: 9269–9270.
- 149Janzen, E.G., Johnston, F.J., and Ayers, C.A. (1967). J. Am. Chem. Soc. 89: 1176–1183.
- 150Scaiano, J.C. (1987). In: Oxygen Radicals in Biology and Medicine (ed. M.G. Simic, K.A. Taylor, J.F. Ward and C. Sonntag), 59–66. New York: Plenum Press.
- 151Lucarini, M., Pedulli, G.F., and Valgimigli, L. (1998). J. Org. Chem. 63: 4497–4499.
- 152Kim, S.S., Kim, S.Y., Ryou, S.S. et al. (1993). J. Org. Chem. 58.
- 153Bietti, M. and Salamone, M. (2010). Org. Lett. 12: 3654–3657.
- 154Valgimigli, L., Banks, J.T., Ingold, K.U., and Lusztyk, J. (1995). J. Am. Chem. Soc. 117: 9966.
- 155Valgimigli, L., Banks, J.T., Lusztyk, J., and Ingold, K.U. (1999). J. Org. Chem. 64: 3381–3383.
- 156Salamone, M., Giammarioli, I., and Bietti, M. (2011). J. Org. Chem. 76: 4645–4651.
- 157Aliaga, C., Stuart, D.R., Aspée, A., and Scaiano, J.C. (2005). Org. Lett. 7: 3665–3668.
- 158Salamone, M., Basili, F., and Bietti, M. (2015). J. Org. Chem. 80: 3643–3650.
- 159Salamone, M., Mangiacapra, L., and Bietti, M. (2015). J. Org. Chem. 80: 1149–1154.
- 160Koner, A.L., Pischel, U., and Nau, W.M. (2007). Org. Lett. 9: 2899–2902.
- 161 Anon (2016). Common Organic Solvents: Table of Properties. Washington, D.C.: American Chemical Society. https://www.organicdivision.org/orig/organic_solvents.html (accessed 20 July 2018).
- 162Neff, W.E., Frankel, E.N., and Weisleder, D. (1981). Lipids 16: 439–448.
- 163Walling, C. and Wagner, P.J. (1964). J. Am. Chem. Soc. 86: 3368–3375.
- 164Mayo, F.R. (1958). J. Am. Chem. Soc. 80: 2497–2500.
- 165Factor, A., Russell, C.A., and Traylor, T.G. (1965). J. Am. Chem. Soc. 87: 3692–3696.
- 166Neff, W.E. and Frankel, E.N. (1984). Lipids 19: 952–957.
- 167Neff, W.E., Frankel, E.N., and Fujimoto, K. (1988). J. Am. Oil Chem. Soc. 65: 616–623.
- 168Neff, W.E., Frankel, E.N., Selke, E., and Weisleder, D. (1983). Lipids 18: 868–876.
- 169Neff, W.E., Frankel, E.N., and Weisleder, D. (1982). Lipids 17: 780–790.
- 170Jensen, R.K., Korcek, S., and Zinbo, M. (1992). J. Am. Chem. Soc. 114: 7742–7748.
- 171Van Sickle, D.E., Mayo, F.R., Gould, E.S., and Arluck, R.M. (1967). J. Am. Chem. Soc. 89: 977–984.
- 172Russell, G.A. and Williamson, R.C. (1964). J. Am. Chem. Soc. 86: 2357–2364.
- 173Haynes, R.K. and Vonwiller, S.C. (1990a). J. Chem. Soc. Chem. Commun. 1102–1104.
- 174Gardner, H.W., Eskins, K., Grams, G.W., and Inglett, G.R. (1972). Lipids 7: 324–334.
- 175Schieberle, P., Trebert, Y., Firl, J., and Grosch, W. (1988). Chem. Phys. Lipids 48: 281–288.
- 176Gardner, H.W., Kleiman, R., and Weisleder, D. (1974). Lipids 9: 696–706.
- 177Elson, I.H., Mao, S.W., and Kochi, J.K. (1975). J. Am. Chem. Soc. 97: 335–341.
- 178Mounts, T.L., McWeeny, D.J., Evans, C.D., and Dutton, H.J. (1970). Chem. Phys. Lipids 4: 197–202.
- 179Frankel, E.N., Neff, W.E., Selke, E., and Brooks, D.D. (1988). Lipids 23: 295–298.
- 180Schauenstein, E. (1967). J. Lipid Res. 8: 417–428.
- 181Boto, A., Hernandez, D., Hernandez, R., and Suarez, E. (2003). J. Org. Chem. 68: 5310–5319.
- 182Walling, C. and Padwa, A. (1962). J. Am. Chem. Soc. 84: 2845–2846.
- 183Selke, E., Frankel, E.N., and Neff, W.E. (1978). Lipids 13: 511–513.
- 184Ellis, R., Gaddis, A.M., Currie, G.T., and Powell, S.L. (1968). J. Am. Oil Chem. Soc. 45: 553–559.
- 185Kimoto, W.I. and Gaddis, A.M. (1974). J. Am. Oil Chem. Soc. 51: 307–311.
- 186Loidl-Stahlhofen, A. and Spiteller, G. (1994). Biochim. Biophys. Acta 1211: 156–160.
- 187Schaich, K.M. (2016). In: Oxidative Stability and Shelf Life of Foods Containing Oils and Fats (ed. M. Hu and C. Jacobsen), 1–131. AOCS Press.
10.1016/B978-1-63067-056-6.00001-X Google Scholar
- 188Horner, J.H., Choi, S.-Y., and Newcomb, M. (2000). Org. Lett. 2: 3369–3372.
- 189Richardson, W.H., Yelvington, M.B., Andrist, A.H. et al. (1973). J. Org. Chem. 38: 4219–4225.
- 190Grosch, W. (1987). In: Autoxidation of Unsaturated Lipids (ed. H.W.-S. Chan), 95–139. London: Academic Press.
- 191El-Magoli, S.B., Karel, M., and Yong, S. (1980). J. Food Biochem. 3: 111–123.
- 192Ullrich, F. and Grosch, W. (1987). Z. Lebensm. Unters. Forsch. 184: 277–282.
- 193Ullrich, F. and Grosch, W. (1988). J. Am. Oil Chem. Soc. 64: 213–218.
- 194Buttery, R.G., Guadagni, D.G., and Ling, L.C. (1973). Agric. Food Chem. 21: 198–201.
- 195Chang, S.S., Smouse, T.H., Krishnamurthy, R.G. et al. (1966). Chem. Ind. 46 (12): 1926–1927.
- 196Traylor, T.G. and Russell, C.A. (1965). J. Am. Chem. Soc. 87: 3698–3706.
- 197Walling, C., Waits, H.P., Milanovic, J., and Pappiaonnou, C.G. (1970). J. Am. Chem. Soc. 92: 4927–4932.
- 198Hiatt, R. and Traylor, T.G. (1965). J. Am. Chem. Soc. 87: 3766–3768.
- 199Labuza, T.P. (1971). CRC Crit. Rev. Food Sci. Nutr. 2: 355–405.
10.1080/10408397109527127 Google Scholar
- 200Sliwiok, J., Kowalska, T., Kowalski, W., and Biernat, A. (1974). Microchem. J. 19: 362–372.
- 201Hicks, M. and Gebicki, J.M. (1993). Int. J. Radiat. Biol. 64: 143–148.
- 202Walling, C. and Heaton, L. (1965). J. Am. Oil Chem. Soc. 87: 48–51.
- 203Howard, J.A. and Bennett, J.E. (1972). Can. J. Chem. 50: 2374–2377.
- 204Russell, G.A. (1959). J. Chem. Educ. 36: 111–118.
- 205Frenette, M. and Scaiano, J.C. (2008). J. Am. Chem. Soc. 130: 9634–9635.
- 206Yaremenko, I.A., Vil', V.A., Demchuk, D.V., and Terent'ev, A.O. (2016). Beilstein J. Org. Chem. 12: 1647–1748.
- 207Gardner, H.W. and Plattner, R.D. (1984). Lipids 19: 294–299.
- 208Gardner, H.W., Nelson, E.C., Tjarks, L.W., and England, R.E. (1984). Chem. Phys. Lipids 35: 87–101.
- 209Porter, N.A. (1992). In: Organic Peroxides (ed. W. Ando), 102–156. New York: Wiley.
- 210Pryor, W.A. and Porter, N.A. (1990). Free Radic. Biol. Med. 8: 541–543.
- 211Schneider, C., Tallman, K.A., Porter, N.A., and Brash, A.R. (2001). J. Biol. Chem. 276: 20831–20838.
- 212Ho, C.-T. and Chen, Q. (1994). In: Lipids in Food Flavors (ed. C.-T. Ho and T.G. Hartman), 2–14. American Chemical Society.
10.1021/bk-1994-0558.ch001 Google Scholar
- 213Doehlert, D.C., Angelikousis, S., and Vick, B. (2010). Cereal Chem. 87: 532–537.
- 214Strassburg, K., Huijbrechts, A.M.L., Kortekaas, K.A. et al. (2012). Anal. Bioanal. Chem. 404: 1413–1426.
- 215Abdullah, B.M. and Salimon, J. (2010). J. Appl. Sci. 10: 1545–1553.
- 216Wisniak, J. and Navarrete, E. (1970). Ind. Eng. Chem. Prod. Res. Dev. 9: 33–41.
- 217Liao, C.-H. (2013). Comparison of chemical assays used to determine epoxides in oxidized lipids. MS thesis, Food Science. Rutgers University, New Brunswick, NJ.
- 218Schieberle, P., Tsoukalas, B., and Grosch, W. (1979). Z Lebensmitt-Untersuch Forsch 168: 448–456.
- 219Schneider, C., Boeglin, W.E., Yin, H. et al. (2008). Chem. Res. Toxicol. 21: 895–903.
- 220Wu, G.-S., Stein, R.A., and Mead, J.F. (1977). Lipids 12: 971–978.
- 221Hamberg, M. and Gotthammar, B. (1973). Lipids 8: 737–744.
- 222Gardner, H.W., Weisleder, D., and Nelson, E.C. (1984). J. Org. Chem. 49: 508–515.
- 223Grosch, W. and Megele, J. (1984). In: Oxygen Radicals in Chemistry and Biology (ed. W. Bors, M. Saran and D. Tait), 249–256. Berlin: Walter de Gruyter & Co.
- 224Kimoto, W.I. and Gaddis, A.M. (1969). J. Am. Oil Chem. Soc. 46: 403–408.
- 225Lercker, G., Rodriguez-Estrada, M.T., and Bonoli, M. (2003). J. Chromatogr. A 985: 333–342.
- 226Giuffrida, F., Destaillats, F., Robert, F. et al. (2004). Free Radic. Biol. Med. 37: 104–114.
- 227Bogusz, B. (2015). Assessing presence of alternate lipid oxidation pathways from volatile products detected by gas chromatography. PhD dissertation, Food Science. Rutgers University, New Brunswick, NJ.
- 228Spencer, G.F., Earle, F.R., Wolff, I.A., and Tallent, W.H. (1973). Chem. Phys. Lipids 10: 191–202.
- 229Hidalgo, F.J. and Zamora, R. (2000). Chem. Res. Toxicol. 13: 501–508.
- 230Walens, H.A., Koob, R.P., Ault, W.C., and Maerker, G. (1963). J. Am. Oil Chem. Soc. 42: 126–129.
- 231Zamora, R., Gallardo, E., and Hidalgo, F.J. (2006). J. Agric. Food Chem. 54: 2398–2404.
- 232Zamora, R., Gallardo, E., Navarro, J.L., and Hidalgo, F.J. (2005). J. Agric. Food Chem. 53: 4583–4588.
- 233Zamora, R. and Hidalgo, F.J. (2005). Chem. Res. Toxicol. 18: 342–348.
- 234Piazza, G.J., Nuñez, A., and Foglia, T.A. (2003). Lipids 38: 255–261.
- 235Borugadda, V.B. and Goud, V.V. (2018). Energy Fuel 32: 3428–3435.
- 236Zeb, A. (2012). Chem. Phys. Lipids 165: 608–614.
- 237Xia, W., Budge, S.M., and Lumsden, M.D. (2015). J. Agric. Food Chem. 63: 5780–5786.
- 238Xia, W. and Budge, S.M. (2018). J. Chromatogr. A 1537: 83–90.
- 239Tarvainen, M., Suomela, J.-P., Kuksis, A., and Kallio, H. (2010). Lipids 45: 1061–1079.
- 240Nilsson, T., Ivanov, I.V., and Oliw, E.H. (2010). Arch. Biochem. Biophys. 494: 64–71.
- 241Sevanian, A., Elsayed, N., and Hacker, A.D. (1982). J. Toxicol. Environ. Health 10: 743–756.
- 242Mubiru, E., Shrestha, K., Papastergiadis, A., and De Meulenaer, B. (2014). J. Agric. Food Chem. 62: 2982–2988.
- 243Mubiru, E., Shrestha, K., Papastergiadis, A., and De Meulenaer, B. (2013). J. Chromatogr. A 1318: 217–225.
- 244Mubiru, E., Jacxsens, L., Papastergiadis, A. et al. (2017). Food Addit. Contam. Part A 34: 1000–1011.
- 245Mubiru, E. (2018). Epoxy fatty acids in foods: analytics, formation and risk assessment. PhD dissertation, Faculty of Bioscience Engineering.,Univ Ghent, Ghent, Belgium.
- 246Schaich, K.M. (1992). Lipids 27: 209–218.
- 247Gardner, H.W., Weisleder, D., and Kleiman, R. (1978). Lipids 13: 246–252.
- 248Gardner, H.W. and Jursinic, P.A. (1981). BBA Lipid Lipid Met. 665: 100–112.
- 249Sawyer, D.T. (1997). FEBS Lett. 165: 297–313.
- 250Sawyer, D.T., Sobkowiak, A., and Matsushita, T. (1996). Acc. Chem. Res. 29: 409–416.
- 251Sugimoto, H. and Sawyer, D.T. (1984). J. Am. Chem. Soc. 106: 4283–4285.
- 252Sugimoto, H., Spencer, L., and Sawyer, D.T. (1987). Proc. Natl. Acad. Sci. U. S. A. 84: 1731–1733.
- 253Manini, P., Briganti, S., Fabbri, C. et al. (2006). Chem. Phys. Lipids 142: 14–22.
- 254Hampson, J.W., Herb, S.F., and Magidman, P. (1968). J. Am. Oil Chem. Soc. 45: 443–447.
- 255Gardner, H.W. and Kleiman, R. (1979). Lipids 14: 848–851.
- 256Bray, W.C. and Gorin, M.H. (1932). J. Am. Chem. Soc. 54: 2124–2125.
- 257Ensing, B. and Baerends, E.J. (2002). J. Phys. Chem. A 106: 7902–7910.
- 258Ensing, B., Buda, F., and Baerends, E.J. (2003). J. Phys. Chem. 107: 5722–5731.
- 259Leising, R.A., Brennan, B.A., Que, L. Jr. et al. (1991). J. Am. Chem. Soc. 113: 3988–3990.
- 260Rush, J.D. and Bielski, B.H.J. (1986). J. Am. Chem. Soc. 108: 523–525.
- 261Hölzl, S.M., Altmann, P.J., Kück, J.W., and Kühn, F.E. (2017). Coord. Chem. Rev. 352: 517–536.
- 262Vrubel, H., Ciuffi, K.J., Ricci, G.P. et al. (2009). Appl. Catal. A General 368: 139–145.
- 263Tung, H.-C., Kang, C., and Sawyer, D.T. (1992). J. Am. Chem. Soc. 114: 3445–3455.
- 264Wada, A., Ogo, S., Nagatomo, S. et al. (2002). Inorg. Chem. 41: 616–618.
- 265Bakac, A. (2000). J. Am. Chem. Soc. 122: 1092–1097.
- 266Kochi, J.K. (1962). J. Am. Chem. Soc. 84: 2785–2793.
- 267Salamone, M., Mangiacapra, L., DiLabio, G.A., and Bietti, M. (2013). J. Am. Chem. Soc. 135: 415–423.
- 268Hamberg, M. (1975). Lipids 10: 87–92.
- 269Hamberg, M. (1997). Arch. Biochem. Biophys. 344: 194–199.
- 270Dix, T.A. and Marnett, L.J. (1981). J. Am. Chem. Soc. 103: 6744–6746.
- 271Dix, T.A. and Marnett, L.J. (1983). J. Am. Chem. Soc. 105: 7001–7002.
- 272Dix, T.A. and Marnett, L.J. (1985). J. Biol. Chem. 260: 5351–5357.
- 273Labeque, R. and Marnett, L.J. (1988). Biochemist 27: 7060–7070.
- 274Nam, W., Lim, M.H., Lee, H.J., and Kim, C. (2000). J. Am. Chem. Soc. 122: 6641–6647.
- 275Nam, W., Choi, H.J., Han, H.J. et al. (1999). Chem. Commun. 387–388.
- 276Nam, W., Han, H.J., Oh, S.-Y. et al. (2000). J. Am. Chem. Soc. 122: 8677–8684.
- 277Nam, W., Park, S.-E., Lim, I.K. et al. (2003). J. Am. Chem. Soc. 125: 14674–14675.
- 278Yang, S.J. and Nam, W. (1998). Inorg. Chem. 37: 606–607.
- 279Labeque, R. and Marnett, L.J. (1989). J. Am. Chem. Soc. 111: 6621–6627.
- 280Lundberg, W.O. and Chipault, J.R. (1947). J. Am. Chem. Soc. 69: 833–836.
- 281Nawar, W.W. (1966). In: Food Chemistry (ed. O.R. Fennema), 225–320. New York: Academic.
- 282Frankel, E.N., Neff, W.E., and Selke, E. (1981). Lipids 16: 279–285.
- 283Frankel, E.N., Neff, W.E., and Selke, E. (1984). Lipids 19: 790–800.
- 284Porter, W.L., Levasseur, L.A., Jeffers, J.I., and Henick, A.S. (1971). Lipids 6: 16–25.
- 285Hidalgo, F.J. and Zamora, R. (2014). Food Chem. 160: 118–126.
- 286Zamora, R., Aguilar, I., and Hidalgo, F.J. (2017). Food Chem. 237: 444–452.
- 287Cillard, J., Cillard, P., Cormier, M., and Girre, L. (1980). J. Am. Oil Chem. Soc. 57: 252.
- 288Xia, W. (2017). Determination of epoxides and alcohols in edible oils. PhD dissertation, Department of Process Engineering Applied Science. Dalhousie University, Halifax, Nova Scotia.
- 289Hidalgo, F.J., Delgado, R.M., and Zamora, R. (2017). Food Chem. 229: 388–395.
- 290Gruneis, V., Popovic, N., Zehl, M. et al. (2018). Non-targeted screening for oxidized lipids in foods. 2018 AOCS National Meeting, Minneapolis, MN, USA.
- 291Niki, E. (2014). BBA Gen. Subj. 1840: 809–817.
- 292Rand, A.A., Helmer, P.O., Inceoglu, B. et al. (2018). In: Clinical Metabolomics: Methods and Protocols (ed. M. Giera), 123–133. New York: Humana Press.
- 293Levison, B.S., Zhang, R., Wang, Z. et al. (2013). Free Radic. Biol. Med. 59: 2–13.
- 294Richardson, C., Hennebelle, M., Yang, J. et al. (2016). FASEB J. 30: 1163.1124.
- 295Schaich, K.M. (2013). In: Lipid Oxidation: Challenges in Food Systems (ed. A. Logan, U. Nienaber and X. Pan), 53–128. AOCS Press.
10.1016/B978-0-9830791-6-3.50005-9 Google Scholar
- 296Yang, H., Irudayaraj, J., and Paradkar, M.M. (2005). Food Chem. 93: 25–32.
- 297Luna, G., Morales, M.T., and Aparicio, R. (2006). Food Chem. 98: 243–252.
- 298Mildner-Szkudlarz, S. and Jelen, H.H. (2008). Food Chem. 110: 751–761.
- 299Bosque-Sendra, J.M., Cuadros-Rodriguez, L., Ruiz-Samblas, C., and de la Mata, A.P. (2012). Anal. Chim. Acta 724: 1–11.
- 300Rohman, A. and Man, Y.B.C. (2012). Chemom. Intell. Lab. 110: 129–134.
- 301Mobaraki, N. and Hemmateenejad, B. (2011). Chemom. Intell. Lab. 109: 171–177.
- 302Izzo, C. (2019). Investigation of lipid oxidation in model solid food systems via near infrared spectroscopy. PhD dissertation, Food Science. Rutgers University, New Brunswick, NJ.
- 303Chien, M. and Peppard, T. (1993). In: Flavor Measurement (ed. C.-T. Ho and C.H. Manley), 1–35. New York: Marcel Dekker.
- 304Petersen, K.D., Kleeberg, K.K., Jahreis, G. et al. (2012). Eur. J. Lipid Sci. Technol. 114: 1193–1203.