Modification of Fats and Oils via Chemical and Enzymatic Methods
S.P.J. Namal Senanayake
Camlin Fine Sciences, Urbandale, IO, USA
Search for more papers by this authorFereidoon Shahidi
Memorial University of Newfoundland, St. John's, Newfoundland, Canada
Search for more papers by this authorS.P.J. Namal Senanayake
Camlin Fine Sciences, Urbandale, IO, USA
Search for more papers by this authorFereidoon Shahidi
Memorial University of Newfoundland, St. John's, Newfoundland, Canada
Search for more papers by this authorAbstract
Hydrogenation, interesterification, fractionation, and blending are distinct processes that can be applied to modify the physical or chemical properties of fats and oils in order to improve their usefulness. These processes can be used alone or in combination with each other. By combining hydrogenation, fractionation, and interesterification with the simple blending of native and modified oils, it is possible to engineer a wide variety of fats and oils with characteristics suited to specific applications. Hydrogenation is used to convert liquid oils into products having different consistencies, melting points, and textures. On the other hand, interesterification produces changes in physical properties by rearrangement or redistribution of fatty acids within and among the triacylglycerols (TAGs) of oils. Fractionation provides a means of producing fats and oils with sharply defined melting characteristics.
References
- 1Cowan, W.D. (2018). The American Oil Chemists Society. AOCS.
- 2Mounts, T.L. (1987). Life Sci. 131: 201.
- 3Lindfors, C., Kuoppala, E., Oasmaa, A. et al. (2014). Energy Fuels 28: 5785–5791.
- 4Perretti, G., Motori, A., Bravi, E. et al. (2007). J. Supercrit. Fluids 40: 349–353.
- 5Dillon, H.F., Elefant, D., Day, A.G. et al. (2013). Fractionation of oil-bearing microbial biomass, United State Patent 8, 580, 540 B2. https://patents.google.com/patent/US8580540.
- 6Jain, S. and Sharma, M.P. (2010). Renew. Sust. Energy Rev. 14: 667–678.
- 7Sreenivasan, V. (1978). J. Am. Oil Chem. Soc. 55: 796.
- 8Willis, W.M. and Marangoni, A.G. (1998). In: Food Lipids: Chemistry, Nutrition and Biotechnology (ed. C.C. Akoh and D.B. Min), 665. New York: Marcel Dekker, Inc.
- 9Marangoni, A.G. and Rousseau, D. (1995). Trends Food Sci. Technol. 6: 329.
- 10Senanayake, S.P.J.N. and Shahidi, F. (1999). J. Am. Oil Chem. Soc. 76: 1009.
- 11Millqvist, A., Adlercreutz, P., and Mattiasson, B. (1994). Enzyme Micorb. Technol. 16: 1042.
- 12Noureddini, H. and Harmeier, S.E. (1998). J. Am. Oil Chem. Soc. 75: 1359.
- 13Rousseau, D. and Marangoni, A.G. (1998). In: Food Lipids: Chemistry, Nutrition and Biotechnology (ed. C.C. Akoh and D.B. Min), 301. New York: Marcel Dekker, Inc.
- 14Coenen, J.W.E. (1974). Rev. Fr. Corps Gras 21: 403.
- 15Hawley, H.K. and Holman, G.W. (1956). J. Am. Oil Chem. Soc. 33: 29.
- 16Macrae, A.R. (1983). J. Am. Oil Chem. Soc. 60: 291.
- 17Bornscheuer, U.T. (2018). Annu. Rev. Food Sci. Technol. 9: 85–103.
- 18Heinrichs, V. and Thum, O. (2005). Lipid Technol. 17: 82–87.
- 19List, G. (2004). Food Technol. 58 (1): 23.
- 20List, G., Emken, E., Kwolok, W., and Simpson, T. (1977). J. Am. Oil Chem. Soc. 54: 408.
- 21Holm, H.C. and Cowan, D. (2018). Eur. J. Lipid Sci. Technol. 110: 679–691.
- 22Willson, M.C. (2002). INFORM 13: 904.
- 23Moore, A.A. and Akoh, C.C. (2017). J. Am. Oil. Chem. Soc. 94: 567–576.
- 24Gog, A., Roman, M., Tosa, M. et al. (2012). Renew. Energy 39: 10–16.
- 25Subhedar, P.B. and Gogate, P.R. (2016). Ultrason. Sonochem. 29: 67–75.
- 26Arcos, J.A. and Otero, C. (1996). J. Am. Oil Chem. Soc. 73: 673.
- 27Rosu, R., Yasui, M., Iwasaki, Y., and Yamane, T. (1999). J. Am. Oil Chem. Soc. 76: 839.
- 28Ergan, F., Trani, M., and Andre, G. (1988). Biotechnol. Lett. 10: 629.
- 29Stergiou, P.Y., Foukis, A., Filippou, M. et al. (2013). Biotechnol. Adv. 31: 1846–1859.
- 30Verger, R. and Haas, G.H. (1976). Annu. Rev. Biophys. Bioeng. 5: 77.
- 31Verger, R. (1984). In: Lipases (ed. B. Borgstrom and H.L. Brockman), 121. New York: Elsevier Applied Science.
- 32Vulfson, E.N. (1993). Trends Food Sci. Technol. 4: 209.
- 33Halling, P.J. (1984). Enzyme Microb. Technol. 6: 513.
- 34Stevenson, R.W., Luddy, F.E., and Rothbart, H.L. (1979). J. Am. Oil Chem. Soc. 56: 676.
- 35Reyes, H.R. and Hill, C.G. (1994). Biotechnol. Bioeng. 43: 171.
- 36Reena, R., Divakar, S., and Lokesh, B.R. (2002). J. Am. Oil Chem. Soc. 79: 555.
- 37Villeneuve, P. and Foglia, T.A. (1997). INFORM 8: 640.
- 38Mukherjee, K.D. (1990). Biocatalysis 3: 277.
- 39Gandhi, N.N. (1997). J. Am. Oil Chem. Soc. 74: 621.
- 40Jensen, R.G., Dejong, F.A., and Clark, R.M. (1983). Lipids 18: 239.
- 41Sonnet, P.E. (1988). J. Am. Oil Chem. Soc. 65: 900.
- 42Foglia, T.A. and Sonnet, P.E. (1995). J. Am. Oil Chem. Soc. 72: 417.
- 43Valivety, R., Halling, P.J., Peilow, A.D., and Macrae, A.R. (1992). Biochim. Biophys. Acta 1122: 143.
- 44Bovara, R., Carrea, G., Ottolina, G., and Riva, S. (1993). Biotechnol. Lett. 15: 937.
- 45Halling, P.J. (1989). TIBtech 7: 50.
- 46 Novo Nordisk (1999). Product Sheet, B 606c-GB, Franklinton, North Carolina.
- 47Senanayake, S.P.J.N. and Shahidi, F. (2002). Food Chem. 77: 115.
- 48Senanayake, S.P.J.N. and Shahidi, F. (1999). J. Agric. Food Chem. 47: 3105.
- 49Klibanov, A.M. (1986). Chemtech 16: 354.
- 50Laane, C., Boeren, S., and Vos, K. (1985). Trends Biotechnol. 3: 251.
- 51Dordick, J.S. (1989). Enzyme Microb. Technol. 11: 194.
- 52De Castro, H.F., Anderson, W.A., Moo-Young, M., and Legge, R.L. (1992). In: Biocatalysis in Non-Conventional Media (ed. J. Tramper, M.H. Vermüe, H.H. Beeftink and U. Stockar), 475. Amsterdam: Elsevier Science Publishers.
10.1016/B978-0-444-89046-7.50070-9 Google Scholar
- 53Vermue, M.H. and Tramper, J. (1995). Pure Appl. Chem. 67: 346.
- 54Yahya, A.R.M., Anderson, W.A., and Moo-Young, M. (1998). Enzyme Microb. Technol. 23: 438.
- 55Bhushan, I., Parshad, R., Qazi, G.N., and Gupta, V.K. (2008). J. Bioact. Compatible Polym. 23: 552–562.
- 56Balcao, V.M., Paiva, A.L., and Malcata, F.X. (1996). Enzyme Microb. Technol. 18: 392.
- 57Wisdom, R.A., Dunnill, P., Lilly, M.D., and Macrae, A. (1984). Enzyme Microb. Technol. 6: 443.
- 58Nielsen, T. (1985). Fette Seifen Anstrichmittel 87: 15.
- 59Quinlan, P. and Moore, S. (1993). INFORM 4: 580.
- 60Christensen, T.C. and Holmer, G. (1993). Milchwissenschaft 48: 543.
- 61Mukherjee, K.D. (1998). In: Food Lipids: Chemistry, Nutrition and Biotechnology (ed. C.C. Akoh and D.B. Min), 589. New York: Marcel Dekker, Inc.
- 62Lucas, A., Quinlan, P., Abrams, S. et al. (1997). Arch. Dis. Child. 77: F178.
- 63Zainal, Z. and Yusoff, M.S.A. (1999). J. Am. Oil Chem. Soc. 76: 1003.
- 64Senanayake, S.P.J.N. and Shahidi, F. (2002). Food Res. Int. 35: 745.
- 65Senanayake, S.P.J.N. and Shahidi, F. (2000). In: Seafood in Health and Nutrition. Transformation in Fisheries and Aquaculture: Global Perspectives (ed. F. Shahidi), 29. St. John's, Newfoundland: ScienceTech Publishing Co.
- 66Mohamed, H.M.A. and Larsson, K. (1994). Fat Sci. Technol. 96: 56.
- 67Posorske, L.H., LeFebvre, G.K., Miller, C.A. et al. (1988). J. Am. Oil Chem. Soc. 65: 922.
- 68Kavadia, M.R., Yadav, M.G., Vadgama, R.N. et al. (2019). Prep. Biochem. Biotechnol. 12: 1–9.
- 69Amara, S., Lafont, D., Parsiegla, G. et al. (2013). Eur. J. Lipid Sci. Technol. 115: 442–452.
- 70Jan, A.H., Sublieau, M., Deyrieux, C. et al. (2016). Biochim. Biophys. Acta 1864: 187–194.
- 71Jan, A.H., Dubreucq, É., and Sublieau, M. (2017). Chembiochem 18: 941–950.
- 72Kennedy, J.P. (1991). Food Technol. 11: 76.
- 73Scott, F.W. and Lee, N.S. (1996). Report of the Bureau of Nutritional Science Committee on Functional Foods, Food Directorate, Health Protection Branch, Ottawa, Canada.
- 74Babayan, V.K. (1987). Lipids 22: 417.
- 75Senanayake, S.P.J.N. and Shahidi, F. (2002). J. Agric. Food Chem. 50: 477.
- 76France, S.P., Hepworth, L.J., Turner, N.J., and Flitsch, S.L. (2017). ACS Catal. 7: 710–724.
- 77Jeon, E., Seo, J., Kang, W. et al. (2016). ACS Catal. 6: 7547–7553.
- 78Xue, Z., Sharpe, P.L., Hong, S.P. et al. (2013). Nat. Biotechnol. 31: 734–740.