Progress in Supercritical Fluid Technology for Fats and Oils Processing
Abstract
Supercritical CO2 (SC-CO2) processing of fats and oils has been widely investigated since SC-CO2 offers an environmentally friendly alternative with added advantages such as moderate operating conditions and solvent-free extracts and residues. From a processing perspective, a unique advantage of SC-CO2 processing lies in its versatility, which results from the ability to modify solvent properties by changing operating conditions (temperature and pressure) or by the addition of cosolvents. A good understanding of the fundamentals of solubility behavior of lipid components in SC-CO2 as affected by operating conditions and solute properties is required to realize its full potential in fats and oils processing. The operational flexibility offered by supercritical fluid technology enables the processor to fine-tune solvent properties and to develop novel processes by the integration of unit operations of extraction, fractionation, reaction, and particle formation to meet the process objectives. These unit operations have been effectively utilized for the extraction and refining of oils, concentration of bioactive components from oils or oil by-products, modification of the physical properties of fats and oils, production of oleochemicals and design of delivery systems for numerous applications.
References
- 1Temelli, F. and Güçlü-Üstündağ, Ö. (2005). In: Bailey's Industrial Oil and Fat Products, 6e, vol. 5, Chapter 10 (ed. F. Shahidi), 397–432. Hoboken, NJ: Wiley.
- 2Williams, D.F. (1981). Chem. Eng. Sci. 36: 1769–1788. doi: 10.1016/0009-2509(81)80125-x.
- 3Randall, L.G. (1982). Sep. Sci. Technol. 17: 1–118. doi: 10.1080/01496398208058142.
- 4de la Tour, C. (1822). Ann. Chim. Phys. 21: 127–132.
- 5Hannay, J.B. and Hogarth, J. (1879). Proc. R. Soc. Lond. 29: 324.
10.1098/rspl.1879.0054 Google Scholar
- 6Zosel, K. (1978). Angew. Chem. Int. Ed. Engl. 17: 702–709. doi: 10.1002/anie.197807021.
- 7King, J.W. (2014). Ann. Rev. Food Sci. Technol. 5: 215–238. doi: 10.1146/annurev-food-030713-092447.
- 8Perrut, M. (2000). Ind. Eng. Chem. Res. 39: 4531–4535. doi: 10.1021/ie000211c.
- 9Temelli, F. and Ciftci, O.N. (2015). J. Supercrit. Fluids 96: 77–85. doi: 10.1016/j.supflu.2014.09.028.
- 10Smith, R., Inomata, H., and Peters, C. (2013). Introduction to Supercritical Fluids – A Spreadsheet-based Approach, vol. 4, Chapter 4, 175–273. Elsevier.
10.1016/B978-0-444-52215-3.00004-0 Google Scholar
- 11Güçlü-Üstündağ, Ö. and Temelli, F. (2000). Ind. Eng. Chem. Res. 39: 4756–4766. doi: 10.1021/ie0001523.
- 12Güçlü-Üstündağ, Ö. and Temelli, F. (2004). J. Supercrit. Fluids 31: 235–253. doi: 10.1016/j.supflu.2003.12.007.
- 13Güçlü-Üstündağ, Ö. and Temelli, F. (2005). J. Supercrit. Fluids 36: 1–15. doi: 10.1016/j.supflu.2005.03.002.
- 14Güçlü-Üstündağ, Ö. and Temelli, F. (2006). J. Supercrit. Fluids 38: 275–288. doi: 10.1016/j.supflu.2005.12.009.
- 15Schwarz, C.E. and Knoetze, J.H. (2012). J. Supercrit. Fluids 66: 36–48. doi: 10.1016/j.supflu.2011.12.011.
- 16Garlapati, C. and Madras, G. (2008). J. Chem. Eng. Data 53: 2637–2641. doi: 10.1021/je800544a.
- 17Garlapati, C. and Madras, G. (2008). J. Chem. Eng. Data 53: 2913–2917. doi: 10.1021/je8007149.
- 18Garlapati, C. and Madras, G. (2010). J. Chem. Thermodyn. 42: 193–197. doi: 10.1016/j.jct.2009.08.001.
- 19Elizalde-Solis, O. and Galicia-Luna, L.A. (2011). Ind. Eng. Chem. Res. 50: 207–212. doi: 10.1021/ie1009537.
- 20Penedo, P.L., Coelho, G.L.V., and Mendes, M.F. (2009). Brazil. J. Chem. Eng. 26: 137–147. doi: 10.1590/S0104-66322009000100013.
- 21Ilieva, P., Kilzer, A., and Weidner, E. (2016). J. Supercrit. Fluids 117: 40–49. doi: 10.1016/j.supflu.2016.07.014.
- 22Turk, M., Upper, G., and Hils, P. (2006). J. Supercrit. Fluids 39: 253–263. doi: 10.1016/j.supflu.2006.04.004.
- 23Saldana, M.D.A., Sun, L., Guigard, S.E., and Temelli, F. (2006). J. Supercrit. Fluids 37: 342–349. doi: 10.1016/j.supflu.2006.01.010.
- 24Ciftci, O.N. and Temelli, F. (2014). J. Supercrit. Fluids 92: 208–214. doi: 10.1016/j.supflu.2014.05.009.
- 25Uchida, H. and Kamijo, T. (2010). J. Chem. Eng. Data 55: 925–929. doi: 10.1021/je9005272.
- 26Bertakis, E., Lemonis, I., Katsoufis, S. et al. (2007). J. Supercrit. Fluids 41: 238–245. doi: 10.1016/j.supflu.2006.10.003.
- 27Saldana, M.D.A., Temelli, F., Guigard, S.E. et al. (2010). J. Food Eng. 99: 1–8. doi: 10.1016/j.jfoodeng.2010.01.017.
- 28Chrastil, J. (1982). J. Phys. Chem. 86: 3016–3021. doi: 10.1021/j100212a041.
- 29Koga, Y., Iwai, Y., Hata, Y. et al. (1996). Fluid Phase Equil. 125: 115–128. doi: 10.1016/s0378-3812(96)03090-7.
- 30Zhong, M.H., Han, B.X., Yan, H., and Peng, D.Y. (1997). Fluid Phase Equil. 134: 175–183. doi: 10.1016/s0378-3812(97)00014-9.
- 31Guan, B., Lu, J., Han, B.X., and Yan, H.K. (1998). Sci. China Ser. B-Chem. 41: 410–417. doi: 10.1007/bf02877820.
- 32Guan, B., Liu, Z.M., Han, B.X., and Yan, H.K. (1999). J. Supercrit. Fluids 14: 213–218. doi: 10.1016/s0896-8446(98)00121-1.
- 33Sovova, H., Stateva, R.P., and Galushko, A.A. (2001). J. Supercrit. Fluids 21: 195–203. doi: 10.1016/s0896-8446(01)00101-2.
- 34Wong, J.M. and Johnston, K.P. (1986). Biotechnol. Progr. 2: 29–39. doi: 10.1002/btpr.5420020107.
- 35Catchpole, O.J., Grey, J.B., and Noermark, K.A. (1998). J. Chem. Eng. Data 43: 1091–1095. doi: 10.1021/je980184l.
- 36Brunner, G. and Peter, S. (1982). Sep. Sci. Technol. 17: 199–214. doi: 10.1080/01496398208058147.
- 37Palazoglu, T.K. and Balaban, M.O. (1998). Trans. ASAE 41: 679–684.
- 38Brunner, G. and Peter, S. (1982). German Chem. Eng. 5: 181–195.
- 39McHugh, M.A. and Krukonis, V.J. (1994). Supercritical Fluid Extraction: Principles and Practice, 2e. Boston, MA: Butterworth-Heinemann.
- 40King, J.W. and List, G.R. (1996). Supercritical Fluid Technology in Oil and Lipid Chemistry. Champaign, IL: AOCS Press.
- 41Fattori, M., Bulley, N.R., and Meisen, A. (1988). J. Am. Oil Chem. Soc. 65: 968–974. doi: 10.1007/bf02544522.
- 42Snyder, J.M., Friedrich, J.P., and Christianson, D.D. (1984). J. Am. Oil Chem. Soc. 61: 1851–1856. doi: 10.1007/bf02540816.
- 43Eggers, R. and Sievers, U. (1989). J. Chem. Eng. Jpn. 22: 641–649. doi: 10.1252/jcej.22.641.
- 44Del Valle, J.M. and De La Fuente, J.C. (2006). Crit. Rev. Food Sci. Nutr. 46: 131–160. doi: 10.1080/10408390500526514.
- 45Reverchon, E. and De Marco, I. (2006). J. Supercrit. Fluids 38: 146–166. doi: 10.1016/j.supflu.2006.03.020.
- 46de Melo, M.M.R., Silvestre, A.J.D., and Silva, C.M. (2014). J. Supercrit. Fluids 92: 115–176. doi: 10.1016/j.supflu.2014.04.007.
- 47Friedrich, J.P. and List, G.R. (1982). J. Agri. Food Chem. 30: 192–193. doi: 10.1021/jf00109a044.
- 48Friedrich, J.P. and Pryde, E.H. (1984). J. Am. Oil Chem. Soc. 61: 223–228. doi: 10.1007/bf02678773.
- 49List, G.R., Friedrich, J.P., and Pominski, J. (1984). J. Am. Oil Chem. Soc. 61: 1847–1849. doi: 10.1007/bf02540814.
- 50List, G.R., Friedrich, J.P., and Christianson, D.D. (1984). J. Am. Oil Chem. Soc. 61: 1849–1851. doi: 10.1007/bf02540815.
- 51List, G.R. and Friedrich, J.P. (1989). J. Am. Oil Chem. Soc. 66: 98–101. doi: 10.1007/bf02661793.
- 52List, G.R. and Friedrich, J.P. (1985). J. Am. Oil Chem. Soc. 62: 82–84. doi: 10.1007/bf02541495.
- 53Stahl, E., Quirin, K.W., and Blagrove, R.J. (1984). J. Agri. Food Chem. 32: 938–940. doi: 10.1021/jf00124a058.
- 54Sun, M., Xu, L., Saldana, M.D.A., and Temelli, F. (2008). J. Am. Oil Chem. Soc. 85: 667–675. doi: 10.1007/s11746-008-1239-5.
- 55Temelli, F. (2009). J. Supercrit. Fluids 47: 583–590. doi: 10.1016/j.supflu.2008.10.014.
- 56Sookwong, P. and Mahatheeranont, S. (2017). J. Oleo Sci. 66: 557–564. doi: 10.5650/jos.ess17019.
- 57Taylor, S.L. and King, J.W. (2000). J. Am. Oil Chem. Soc. 77: 687–688. doi: 10.1007/s11746-000-0110-9.
- 58Ozcan, M.M., Rosa, A., Dessi, M.A. et al. (2013). Czech J. Food Sci. 31: 236–240.
- 59Parczewska-Plesnar, B., Brzozowski, R., Gwardiak, H. et al. (2016). Grasas Y Aceites 67: e144. doi: 10.3989/gya.1017153.
- 60Jiang, S.T. and Niu, L.Y. (2011). Grasas Y Aceites 62: 181–189. doi: 10.3989/gya.078710.
- 61Temelli, F., Stobbe, K., Rezaei, K., and Vasanthan, T. (2013). J. Food Sci. 78: C1643–C1650. doi: 10.1111/1750-3841.12271.
- 62Hadolin, M., Skerget, M., Knez, Z., and Bauman, D. (2001). Food Chem. 74: 355–364. doi: 10.1016/s0308-8146(01)00152-2.
- 63Corzzini, S.C.S., Barros, H., Grimaldi, R., and Cabral, F.A. (2017). J. Food Eng. 194: 40–45. doi: 10.1016/j.jfoodeng.2016.09.004.
- 64Millao, S. and Uquiche, E. (2016). J. Supercrit. Fluids 116: 223–231. doi: 10.1016/j.supflu.2016.05.049.
- 65Wang, L.Z., Yang, B., Yan, B.L., and Yao, X.C. (2012). Innov. Food Sci. Emerg. Technol. 13: 120–127. doi: 10.1016/j.ifset.2011.09.004.
- 66Dal Pra, V., Soares, J.F., Monego, D.L. et al. (2016). J. Supercrit. Fluids 112: 51–56. doi: 10.1016/j.supflu.2016.02.011.
- 67Machmudah, S., Zakaria, S.W., Sasaki, M. et al. (2012). J. Food Eng. 108: 290–296. doi: 10.1016/j.jfoodeng.2011.08.012.
- 68Shi, X.Q., Wu, H., Shi, J. et al. (2013). LWT-Food Sci. Technol. 51: 433–440. doi: 10.1016/j.lwt.2012.11.003.
- 69Kotnik, P., Skerget, M., and Knez, Z. (2006). Eur. J. Lipid Sci. Technol. 108: 569–576. doi: 10.1002/ejlt.200600070.
- 70Soto, C., Conde, E., Moure, A. et al. (2008). Eur. J. Lipid Sci. Technol. 110: 1035–1044. doi: 10.1002/ejlt.200800045.
- 71Ghoreishi, S.M. and Bataghva, E. (2011). AIChE J. 57: 3378–3384. doi: 10.1002/aic.12532.
- 72Bozan, B. and Temelli, F. (2002). J. Am. Oil Chem. Soc. 79: 231–235. doi: 10.1007/s11746-002-0466-x.
- 73Bozan, B. and Temelli, F. (2003). J. Food Sci. 68: 422–426. doi: 10.1111/j.1365-2621.2003.tb05688.x.
- 74Friedrich, J.P., List, G.R., and Heakin, A.J. (1982). J. Am. Oil Chem. Soc. 59: 288–292. doi: 10.1007/bf02662228.
- 75Esquivel, M.M. and Bernardogil, G. (1993). J. Supercrit. Fluids 6: 91–94. doi: 10.1016/0896-8446(93)90023-q.
- 76Bejarano, A., Simoes, P.C., and del Valle, J.M. (2016). J. Supercrit. Fluids 107: 321–348. doi: 10.1016/j.supflu.2015.09.021.
- 77Brunner, G. (2009). J. Supercrit. Fluids 47: 574–582. doi: 10.1016/j.supflu.2008.09.022.
- 78Eisenbach, W. (1984). Ber. Bunsen.-Gesell.-Phys. Chem. Chem. Phys. 88: 882–887.
- 79Güçlü-Üstündağ, Ö. and Temelli, F. (2007). J. Am. Oil Chem. Soc. 84: 953–961. doi: 10.1007/s11746-007-1117-6.
- 80Brunner, G. (2000). Eur. J. Lipid Sci. Technol. 102: 240–245. doi: 10.1002/(sici)1438-9312(200003)102:3<240::aid-ejlt240>3.0.co;2-z.
- 81Nilsson, W.B., Gauglitz, E.J., Hudson, J.K. et al. (1988). J. Am. Oil Chem. Soc. 65: 109–117. doi: 10.1007/bf02542560.
- 82Nilsson, W.B., Gauglitz, E.J., and Hudson, J.K. (1989). J. Am. Oil Chem. Soc. 66: 1596–1600. doi: 10.1007/bf02636184.
- 83Krukonis, V.J., Vivian, J.E., Bambara, C.J. et al. (1992). In: Advances in Seafood Biochemistry: Composition and Quality (ed. G.J. Flick and R.E. Martin), 169–179. Lancaster, PA: Technomic Publishing Co., Inc.
- 84Riha, V. and Brunner, G. (2000). J. Supercrit. Fluids 17: 55–64. doi: 10.1016/s0896-8446(99)00038-8.
- 85Fleck, U., Tiegs, C., and Brunner, G. (1998). J. Supercrit. Fluids 14: 67–74. doi: 10.1016/s0896-8446(98)00100-4.
- 86Gironi, F. and Maschietti, M. (2006). Chem. Eng. Sci. 61: 5114–5126. doi: 10.1016/j.ces.2006.03.041.
- 87Maschietti, M. and Pedacchia, A. (2014). J. Supercrit. Fluids 86: 76–84. doi: 10.1016/j.supflu.2013.12.003.
- 88Espinosa, S., Diaz, S., and Brignole, E.A. (2002). Ind. Eng. Chem. Res. 41: 1516–1527. doi: 10.1021/ie010470h.
- 89Fiori, L., Manfrini, M., and Castello, D. (2014). Food Bioprod. Proc. 92: 120–132. doi: 10.1016/j.fbp.2014.01.001.
- 90Catchpole, O.J., Grey, J.B., and Noermark, K.A. (2000). J. Supercrit. Fluids 19: 25–37. doi: 10.1016/s0896-8446(00)00075-9.
- 91Catchpole, O.J., vonKamp, J.C., and Grey, J.B. (1997). Ind. Eng. Chem. Res. 36: 4318–4324. doi: 10.1021/ie9702237.
- 92Catchpole, O.J., Simoes, P., Grey, J.B. et al. (2000). Ind. Eng. Chem. Res. 39: 4820–4827. doi: 10.1021/ie0002529.
- 93Vazquez, L., Fornari, T., Senorans, F.J. et al. (2008). J. Agri. Food Chem. 56: 1078–1083. doi: 10.1021/jf0720842.
- 94Subra-Paternault, P., ThongDeng, H., Grelard, A., and Cansell, M. (2015). LWT-Food Sci. Technol. 60: 990–998. doi: 10.1016/j.lwt.2014.09.057.
- 95Tanaka, Y., Sakaki, I., and Ohkubo, T. (2004). J. Oleo Sci. 53: 417–424.
- 96Kaufmann, W., Biernoth, G., Frede, E. et al. (1982). Milchwiss.-Milk Sci. Int. 37: 92–96.
- 97Shishikura, A., Fujimoto, K., Kaneda, T. et al. (1986). Agric. Biol. Chem. 50: 1209–1215.
- 98Arul, J., Boudreau, A., Makhlouf, J. et al. (1987). J. Food Sci. 52: 1231–1236. doi: 10.1111/j.1365-2621.1987.tb14050.x.
- 99Hammam, H., Soderberg, I., and Sivik, B. (1991). Fett Wissen. Technol.-Fat Sci. Technol. 93: 374–378. doi: 10.1002/lipi.19910931003.
- 100Bradley, R.L. (1989). J. Dairy Sci. 72: 2834–2840. doi: 10.3168/jds.S0022-0302(89)79429-7.
- 101Chen, H., Schwartz, S.J., and Spanos, G.A. (1992). J. Dairy Sci. 75: 2659–2669. doi: 10.3168/jds.S0022-0302(92)78027-8.
- 102Fatouh, A.E., Mahran, G.A., El-Ghandour, M.A., and Singh, R.K. (2007). LWT-Food Sci. Technol. 40: 1687–1693. doi: 10.1016/j.lwt.2006.12.015.
- 103Bhaskar, A.R., Rizvi, S.S.H., and Sherbon, J.W. (1993). J. Food Sci. 58: 748–752. doi: 10.1111/j.1365-2621.1993.tb09350.x.
- 104Bhaskar, A.R., Rizvi, S.S.H., and Harriott, P. (1993). Biotechnol. Progr. 9: 70–74. doi: 10.1021/bp00019a010.
- 105Buyukbese, D., Emre, E.E., and Kaya, A. (2014). J. Am. Oil Chem. Soc. 91: 169–177. doi: 10.1007/s11746-013-2359-0.
- 106Romero, P., Rizvi, S.S.H., Kelly, M.L., and Bauman, D.E. (2000). J. Dairy Sci. 83: 20–22.
- 107Goncalves, M., Vasconcelos, A.M.P., Deazevedo, E. et al. (1991). J. Am. Oil Chem. Soc. 68: 474–480. doi: 10.1007/bf02663816.
- 108Bondioli, P., Mariani, C., Lanzani, A. et al. (1992). J. Am. Oil Chem. Soc. 69: 477–480. doi: 10.1007/bf02540953.
- 109Fornari, T., Vazquez, L., Torres, C.F. et al. (2008). J. Supercrit. Fluids 45: 206–212. doi: 10.1016/j.supflu.2008.03.001.
- 110Ziegler, G.R. and Liaw, Y.J. (1993). J. Am. Oil Chem. Soc. 70: 947–953. doi: 10.1007/bf02543019.
- 111Ooi, C.K., Bhaskar, A., Yener, M.S. et al. (1996). J. Am. Oil Chem. Soc. 73: 233–237. doi: 10.1007/bf02523901.
- 112Markom, M., Singh, H., and Hasan, M. (2001). J. Supercrit. Fluids 20: 45–53. doi: 10.1016/s0896-8446(00)00104-2.
- 113Turkay, S., Burford, M.D., Sangun, M.K. et al. (1996). J. Am. Oil Chem. Soc. 73: 1265–1270. doi: 10.1007/bf02525455.
- 114Zacchi, P., Bastida, S.C., Jaeger, P. et al. (2008). J. Supercrit. Fluids 45: 238–244. doi: 10.1016/j.supflu.2008.02.005.
- 115Shen, Z.P., Palmer, M.V., Ting, S.S.T., and Fairclough, R.J. (1997). J. Agric. Food Chem. 45: 4540–4544. doi: 10.1021/jf970292w.
- 116Dunford, N.T., Teel, J.A., and King, J.W. (2003). Food Res. Int. 36: 175–181. doi: 10.1016/s0963-9969(02)00134-5.
- 117Danielski, L., Zetzl, C., Hense, H., and Brunner, G. (2005). J. Supercrit. Fluids 34: 133–141. doi: 10.1016/j.supflu.2004.11.006.
- 118List, G.R., King, J.W., Johnson, J.H. et al. (1993). J. Am. Oil Chem. Soc. 70: 473–476. doi: 10.1007/bf02542578.
- 119King, J.W. and Dunford, N.T. (2002). Sep. Sci. Technol. 37: 451–462.
- 120Mendes, M.F., Pessoa, F.L.P., and Uller, A.M.C. (2002). J. Supercrit. Fluids 23: 257–265. doi: 10.1016/s0896-8446(01)00140-1.
- 121Chang, C.M.J., Chang, Y.F., Lee, H.Z. et al. (2000). Ind. Eng. Chem. Res. 39: 4521–4525. doi: 10.1021/ie0003537.
- 122Sugihara, N., Kanda, A., Nakano, T. et al. (2010). J. Oleo Sci. 59: 65–70. doi: 10.5650/jos.59.65.
- 123Gast, K., Jungfer, M., Saure, C., and Brunner, G. (2005). J. Supercrit. Fluids 34: 17–25. doi: 10.1016/j.supflu.2004.09.003.
- 124Brunner, G. and Machado, N.T. (2012). J. Supercrit. Fluids 66: 96–110. doi: 10.1016/j.supflu.2012.02.012.
- 125Al-Darmaki, N., Lu, T., Al-Duri, B. et al. (2012). J. Supercrit. Fluids 61: 108–114. doi: 10.1016/j.supflu.2011.10.011.
- 126Mendes, M.F., Pessoa, F.L.P., Coelho, G.V., and Uller, A.M.C. (2005). J. Supercrit. Fluids 34: 157–162. doi: 10.1016/j.supflu.2004.11.009.
- 127Fang, T., Goto, M., Wang, X. et al. (2007). J. Supercrit. Fluids 40: 50–58. doi: 10.1016/j.supflu.2006.04.008.
- 128Ruivo, R.M., Couto, R.M., and Simoes, P.C. (2007). J. Chem. Eng. Data 52: 566–570. doi: 10.1021/je060459u.
- 129Rocha, A., Lourenco, N.M.T., Vidinha, P. et al. (2014). Sep. Pur. Technol. 131: 14–18. doi: 10.1016/j.seppur.2014.03.009.
- 130Bondioli, P., Mariani, C., Lanzani, A. et al. (1993). J. Am. Oil Chem. Soc. 70: 763–766. doi: 10.1007/bf02542597.
- 131Vazquez, L., Torres, C.F., Fornari, T. et al. (2007). J. Supercrit. Fluids 40: 59–66. doi: 10.1016/j.supflu.2006.04.012.
- 132Hammond, D.A., Karel, M., Klibanov, A.M., and Krukonis, V.J. (1985). Appl. Biochem. Biotechnol. 11: 393–400. doi: 10.1007/bf02798672.
- 133Randolph, T.W., Blanch, H.W., Prausnitz, J.M., and Wilke, C.R. (1985). Biotechnol. Lett. 7: 325–328. doi: 10.1007/bf01030279.
- 134Nakamura, K., Chi, Y.M., Yamada, Y., and Yano, T. (1986). Chem. Eng. Commun. 45: 207–212. doi: 10.1080/00986448608911384.
- 135Rezaei, K., Jenab, E., and Temelli, F. (2007). Crit. Rev. Biotechnol. 27: 183–195. doi: 10.1080/07388550701775901.
- 136Ciftci, O.N. and Temelli, F. (2013). Biomass Bioenergy 54: 140–146. doi: 10.1016/j.biombioe.2013.03.031.
- 137Sovova, H. and Zarevucka, M. (2003). Chem. Eng. Sci. 58: 2339–2350. doi: 10.1016/s0009-2509(03)00064-2.
- 138Knez, Z., Habulin, M., and Primozic, M. (2003). Bioproc. Biosys. Eng. 25: 279–284. doi: 10.1007/s00449-002-0314-9.
- 139Rezaei, K., Temelli, F., and Jenab, E. (2007). Biotechnol. Adv. 25: 272–280. doi: 10.1016/j.biotechadv.2006.12.002.
- 140Ciftci, O.N. and Temelli, F. (2011). J. Supercrit. Fluids 58: 79–87. doi: 10.1016/j.supflu.2011.05.011.
- 141van den Hark, S. and Harrod, M. (2001). Ind. Eng. Chem. Res. 40: 5052–5057. doi: 10.1021/ie000951l.
- 142Subramaniam, B. and McHugh, M.A. (1986). Ind. Eng. Chem. Proc. Des. Dev. 25: 1–12. doi: 10.1021/i200032a001.
- 143Eckert, C.A. (1972). Ann. Rev. Phys. Chem. 23: 239. doi: 10.1146/annurev.pc.23.100172.001323.
- 144Ramirez, E., Mayorga, M.J., Cuevas, D., and Recasens, F. (2011). J. Supercrit. Fluids 57: 143–154. doi: 10.1016/j.supflu.2011.02.009.
- 145Piqueras, C.A., Tonetto, G., Bottini, S., and Damiani, D.E. (2008). Catal. Today 133: 836–841. doi: 10.1016/j.cattod.2007.11.036.
- 146Mayorga, M.J., Ahrweiller, C., Cuevas, D., and Recasens, F. (2009). J. Supercrit. Fluids 48: 21–32. doi: 10.1016/j.supflu.2008.09.024.
- 147Santana, A., Larrayoz, M.A., Ramirez, E. et al. (2007). J. Supercrit. Fluids 41: 391–403. doi: 10.1016/j.supflu.2006.12.009.
- 148Almeida, L., Corazza, M.L., Sassaki, G.L., and Voll, F.A.P. (2017). React. Kinet. Mech. Catal. 121: 439–452. doi: 10.1007/s11144-017-1175-1.
- 149Sugami, Y., Minami, E., and Saka, S. (2017). Fuel 197: 272–276. doi: 10.1016/j.fuel.2017.02.038.
- 150Levine, R.B., Pinnarat, T., and Savage, P.E. (2010). Energy Fuels 24: 5235–5243. doi: 10.1021/ef1008314.
- 151Lee, J.H., Kwon, C.H., Kang, J.W. et al. (2009). App. Biochem. Biotechnol. 156: 454–464. doi: 10.1007/s12010-008-8488-5.
- 152Rathore, V. and Madras, G. (2007). Fuel 86: 2650–2659. doi: 10.1016/j.fuel.2007.03.014.
- 153Rodrigues, A.R., Paiva, A., da Silva, M.G. et al. (2011). J. Supercrit. Fluids 56: 259–264. doi: 10.1016/j.supflu.2010.10.031.
- 154Ciftci, O.N. and Temelli, F. (2013). J. Supercrit. Fluids 75: 172–180. doi: 10.1016/j.supflu.2012.12.029.
- 155Gameiro, M., Lisboa, P., Paiva, A. et al. (2015). Fuel 153: 135–142. doi: 10.1016/j.fuel.2015.02.100.
- 156Taher, H., Al-Zuhair, S., Al-Marzouqi, A.H. et al. (2014). Biochem. Eng. J. 90: 103–113. doi: 10.1016/j.bej.2014.05.019.
- 157Colombo, T.S., Mazutti, M.A., Di Luccio, M. et al. (2015). J. Supercrit. Fluids 97: 16–21. doi: 10.1016/j.supflu.2014.11.002.
- 158Dalla Rosa, C., Morandim, M.B., Ninow, J.L. et al. (2009). Bioresour. Technol. 100: 5818–5826. doi: 10.1016/j.biortech.2009.06.081.
- 159Weber, A., Catchpole, O., and Eltringham, W. (2008). J. Sep. Sci. 31: 1346–1351. doi: 10.1002/jssc.200800082.
- 160Weber, A., Lee, E.-H., Shin, S.-K., and Chun, B.-S. (2007). Chem. Eng. Technol. 30: 732–736. doi: 10.1002/cet.200700002.
- 161Melgosa, R., Teresa Sanz, M., Solaesa, A.G. et al. (2017). J. CO2 Util. 17: 170–179. doi: 10.1016/j.jcou.2016.11.011.
- 162Jackson, M.A., Mbaraka, I.K., and Shanks, B.H. (2006). Appl. Catal. A-Gen. 310: 48–53. doi: 10.1016/j.apcata.2006.05.019.
- 163Galia, A., Scialdone, O., and Tortorici, E. (2011). J. Supercrit. Fluids 56: 186–193. doi: 10.1016/j.supflu.2010.12.005.
- 164Alves, C.T., Andrade, H.M.C., Santos, R.C.D. et al. (2013). In: Icheap-11: 11th International Conference on Chemical and Process Engineering, Pts 1-4, vol. 32 (ed. S. Pierucci and J.J. Klemes), 883–888. AIDIC Servizi srl.
- 165Soh, L., Curry, J., Beckman, E.J., and Zimmerman, J.B. (2014). ACS Sust. Chem. Eng. 2: 387–395. doi: 10.1021/sc400349g.
- 166Soh, L., Chen, C.-C., Kwan, T.A., and Zimmerman, J.B. (2015). ACS Sust. Chem. Eng. 3: 2669–2677. doi: 10.1021/acssuschemeng.5b00472.
- 167Narayan, R.C. and Madras, G. (2016). Energy Fuels 30: 4104–4111. doi: 10.1021/acs.energyfuels.6b00266.
- 168Sun, Y., Reddy, H.K., Muppaneni, T. et al. (2014). Fuel 135: 530–536. doi: 10.1016/j.fuel.2014.06.070.
- 169Sun, Y., Ponnusamy, S., Muppaneni, T. et al. (2014). Fuel 135: 522–529. doi: 10.1016/j.fuel.2014.06.072.
- 170Lamba, N., Modak, J.M., and Madras, G. (2017). Energ. Convers. Manage. 138: 77–83. doi: 10.1016/j.enconman.2017.02.001.
- 171Zeng, D., Li, R., Jin, T., and Fang, T. (2014). Ind. Eng. Chem. Res. 53: 7209–7216. doi: 10.1021/ie402811n.
- 172Poudel, J., Karki, S., Sanjel, N. et al. (2017). Energies 10: 546. doi: 10.3390/en10040546.
- 173Manuale, D.L., Torres, G.C., Vera, C.R., and Yori, J.C. (2015). Fuel Proc. Technol. 140: 252–261. doi: 10.1016/j.fuproc.2015.08.026.
- 174Poudel, J., Shah, M., Karki, S., and Oh, S.C. (2017). Energies 10: 265. doi: 10.3390/en10030265.
- 175Ngamprasertsith, S., Laetoheem, C.-E., and Sawangkeaw, R. (2014). J. Brazil. Chem. Soc. 25: 1746–1753. doi: 10.5935/0103-5053.20140171.
- 176Demirbas, A., Bamufleh, H.S., Edris, G., and Al-Sasi, B.O. (2017). Energ. Source. Part A 39: 800–805. doi: 10.1080/15567036.2016.1263259.
- 177Calixto, F., Fernandes, J., Couto, R. et al. (2011). Green Chem. 13: 1196–1202. doi: 10.1039/c1gc15101k.
- 178Demirbas, A. (2016). Energ. Source Part A 38: 1890–1897. doi: 10.1080/15567036.2015.1004388.
- 179Macaira, J., Santana, A., Recasens, F., and Angeles Larrayoz, M. (2011). Fuel 90: 2280–2288. doi: 10.1016/j.fuel.2011.02.017.
- 180Bi, Z.T., He, B.B., and McDonald, A.G. (2015). Energy Fuels 29: 5018–5027. doi: 10.1021/acs.energyfuels.5b00559.
- 181Kwon, E.E., Kim, B., and Kim, S. (2017). J. Mater. Cycles Waste 19: 38–45. doi: 10.1007/s10163-015-0374-y.
- 182Sun, Y., Ponnusamy, S., Muppaneni, T. et al. (2015). Energ. Convers. Manage. 101: 402–409. doi: 10.1016/j.enconman.2015.05.056.
- 183Lim, S. and Lee, K.T. (2013). Appl. Energy 103: 712–720. doi: 10.1016/j.apenergy.2012.11.024.
- 184Najafabadi, H.A., Vossoughi, M., and Pazuki, G. (2015). Bioresour. Technol. 193: 90–96. doi: 10.1016/j.biortech.2015.06.045.
- 185Garcia-Jarana, M.B., Sanchez-Oneto, J., Portela, J.R. et al. (2016). Kor. J. Chem. Eng. 33: 2342–2349. doi: 10.1007/s11814-016-0069-7.
- 186Bertoldi, C., da Silva, C., Bernardon, J.P. et al. (2009). Energy Fuels 23: 5165–5172. doi: 10.1021/ef900402r.
- 187Imahara, H., Xin, J.Y., and Saka, S. (2009). Fuel 88: 1329–1332. doi: 10.1016/j.fuel.2009.01.002.
- 188Patil, P.D., Reddy, H., Muppaneni, T. et al. (2013). J. Supercrit. Fluids 79: 67–72. doi: 10.1016/j.supflu.2012.11.023.
- 189Oku, T., Nonoguchi, M., Moriguchi, T. et al. (2012). RSC Adv. 2: 8619–8622. doi: 10.1039/C2RA21666C.
- 190Saez, B., Santana, A., Ramirez, E. et al. (2014). Energy Fuels 28: 6006–6011. doi: 10.1021/ef5006786.
- 191Bi, Z.T. and He, B.B. (2016). Fuel 166: 461–466. https://doi.org/10.1016/j.fuel.2015.11.009.
- 192Lisboa, P., Rodrigues, A.R., Martin, J.L. et al. (2014). J. Supercrit. Fluids 85: 31–40. doi: 10.1016/j.supflu.2013.10.018.
- 193Lee, M., Lee, D., Cho, J. et al. (2013). Appl. Biochem. Biotechnol. 171: 1118–1127. doi: 10.1007/s12010-013-0189-z.
- 194Lee, M., Lee, D., Cho, J.K. et al. (2012). Bioproc. Biosyst. Eng. 35: 105–113. doi: 10.1007/s00449-011-0637-5.
- 195Lee, M., Lee, D., Cho, J. et al. (2013). Bioproc. Biosyst. Eng. 36: 775–780. doi: 10.1007/s00449-013-0903-9.
- 196Zhou, D., Qi, L., Qiao, B.-Q. et al. (2017). J. Supercrit. Fluids 120: 395–402. doi: 10.1016/j.supflu.2016.05.051.
- 197Zhou, D., Qiao, B., Li, G. et al. (2017). Bioresour. Technol. 238: 609–615. doi: 10.1016/j.biortech.2017.04.097.
- 198Narayan, R.C. and Madras, G. (2017). Ind. Eng. Chem. Res. 56: 2641–2649. doi: 10.1021/acs.iecr.6b04769.
- 199Liu, Q., Yan, T., Jiang, Z., and Fang, T. (2017). J. Chem. Technol. Biotechnol. 92: 1801–1808. doi: 10.1002/jctb.5181.
- 200Rosa, C.D., Morandim, M.B., Ninow, J.L. et al. (2008). J. Supercrit. Fluids 47: 49–53. doi: 10.1016/j.supflu.2008.06.004.
- 201Hildebrand, C., Dalla Rosa, C., Guimaraes Freire, D.M. et al. (2009). Ciencia e Tecnologia De Alimentos 29: 603–608.
- 202Brusamarelo, C.Z., Rosset, E., de Cesaro, A. et al. (2010). J. Biotechnol. 147: 108–115. doi: 10.1016/j.jbiotec.2010.03.014.
- 203Carvalho, N.B., de Oliveira Silva, M.A., Fricks, A.T. et al. (2014). J. Mol. Catal. B-Enzym. 99: 130–135. doi: 10.1016/j.molcatb.2013.11.006.
- 204Naya, M. and Imai, M. (2016). J. Chem. Technol. Biotechnol. 91: 2620–2630. doi: 10.1002/jctb.4861.
- 205Prado, G.H.C. and Saldana, M.D.A. (2013). J. Am. Oil Chem. Soc. 90: 731–742. doi: 10.1007/s11746-013-2205-4.
- 206Prado, G.H.C., Khan, M., Saldana, M.D.A., and Temelli, F. (2012). J. Supercrit. Fluids 66: 198–206. doi: 10.1016/j.supflu.2011.10.007.
- 207Choi, J.S., Roh, M.K., Kim, T.U. et al. (2015). J. Environ. Biol. 36: 1247–1254.
- 208Roh, M.-K., Kim, Y.D., and Choi, J.-S. (2015). Fisher. Sci. 81: 1113–1125. doi: 10.1007/s12562-015-0926-z.
- 209Shin, S.-K., Sim, J.-E., Kishimura, H., and Chun, B.-S. (2012). J. Ind. Eng. Chem. 18: 546–550. doi: 10.1016/j.jiec.2011.11.065.
- 210Lin, T.J. and Chen, S.W. (2008). Chem. Eng. J. 141: 318–326. doi: 10.1016/j.cej.2008.01.029.
- 211Ciftci, D. and Saldana, M.D.A. (2012). J. Supercrit. Fluids 72: 255–262. doi: 10.1016/j.supflu.2012.09.007.
- 212Jenab, E. and Temelli, F. (2013). J. Am. Oil Chem. Soc. 90: 1645–1652. doi: 10.1007/s11746-013-2319-8.
- 213Jenab, E., Temelli, F., and Curtis, J.M. (2013). Food Chem. 141: 2220–2228. doi: 10.1016/j.foodchem.2013.04.079.
- 214Jenab, E., Temelli, F., Curtis, J.M., and Zhao, Y.Y. (2014). LWT-Food Sci. Technol. 58: 263–271. doi: 10.1016/j.lwt.2014.02.051.
- 215Shekarchizadeh, H. and Kadivar, M. (2012). Food Chem. 135: 155–160. doi: 10.1016/j.foodchem.2012.04.033.
- 216Macher, M.B. and Holmqvist, A. (2001). Eur. J. Lipid Sci. Technol. 103: 81–84. doi: 10.1002/1438-9312(200102)103:2<81::aid-ejlt81>3.3.co;2-e.
- 217Morais, A.R.C., da Costa Lopes, A.M., Costa, P. et al. (2014). RSC Adv. 4: 32081–32091. doi: 10.1039/c4ra05225k.
- 218Ramirez, E., Larrayoz, M.A., and Recasens, F. (2006). AIChE J. 52: 1539–1553. doi: 10.1002/aic.10753.
- 219Piqueras, C.M., Fernandez, M.B., Tonetto, G.M. et al. (2006). Catal. Commun. 7: 344–347. doi: 10.1016/j.catcom.2005.12.010.
- 220Piqueras, C.M., Costilla, I.O., Belelli, P.G. et al. (2008). Appl. Catal. A-Gen. 347: 1–10. doi: 10.1016/j.apcata.2008.05.029.
- 221Piqueras, C., Bottini, S., and Damiani, D. (2006). Appl. Catal. A-Gen. 313: 177–188. doi: 10.1016/j.apcata.2006.07.023.
- 222Temelli, F. (2018). J. Supercrit. Fluids 134: 244–251. doi: 10.1016/j.supflu.2017.11.010.
- 223Ohgaki, K., Kobayashi, H., and Katayama, T. (1990). J. Supercrit. Fluids 3: 103–107.
- 224Akbari, Z., Amanlou, M., Karimi-Sabet, J. et al. (2015). Trop. J. Pharm. Res. 13: 1955. doi: 10.4314/tjpr.v13i12.1.
- 225Akbari, Z., Amanlou, M., Karimi-Sabet, J. et al. (2015). J. Nano Res. 31: 15–29. doi: 10.4028/www.scientific.net/JNanoR.31.15.
- 226Badens, E., Magnan, C., and Charbit, G. (2001). Biotechnol. Bioeng. 72: 194–204. doi: 10.1002/1097-0290(20000120)72:2<194::aid-bit8>3.0.co;2-l.
- 227Letourneau, J.J., Vigneau, S., Gonus, P., and Fages, J. (2005). Chem. Eng. Proc. 44: 201–207. doi: 10.1016/j.cep.2004.03.013.
- 228Sala, S., Elizondo, E., Moreno, E. et al. (2010). Cryst. Growth Des. 10: 1226–1232. doi: 10.1021/cg9012312.
- 229Moreno-Calvo, E., Temelli, F., Cordoba, A. et al. (2014). Cryst. Growth Des. 14: 58–68. doi: 10.1021/cg401068n.
- 230Münüklü, P. and Jansens, P.J. (2007). J. Supercrit. Fluids 40: 433–442. doi: 10.1016/j.supflu.2006.07.015.
- 231Weidner, E., Knez, Ž., and Novak, Z. (1994). Proceedings of the 3rd International Symposium on Supercritical Fluids, Strasbourg, France (17–19 October), p. 229.
- 232Magnan, C., Badens, E., Commenges, N., and Charbit, G. (2000). J. Supercrit. Fluids 19: 69–77. doi: 10.1016/s0896-8446(00)00076-0.
- 233Li, J., Rodrigues, M., Paiva, A. et al. (2007). J. Supercrit. Fluids 41: 343–351. doi: 10.1016/j.supflu.2006.12.004.
- 234Wenli, Y., Fei, X., Heyang, J. et al. (2008). Chin. J. Chem. Eng. 16: 956–960.
- 235Franceschi, E., De Cesaro, A.M., Ferreira, S.R.S., and Oliveira, J.V. (2009). J. Food Eng. 95: 656–663. doi: 10.1016/j.jfoodeng.2009.06.034.
- 236Pan, S., Zhou, J., Li, H., and Quan, C. (2013). Sci. World J. 2013: 538584. doi: 10.1155/2013/538584.
- 237Vijayaraghavan, M., Stolnik, S., Howdle, S.M., and Illum, L. (2013). Int. J. Pharm. 441: 580–588. doi: 10.1016/j.ijpharm.2012.10.040.
- 238de Sousa, A.R.S., Simplício, A.L., de Sousa, H.C., and Duarte, C.M.M. (2007). J. Supercrit. Fluids 43: 120–125. doi: 10.1016/j.supflu.2007.03.015.
- 239Mandžuka, Z. and Knez, Ž. (2008). J. Supercrit. Fluids 45: 102–111. doi: 10.1016/j.supflu.2007.11.006.
- 240Ciftci, O.N. and Temelli, F. (2016). J. Food Eng. 178: 137–144. doi: 10.1016/j.jfoodeng.2016.01.014.
- 241Li, J., Rodrigues, M., Paiva, A. et al. (2005). AIChE J. 51: 2343–2357. doi: 10.1002/aic.10478.
- 242do Carmo, C.S., Nunes, A.N., Silva, I. et al. (2016). RSC Adv. 6: 6048–6057. doi: 10.1039/c5ra22452g.
- 243Yun, J.-H., Lee, H.-Y., Asaduzzaman, A.K.M., and Chun, B.-S. (2013). J. Ind. Eng. Chem. 19: 686–691. doi: 10.1016/j.jiec.2012.10.005.
- 244Yang, J. and Ciftci, O.N. (2016). Food Bioprod. Proc. 98: 151–160. doi: 10.1016/j.fbp.2016.01.004.
- 245Lubary, M., de Loos, T.W., ter Horst, J.H., and Hofland, G.W. (2011). J. Supercrit. Fluids 55: 1079–1088. doi: 10.1016/j.supflu.2010.10.010.
- 246Yang, J. and Ciftci, O.N. (2016). Food Res. Int. 87: 83–91. doi: 10.1016/j.foodres.2016.06.022.
- 247Yang, J. and Ciftci, O.N. (2017). Food Chem. 231: 105–113. doi: 10.1016/j.foodchem.2017.03.109.
- 248Pedro, A.S., Villa, S.D., Caliceti, P. et al. (2016). J. Supercrit. Fluids 107: 534–541. doi: 10.1016/j.supflu.2015.07.010.
- 249Couto, R., Alvarez, V., and Temelli, F. (2017). J. Supercrit. Fluids 120: 432–442. doi: 10.1016/j.supflu.2016.05.036.
- 250Sievers, R.E., Huang, E.T.S., Villa, J.A. et al. (2003). J. Supercrit. Fluids 26: 9–16. doi: 10.1016/s0896-8446(02)00188-2.
- 251Salmaso, S., Bersani, S., Elvassore, N. et al. (2009). Int. J. Pharm. 379: 51–58. doi: 10.1016/j.ijpharm.2009.06.014.
- 252Salmaso, S., Elvassore, N., Bertucco, A., and Caliceti, P. (2009). J. Pharm. Sci. 98: 640–650. doi: 10.1002/jps.21434.
- 253Lévai, G., Martín, Á., Moro, A. et al. (2017). Powder Technol. 317: 142–153. doi: 10.1016/j.powtec.2017.04.041.
- 254Mukhopadhyay, M. and Singh, S. (2004). J. Supercrit. Fluids 30: 201–211. doi: 10.1016/j.supflu.2003.08.001.