Liquid-Filled Transformers: Design, Optimization, and Monitoring
Ewald F. Fuchs
University of Colorado Boulder, Boulder, CO, USA
Search for more papers by this authorEwald F. Fuchs
University of Colorado Boulder, Boulder, CO, USA
Search for more papers by this authorAbstract
Liquid-filled transformers have as cooling medium biodegradable, noncarcinogenic synthetic or natural esters. Three-phase transformers of various configurations with and without grounding have several functions: increase/decrease of voltages and currents, filtering of harmonics, assist in protection of power systems, and permit a change of grounding reference. Oriented and amorphous electrical steels permit an efficient and economic design even for operating conditions above the knee of the nonlinear (B-H) characteristic. Finite-difference and finite-element numerical methods can be successfully applied to model the influence of harmonics through phase-factors to minimize skin effects. Real-time monitoring of transformer losses is based on the calibration of voltage and current differences which limit the measuring errors to a few percent, for example, 6% at a measured power efficiency of larger than 98%, and permit the use of off-the shelf transformers without any sensors installed within windings, iron cores, or coolant. Online measuring of total losses provides a mechanism for limiting the temperature increase. The performance of transformers under DC bias is important for renewable energy systems employing converters (e.g., rectifiers, inverters) and exposure to geomagnetically induced currents (GICs). Transformers are suitable for 6-, 12- or 18-pulse rectifiers used in high-voltage DC (HVDC) transmission lines. Superconducting MW-range transformers are available but costly, while superconducting magnets are widely used in the health (magnetic resonance imaging) and research fields: Large Hadron Collider in Switzerland/France and fusion reactor such as Wendelstein 7-X in Germany.
Bibliography
- 1 ANSI C57.12.80-1978 (R1992). (1978) IEEE Standard terminology for power and distribution transformers, American National Standards Institute, New York.
- 2 Central Station Engineers of the Westinghouse Electric Corporation. Electrical Transmission and Distribution Reference Book, 4th ed.; Westinghouse: Pittsburgh, 1964.
- 3ANSI C57.12.00-1993. (1993) IEEE Standard general requirements for liquid-immersed distribution, power, and regulating transformers, American National Standards Institute, New York.
- 4IEEE C57.12.90-1993. (1993) IEEE standard test code for liquid-immersed distribution, power, and regulating transformers and IEEE guide for short circuit testing of distribution and power transformers, IEEE, New York.
- 5IEEE C57.91-1995. (1995) IEEE guide for loading mineral-oil-immersed transformers, American National Standards Institute, New York.
- 6 D. Hanson, K. Li, J. Plascencia, C. Beauchemin, C. Claiborne, D. Cherry, G. Frimpong, J. Luksich, A. Lemm, and R. Martin. Understanding dissolved gas analysis of ester liquids: An updated review of gas generated in ester liquid by stray gassing, thermal decomposition and electrical discharge, in 2016 IEEE Electrical Insulation Conference (EIC); 2016, 138–144, DOI: 10.1109/EIC.2016.7548611.
- 7 G.J. Pukel, G. Fleck, H. Pregartner, and R. Fritsche. Safe and environmentally friendly large power transformers with ester successful introduction of ester liquids at the 420 kV transmission level, in 2016 IEEE Electrical Insulation Conference (EIC); 2016, 134–137, DOI: 10.1109/EIC.2016.7548610.
- 8 D.P. Stockton, J.R. Bland, T. McClanahan, J. Wilson, D.L. Harris, and P. McShane., Natural ester transformer fluids: safety, reliability & environmental performance, in 2007 IEEE Petroleum and Chemical Industry Technical Conference Year; 2007, 1–7, DOI: 10.1109/PCICON.2007.4365795.
- 9 D. Mehta, P. Kundu, and A. Chowdhury. Indian transformer industry gearing up for next-gen green liquids, in 2015 5th Nirma University International Conference on Engineering (NUiCONE); 2015, 1–4, DOI: 10.1109/NUICONE.2015.7449605.
- 10IEEE PC57.110/D7. (1998) Recommended Practice for Establishing Transformer Capability When Supplying Nonsinusoidal Load Currents, IEEE, New York.
- 11 S. Ezure et al. IEEE Trans. Power Deliv. 1994, 9(1), pp 249–256.
- 12
H.A. Wheeler.
Proc. IRE
1942,
30(9),
pp 412–424,
10.1109/JRPROC.1942.232015.
10.1109/JRPROC.1942.232015 Google Scholar
- 13 E.F. Fuchs, D.J. Roesler, and K.P. Kovacs. IEEE Trans. on Power Deliv. 1986, TPWRD-1(3), pp 301–307.
- 14 M.A.S. Masoum and E.F. Fuchs. Power Quality in Power Systems and Electrical Machines, 2nd ed.; Elsevier/Academic Press, 2015; p 1123.
- 15 C.T.A. Johnk. Engineering Electromagnetic Fields and Waves, 2nd ed.; Wiley, 1988, p 656.
- 16 G.P. Shultz. Transformers and Motors. Sams: Indianapolis, 1989.
- 17 J.F. Fuller, E.F. Fuchs, and D.J. Roesler. IEEE Trans. Power Deliv. 1988, 3(2), pp 546–554.
- 18 J.F. Fuller, E.F. Fuchs, and D.J. Roesler. In Protective Relaying for Power Systems II, S.H. Horowitz, Ed.; IEEE Press, 1992; pp 29–37.
- 19 C.L. Fortescue. AIEE Trans. 1918, 37, part II, pp 1027–1140.
- 20 M.A.S. Masoum. (1991) Generation and propagation of harmonics in power system feeders containing nonlinear transformers and loads. Ph.D. thesis. University of Colorado, Boulder.
- 21 T. Batan. (1999) Real-time monitoring and calculation of the derating of single-phase transformers under (non)sinusoidal operation. Ph.D. thesis. University of Colorado, Boulder.
- 22 E.F. Fuchs, D. Yildirim, and T. Batan. IEE Proc. Gener. Transm. Distrib. 1999, 146(6), 617–625.
- 23 T.D. Stensland. (1995) Effects of voltage harmonics on single-phase transformers and induction machines including pre-processing for power flow. MS thesis. University of Colorado, Boulder.
- 24 Y.C. Huang, et al. IEEE Trans. Power Deliv. 1997, 12(2), pp 761–767.
- 25 T.K. Saha, et al. IEEE Trans. Power Deliv. 1999, 14(4), pp 1359–1367.
- 26 H.T. Yang and C.C. Liao. IEEE Trans. Power Deliv. 1999, 14(4), pp 1342–1350.
- 27 J. Jalbert and R. Gilbert. IEEE Trans. Power Deliv. 1997, 12(2), pp 754–760.
- 28 Westinghouse Electric Corporation (1980) Optimization of Distribution Transformer Efficiency Characteristic. Final Report DOE/RA/3022-01.
- 29 E.F. Fuchs, M.A.S. Masoum, and D.J. Roesler. IEEE Trans. Power Deliv. 1991, 6(1), pp 174–186.
- 30 E.F. Fuchs and M.A.S. Masoum. Power Conversion of Renewable Energy Systems. 1st ed.; 2nd Printing 2012, Springer: USA, 2012; p 692
- 31 E.A. Erdelyi and E.F. Fuchs. IEEE Trans. Power App. Syst. 1970, PAS-89(7), pp 1546–1554.
- 32 E.F. Fuchs and E.A. Erdelyi. IEEE Trans. Power App. Syst. 1970, PAS-89, (7), pp 1555–1564.
- 33 E.A. Erdelyi, E.F. Fuchs, and D.H. Binkley. IEEE Trans. Power App. Syst. 1970, PAS-89, (7), pp 1565–1583.
- 34 E. F. Fuchs and G.A. McNaughton. IEEE Trans. Power App. Syst. 1982, 101(5), pp 1170–1201.
- 35 E.F. Fuchs and G.A. McNaughton. Acta Technica 1982, 2, pp 168–205.
- 36 G.A. McNaughton, E.F. Fuchs, and M. Siegl. Acta Technica 1982, 2, pp 206–238.
- 37 E.F. Fuchs and M. Siegl. Acta Technica 1982, 3, pp 261–290.
- 38 P. Silvester and Madabushi V.K. Chari. IEEE Trans. Power App. Syst. 1970, PAS-89(7), pp 1642–1651.
- 39 T. Stensland et al. IEEE Trans. Power Deliv. 1997, 12(2), pp 768–774.
- 40 G.F. Mechler and R.S. Girgis. IEEE Trans. Power Deliv. 2002 15(1), 198–203.
- 41 E.F. Fuchs and R. Fei. IEEE Trans. Power Deliv. 1996, 11(1), pp 292–304.
- 42 A.H. Chowdhury, W.M. Grady, and E.F. Fuchs. IEEE Trans. Power Deliv. 1999, 14(2), pp 450–458.
- 43 M.A.S. Masoum, E.F. Fuchs, and D.J. Roesler. IEEE Trans. Power Deliv. 1991, TPWRD-6, pp 1781–1788.
- 44 E.F. Fuchs and G. Pohl. IEEE Trans. Power App. Syst. 1981, PAS-100(8), pp 3911–3920.
- 45 E.F. Fuchs and K. Senske. IEEE Trans. Power App. Syst. 1981, PAS-100(8), pp 3983–3992.
- 46 E.F. Fuchs, D. Yildirim, and W.M. Grady. IEEE Trans. Power Deliv. 2000, 15(1), pp 148–154.
- 47 E.F. Fuchs, D. Yildirim, and W.M. Grady. IEEE Trans. Power Deliv. 2000, 15(4), pp 1331–1333.
- 48 E.F. Fuchs, D. Yildirim, and W.M. Grady. IEEE Trans. Power Deliv. 2000, 15(4), pp 1357–1357.
- 49 D. Yildirim and E. F. Fuchs. IEEE Trans. Power Deliv. 2000, 15(1), pp 186–191.
- 50 D. Yildirim and E.F. Fuchs. IEEE Trans. Power Deliv. 2000, 15(4), pp 1328–1329.
- 51 D. Yildirim and E.F. Fuchs. IEEE Trans. Power Deliv. 2000, 15(4), pp 1357–1357.
- 52 M.A.S. Masoum and E.F. Fuchs. Int. J. Electr. Power Energy Syst. 2003, 25(1), pp 1–12.
- 53 T. Stensland, E.F. Fuchs, W.M. Grady, and M. Doyle. IEEE Trans. Power Deliv. 1997, 12(2), pp 768–774.
- 54 D. Lin, E.F. Fuchs, and M. Doyle. IEEE Trans. Power Syst. 1997, 12(1), pp 11–21.
- 55 D. Yildirim. (1999) Commissioning of 30 kVA variable-speed, direct-drive wind power plant. Ph.D. dissertation. University of Colorado at Boulder.
- 56 Current and Voltage Transducer Catalog, Third Edition, LEM USA, Inc., 6643 West Mill Road, Milwaukee, WI 53218.
- 57 E.F. Fuchs, D.J. Roesler, and M.A.S. Masoum. IEEE Trans. Power Deliv. 2004, 19(4) pp 1775–1786.
- 58 E.F. Fuchs, D.J. Roesler, and M.A.S. Masoum. IEEE Trans. Power Deliv. 2007, 22(2), pp 1263–1264.
- 59 E.F. Fuchs, D. Lin, and J. Martynaitis. IEEE Trans. Power Deliv. 2006, 21(2), pp 665–672.
- 60 D. Lin and E.F. Fuchs. IEEE Trans. Power Deliv. 2006, 21(3), pp 1333–1341.
- 61 M.A.S. Masoum and E.F. Fuchs. IEEE Trans. Power Deliv. 1994, PWRD-9, pp 10–20.
- 62 E.G. Tenyenhuis, G.F. Mechler, and R.S. Girgis. IEEE Trans. Power Deliv. 2000, 15(1), pp 204–209.
- 63 B.W. McConnell et al. (1992) Impact of Quasi-DC Currents on Three-Phase Distribution Transformer Installations. Final Report ORNL/Sub/89-SE912/1. Oak Ridge National Laboratory.
- 64 E.F. Fuchs, Y. You, and D. Lin. (1996) Development and Validation of GIC Transformer Models. Final Report 19X-SK205V, Oak Ridge, Martin Marietta Energy Systems.
- 65
Y. You,
E.F. Fuchs,
D. Lin, and
P.R. Barnes.
IEEE Ind. Appl. Soc. Mag.
1996,
2(4),
pp 45–52.
10.1109/2943.503528 Google Scholar
- 66 E.F. Fuchs, Y. You, and D.J. Roesler. IEEE Trans. Power Deliv. 1999, 14(2), pp 443–449.
- 67 E.F. Fuchs and Y. You. IEEE Trans. Power Deliv. 2002, 17(4), pp 983–990.
- 68 E.F. Fuchs and Y. You. IEEE Trans. Power Deliv. 2003, 18(2), pp 642–643.
- 69 A.A. Fardoun, E.F. Fuchs, and M.A.S. Masoum. IEEE Trans. Power Deliv. 1994, TPWRD-9, pp 88–99.
- 70 J.G. Kappenman, S.R. Norr, G.A. Sweezy, D.L. Carlson, V.D. Albertson, J.E. Harder, and B.L. Damsky. IEEE Trans. Power Deliv. 1991, 6(3), pp 1271–1281.
- 71 S.P. Mehta, N. Aversa, and M.S. Walker. IEEE Spectr. 1997, 34(7), pp 43–49.
- 72 S.W. Schwenerly, B.W. McConnell, J.A. Demko, A. Fadnek, J. Hsu, F.A. List, M.S. Walker, D.W. Hazelton, F.S. Murray, J.A. Rice, C.M. Trautwein, X. Shi, R.A. Farrell, J. Bascuhan, R.E. Hintz, S.P. Mehta, N. Aversa, J.A. Ebert, B.A. Bednar, D.J. Neder, A.A. McIlheran, P.C. Michel, J.J. Nemce, E.F. Pleva, A.C. Swenton, W. Swets, R.C. Longsworth, R.C. Johnson, R.H. Jones, J.K. Nelson, R.C. Degeneff, S.J. and Salon. IEEE Trans. Appl., Supercond. 1999, 9(2), pp 680–684.
- 73 B.W. McConnell. IEEE Trans. Appl. Supercond. 2000, 10(1), pp 716–720.
- 74 W.-S. Kim, J.-h Han, S.-H. Kim, W.-G. Min, T. Chang, K.-D. Choi, H.-G. Joo, G.-W. Hong, S.-Y. Hahn, J.-H. Park, and H.-S. Song. IEEE Trans. Appl., Supercond. 2004, 14(2), pp 904–907.
Wiley Encyclopedia of Electrical and Electronics Engineering
Browse other articles of this reference work: