Abstract
The sections in this article are
- 1 Engineering Design
- 2 Iron Cores
- 3 Primary and Secondary Windings
- 4 Power and Energy Efficiencies
- 5 Technical–Economic Factors
- 6 Optimization of Transformer Efficiency Characteristic
- 7 Magnetic Design
- 8 Grounding, Protection, and Monitoring
- 9 New Developments
Bibliography
- 1 IEEE C57.12.80-1978 (R1992), IEEE Standard Terminology for Power and Distribution Transformers (ANSI), New York: IEEE, 1978.
- 2 Central Station Engineers of the Westinghouse Electric Corporation, Electrical Transmission and Distribution Reference Book, 4th ed., Pittsburgh: Westinghouse, 1964.
- 3 IEEE C57.12.00-1993, IEEE Standard General Requirements for Liquid-Immersed Distribution, Power, and Regulating Transformers (ANSI), New York: IEEE, 1993.
- 4 IEEE C57.12.90-1993, IEEE Standard Test Code for Liquid-Immersed Distribution, Power, and Regulating Transformers and IEEE Guide for Short Circuit Testing of Distribution and Power Transformers, New York: IEEE, 1993.
- 5 IEEE C57.91-1995, IEEE Guide for Loading Mineral-Oil-Immersed Transformers (ANSI), New York: IEEE, 1995.
- 6 IEEE PC57.110/D7, Recommended Practice for Establishing Transformer Capability When Supplying Nonsinusoidal Load Currents, New York: IEEE, 1998.
- 7 G. P. Shultz Transformers and Motors, Indianapolis: Sams, 1989.
- 8 M. A. S. Masoum, Generation and propagation of harmonics in power system feeders containing nonlinear transformers and loads, Ph.D. Thesis, University of Colorado, Boulder, 1991.
- 9 S. Ezure et al. Long-term reliability of amorphous alloy wound core distribution transformers, IEEE Trans. Power Deliv., 9 (1): 249–256, 1994.
- 10 T. Batan Real-time monitoring and calculation of the derating of single-phase transformers under (non)sinusoidal operation, Ph.D. Thesis, University of Colorado, Boulder, 1999.
- 11 T. D. Stensland Effects of voltage harmonics on single-phase transformers and induction machines including pre-processing for power flow, M.S. Thesis, University of Colorado, Boulder, 1995.
- 12 Y. C. Huang et al. Developing a new transformer fault diagnosis system through evolutionary fuzzy logic, IEEE Trans. Power Deliv., 12 (2): 761–767, 1997.
- 13 T. K. Saha et al. Investigating the effects of oxidation and thermal degradation on electrical and chemical properties of power transformer insulation, IEEE Trans. Power Deliv., 14 (4): 1359–1367, 1999.
- 14 H. T. Yang C. C. Liao Adaptive fuzzy diagnosis system for dissolved gas analysis of power transformers, IEEE Trans. Power Deliv., 14 (4): 1342–1350, 1999.
- 15 J. Jalbert R. Gilbert Decomposition of transformer oils: a new approach for the determination of dissolved gases, IEEE Trans. Power Deliv., 12 (2): 754–760, 1997.
- 16 Westinghouse Electric Corporation, Optimization of Distribution Transformer Efficiency Characteristic, Final Report DOE/RA/3022-01, Washington DC: US Department of Energy, 1980.
- 17 E. F. Fuchs M. A. S. Masoum D. J. Roesler Large signal nonlinear model of anisotropic transformers for nonsinusoidal operation, Parts I, II, IEEE Trans. Power Deliv., 6 (1): 174–186, 6 (4): 1509–1516, 1991.
- 18 E. F. Fuchs G. A. McNaughton Comparison of first-order finite difference and finite-element algorithms for the analysis of magnetic fields, parts I, II, IEEE Trans. Power Appar. Syst., 101 (5): 1170–1201, 1982.
- 19 T. Stensland et al. Modeling of magnetizing and core-loss currents in single-phase transformers with voltage harmonics for use in power flow, IEEE Trans. Power Deliv., 12 (2): 768–774, 1997.
- 20 G. F. Mechler R. S. Girgis Magnetic flux distributions in transformer core joints, IEEE Trans. Power Deliv., PE-126PWRD-1999.
- 21 E. G. Tenyenhuis G. F. Mechler R. S. Girgis Flux distribution and core loss calculation for single-phase and five-limb three-phase transformer core designs, IEEE Trans. Power Deliv., 15 (1): 204–209, 2000.
- 22 E. F. Fuchs D. Yildirim W. M. Grady Measurement of eddy-current loss coefficient PEC-R, derating of single-phase transformers, and comparison with K-factor approach, IEEE Trans. Power Deliv., 15 (1): 148–154, 2000.
- 23 D. Yildirim E. F. Fuchs Measured transformer derating and comparison with harmonic loss factor (FHL) approach, IEEE Trans. Power Deliv., 15 (1): 186–191, 2000.
- 24 J. F. Fuller E. F. Fuchs D. J. Roesler Influence of harmonics on power system distribution protection, IEEE Trans. Power Deliv., 3 (2): 546–554, 1988.
- 25 E. F. Fuchs Y. You D. Lin Development and Validation of GIC Transformer Models, Final Report 19X-SK205V, Oak Ridge,: Martin Marietta Energy Systems, 1996.
- 26 B. W. McConnell et al. Impact of Quasi-DC Currents on Three-Phase Distribution Transformer Installations, Final Report ORNL/Sub/89-SE912/1, Oak Ridge: Oak Ridge National Laboratory, 1992.
- 27 E. F. Fuchs Y. You D. J. Roesler Modeling, simulation and their validation of three-phase transformers with three legs under dc bias, IEEE Trans. Power Deliv., 14 (2): 443–449, 1999.
- 28
Y. You et al.
Reactive power demand of transformers with dc bias,
IEEE Ind. Appl. Soc. Mag.,
2 (4):
45–52,
1996.
10.1109/2943.503528 Google Scholar
- 29 S. P. Mehta N. Aversa M. S. Walker Transforming transformers, IEEE Spectrum, 34 (7): 43–49, 1997.
Citing Literature
Wiley Encyclopedia of Electrical and Electronics Engineering
Browse other articles of this reference work: