External chiral ligand-induced enantioselective versions of the [2,3]-Wittig sigmatropic rearrangement
Katsuhiko Tomooka
Department of Chemical Technology, Tokyo Institute of Technology, Tokyo, Japan
Search for more papers by this authorNobuyuki Komine
Department of Chemical Technology, Tokyo Institute of Technology, Tokyo, Japan
Search for more papers by this authorCorresponding Author
Takeshi Nakai
Department of Chemical Technology, Tokyo Institute of Technology, Tokyo, Japan
Department of Chemical Technology, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8552, JapanSearch for more papers by this authorKatsuhiko Tomooka
Department of Chemical Technology, Tokyo Institute of Technology, Tokyo, Japan
Search for more papers by this authorNobuyuki Komine
Department of Chemical Technology, Tokyo Institute of Technology, Tokyo, Japan
Search for more papers by this authorCorresponding Author
Takeshi Nakai
Department of Chemical Technology, Tokyo Institute of Technology, Tokyo, Japan
Department of Chemical Technology, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8552, JapanSearch for more papers by this authorAbstract
The external chiral ligand-induced enantioselective [2,3]-Wittig rearrangements of crotyl benzyl ethers and crotyl propargylic ethers are described. The most notable is that treatment of (E)-crotyl propargylic ethers with a t-butyllithium/(S;S)-bis(oxazoline) complex provides a relatively high enantioselectivity (up to 89% ee), together with a high threo-diastereoselectivity. Furthermore, examples of the “asymmetric catalytic version” of the rearrangement of crotyl benzyl ethers are presented. Chirality 12:505–509, 2000. © 2000 Wiley-Liss, Inc.
LITERATURE CITED
- 1Marshall JA. The Wittig rearrangement In: BM Trost, I Fleming, editors. Comprehensive organic synthesis, vol. 3. New York: Pergamon; 1991. p 975–1014.
- 2Nakai T, Mikami K. The [2,3]-Wittig rearrangement. Organic React 1994; 46: 105–209.
- 3Nakai T, Tomooka K. Asymmetric [2,3]-Wittig rearrangement as a general tool for asymmetric synthesis. Pure Appl Chem 1997; 69: 595–600.
- 4Marshall JA, Lebreton J. Enantioselective synthesis of macrocyclic propargylic alcohols by [2,3] Wittig ring construction. Synthesis of (+)-aristolactone and cembranoid precursors. J Am Chem Soc 1988; 53: 2925–2931.
- 5Marshall JA, Lebreton J. [2,3] Wittig ring construction: synthesis of p-mentone derivative. J Org Chem 1988; 53: 4108–4112.
- 6Fujimoto K, Nakai T. Enantioselective [2,3] Wittig rearrangement involving a chiral boron enolate terminus. Tetrahadron Lett 1994; 35: 5019–5022.
- 7Fujimoto K, Matuhashi C, Nakai T. Enantioselective [2,3]-Wittig rearrangement via a chiral boron ester enolate. Heterocycles 1996; 42: 423–435.
- 8Hoppe D, Hense T. Enantioselective synthesis with lithium/(-)-sparteine carbanion pairs. Angew Chem Int Ed Engl 1997; 36: 2282–2316.
- 9Beak P, Basu A, Gallageher DJ, Park YS, Thayumanavan S. Regioselective, diastereoselective, and enantioselective lithiation-substitution sequences: reaction pathways and synthetic applications. Acc Chem Res 1996; 29: 552–560.
- 10Kang J, Cho WO, Cho HG, Oh HJ. Asymmetric [2,3]-Wittig rearrangements in the presence of sparteine derivatives. Bull Korean Chem Soc 1994; 15: 732–739.
- 11Manabe S. Enantioselective [2,3] sigmatropic rearrangement of α-propargyloxyacetic acids mediated by BuLi-(-)-sparteine complex. Chem Pharm Bull 1998; 46: 335–336.
- 12Manabe S. Enantioselective [2,3] sigmatropic rearrangement mediated by a butyllithium-chiral ligand complex. J C S Chem Commun 1997; 737–738.
- 13Kawasaki T, Kimachi T. Enantioselective [2,3]-Wittig rearrangement via sparteine-mediated lateral metalation of N,N-dialkyl-o-allyloxymethylbenzamides and o-substituted benzyl prenyl ethers. Synlett 1998; 1429–1431.
- 14Kawasaki T, Kimachi T. Sparteine-mediated enantioselective [2,3]-Wittig rearrangement of allyl ortho-substituted benzyl ethers and ortho-substituted benzyl prenyl ethers. Tetrahedron 1999; 55: 6847–6862.
- 15Tomooka K, Komine N, Nakai T. Enantioselective [2,3]-Wittig rearrangement induced by asymmetric lithiation with t-butyllithium / chiral bisoxazoline system. Tetrahedron Lett 1998; 39: 5513–5516.
- 16Denmark SE, Nakajima N, Nicaise OJ-C, Faucher AM, Edwards JP. Preparation of chiral bisoxazolines: observations on the effect of substituents. J Org Chem 1995; 60: 4884–4892.
- 17Roush WR, Ando K, Powers DB, Palkowitz AD, Halterman RL. Asymmetric synthesis using diisopropyl tartrate modified (E)- and (Z)-crotylboronates: preparation of chiral crotylboronates and reactions with achiral aldehydes. J Am Chem Soc 1990; 112: 6339–6348.
- 18Mikami K, Kimura Y, Kishi N, Nakai T. Acyclic diastereoselection in the [2,3] Wittig sigmatropic rearrangement of a series of isomeric transition-state. J Org Chem 1983; 48: 279–281.
- 19Mikami K, Azuma K, Nakai T. Enhancement of erythro-selectivity in the [2,3]-Wittig rearrangement of crotyl propargyl ethers system and its use in the stereocontrolled formal synthesis (±)-oudemansin. Chem Lett 1983; 1379–1382.
- 20Mikami K, Azuma K, Nakai T. [2,3]-Wittig sigmatropic rearrangement of crotyl propargyl ether system: an emerging tool for control of acyclic stereochemistry. Tetrahedron 1984; 2303–2308.
- 21Wu S, Lee S, Beak P. Asymmetric deprotonation by BuLi/(-)-sparteine: convenient and highly enantioselective syntheses of (S)-2-aryl-Boc-pyrrolidines. J Am Chem Soc 1996; 31: 715–721.
- 22Bates TF, Clarke MT, Thomas RD. Unusual stability of an alkyllithium dimer. Preparation, properties, and decomposition mechanism of (t-BuLi ≄ tZ.2OEt2)2. J Am Chem Soc 1988; 110: 5109–5112.
- 23Tomooka K, Yamamoto K, Nakai T. Enantioselective [1,2]-Wittig rearrangement using an external chiral ligand. Angew Chem Int Ed Engl 1999; 38: 3741–3743.
10.1002/(SICI)1521-3773(19991216)38:24<3741::AID-ANIE3741>3.0.CO;2-5 CAS PubMed Web of Science® Google Scholar