Asymmetric synthesis of 1,2-amino alcohols using (S)-indoline chiral auxiliary
So Won Youn
Department of Chemistry, Korea Advanced Institute of Science and Technology, Taejon, Korea
Search for more papers by this authorJun Young Choi
Department of Chemistry, Korea Advanced Institute of Science and Technology, Taejon, Korea
Search for more papers by this authorCorresponding Author
Yong Hae Kim
Department of Chemistry, Korea Advanced Institute of Science and Technology, Taejon, Korea
Department of Chemistry, Korea Advanced Institute of Science and Technology, 373-1, Kusong Dong, Yusong Gu, Taejon, 305-701, KoreaSearch for more papers by this authorSo Won Youn
Department of Chemistry, Korea Advanced Institute of Science and Technology, Taejon, Korea
Search for more papers by this authorJun Young Choi
Department of Chemistry, Korea Advanced Institute of Science and Technology, Taejon, Korea
Search for more papers by this authorCorresponding Author
Yong Hae Kim
Department of Chemistry, Korea Advanced Institute of Science and Technology, Taejon, Korea
Department of Chemistry, Korea Advanced Institute of Science and Technology, 373-1, Kusong Dong, Yusong Gu, Taejon, 305-701, KoreaSearch for more papers by this authorAbstract
Chiral hydrazones 1 reacted with aryl- or alkyl-lithiums at −78°C in a short reaction time, within 10 min, to afford arylated or alkylated chiral hydrazines 3 with extremely high diastereoselectivity (up to >99% de) and high chemical yields. The hydrazines are readily converted to chiral amino alcohols 4. Chirality 12:404–407, 2000. © 2000 Wiley-Liss, Inc.
LITERATURE CITED
- 1a) Reetz MT. New approaches to the use of amino acids as chiral building blocks in organic synthesis. Angew Chem Int Ed Engl 1991; 30: 1531–1546. b) Ohfune Y. Stereoselective routes towards the synthesis of unusual amino acids. Acc Chem Res 1992; 25: 360–366. c) Yokomatsu T, Yuasa Y, Shibuya S. Synthesis of β-oxygenated γ-amino acids and γ-oxygenated δ-amino acids from α-amino acids. Heterocycles 1992; 33: 1051–1078. d) Golebiowski A, Jurczak J. α-Amino-β-hydroxy acids in the total synthesis of amino-sugars. Synlett 1993; 241–245. e) Gante J. Peptidomimetics-tailored enzyme-inhibitors. Angew Chem Int Ed Engl 1994; 33: 1699–1720.
- 2a) Umezawa H, Aoyagi T, Morishima H, Matsuzaki M, Hamada M, Takeuchi T. Pepstatin, a new pepsin inhibitor produced by actinomycetes. J Antibiot 1970; 23: 259–262. b) Aoyagi T, Tobe H, Kojima F, Hamada M, Takeuchi T, Umezawa H. Amastatin, an inhibitor of aminopeptidase A, produced by actinomycetes. J Antibiot 1978; 31: 636–638. c) Umezawa H, Aoyagi T, Suda H, Hamada M, Takeuchi T. Bestatin, an inhibitor of aminopeptidase B, produced by actinomycetes. J Antibiot 1976; 29: 97–99. d) Arcamone F, Cassinelli G, Orezzi P, Franceschi G, Mondelli R. Daunomycin II. The structure and stereochemistry of daunosamine. J Am Chem Soc 1964; 86: 5334–5336. e) Iwamoto RH, Lim P, Bhacca NS. The structure of daunomycin. Tetrahedron Lett 1968; 36: 3891–3894.
- 3a) Nugent WA. Chiral Lewis acid catalysis-enantioselective addition of azide to meso epoxides. J Am Chem Soc 1992; 114: 2768–2769. b) Enders D, Jegelka U, Dücker B. Diastereoselective and enantioselective synthesis of C2-symmetrical HIV-1 protease inhibitors. Angew Chem Int Ed Engl 1993; 32: 423–425. c) Barrett AGM, Seefeld MA. The use of B-[(E)-3-(diphenylamino)allyl]diisopinocamphenylborane as a reagent for the stereoselective synthesis of anti-β-diphenylamino alcohols and trans-α-diphenylamino-2-(1-hydroxyalkyl)cyclopropanes. Tetrahedron 1993; 49: 7857–7870. d) Matsubara S, Ukita H, Kodama T, Utimoto K. Diastereoselective addition of organometallic reagents to imines or hydrazones containing 1,3-oxathiane as a chiral template. Chem Lett 1994; 831–834. e) Lingibe O, Graffe B, Sacquet MC, Lhommet G. Asymmetric synthesis with chiral hydrogenolysable amines—a new route to enantiopure ethanolamines. Hetrocycles 1994; 37: 1469–1472. f) Besse P, Veschambre H, Chenevert R, Dickman M. Chemoenzymatic synthesis of chiral β-azidoalcohols-application to the preparation of chiral aziridines and aminoalcohols. Tetrahedron: Asymmetry 1994; 5: 1727–1744.
- 4a) Ager DJ, Prakash I, Schaad DR. 1,2-Amino alcohols and their heterocyclic derivatives as chiral auxiliaries in asymmetric synthesis. Chem Rev 1996; 96: 835–875. b) Larrow JF, Schaus SE, Jacobsen EN. Kinetic resolution of terminal epoxides via highly regioselective and enantioselective ring opening with TMSN3. An efficient, catalytic route to 1,2-amino alcohols. J Am Chem Soc 1996; 118: 7420–7421. c) Barret AGM, Seefeld MA, White AJP, Williams DJ. Convenient asymmetric syntheses of anti-β-amino alcohols. J Org Chem 1996; 61: 2677–2685. d) Shibasaki M, Sasai H. Catalytic asymmetric carbon-carbon bond-forming reaction utilizing rare earth metal complexes. Pure Appl Chem 1996; 68: 523–530. e) DuBois J, Tomooka CS, Hong J, Carreira EM. Novel, stereoselective synthesis of 2-amino saccharides. J Am Chem Soc 1997; 119: 3179–3180. f) Bruncko M, Schlingloff G, Sharpless KB. N-Bromoacetamide—a new nitrogen source for the catalytic asymmetric aminohydroxylation of olefins. Angew Chem Int Ed Engl 1997; 36: 1483–1486. g) Kobayashi S, Ishitani H, Ueno M. Catalytic asymmetric synthesis of both syn- and anti-β-amino alcohols. J Am Chem Soc 1998; 120: 431–432. h) Tomoyasu T, Tomooka K, Nakai T. A new approach to asymmetric synthesis of β-amino alcohols by means of chirally protected amino alkyllithiums. Synlett 1998; 1147–1149. i) Chung SK, Lee JM. Stereoselective synthesis of β-amino alcohols: practical preparation of all four stereomers of N-PMB-protected sphingosine from L- and D-serine. Tetrahedron: Asymmetry 1999; 10: 1441–1444.
- 5a) Enders D, Reinhold U. Diastereoselective and enantioselective synthesis of 1,2-amino alcohols from glycol aldehyde hydrazones—asymmetric synthesis of (R,R)-statin. Angew Chem Int Ed Engl 1995; 34: 1219–1222. b) Enders D, Reinhold U. Diastereo- and enantioselective synthesis of 1,2-amino alcohols and protected α-hydroxy aldehydes from glycol aldehyde hydrazones. Liebigs Ann 1996; 11–26. c) Enders D, Reinhold U. Enantioselective synthesis of protected α-hydroxy aldehydes via alkylation of metalated chiral hydrazones. Synlett 1994; 792–794.
- 6a) Corey EJ, McCaully RJ, Sachdev HS. Studies on the asymmetric synthesis of α-amino acids. I. A new approach. J Am Chem Soc 1970; 92: 2476–2488. b) Corey EJ, Sachdev HS, Gougoutas JZ, Saenger W. Studies on the asymmetric synthesis of α-amino acids. II. New systems for highly specific asymmetric synthesis with conservation of the chiral reagent. J Am Chem Soc 1970; 92: 2488–2500.
- 7a) Kim YH, Park DH, Byun IS. Stereocontrolled enantioselective addition of diethylzinc to aldehydes using new chiral aminoalcohols. Heteroatom Chem 1992; 3: 51–54. b) Kim YH, Park DH, Byun IS. Stereocontrolled catalytic asymmetric reduction of ketones with oxazaborolidines derived from new chiral amino alcohols. J Org Chem 1993; 58: 4511–4512.
- 8a) Kim YH, Kim SH, Park DH. Asymmetric 1,3-dipolar cycloaddition of nitrile oxides to new chiral acrylamides derived from (S)-indoline-2-carboxylic acid. Tetrahedron Lett 1993; 34: 6063–6066. b) Park DH, Kim SH, Kim SM, Kim JD, Kim YH. A Lewis acid dependent asymmetric Diels-Alder process in the cyclization of new chiral acrylamides with dienes. Chem Commun 1999; 963–964.
- 9Kim YH, Byun IS, Choi JY. Highly diastereoselective addition of organometallics to novel chiral α-ketoamides of (S)-2-methoxymethyl-indoline. Tetrahedron: Asymmetry 1995; 6: 1025–1026.
- 10Kim YH, Kim SH. Highly stereoselective allylation to chiral α-keto amides derived from (S)-indoline-2-carboxylic acid—asymmetric synthesis of functionalized tertiary homoallyl alcohols. Tetrahedron Lett 1995; 36: 6895–6898.
- 11a) Kim YH, Choi JY. Diastereoselective addition of organolithiums to new chiral hydrazones. Enantioselective synthesis of (R)-coniine. Tetrahedron Lett 1996; 37: 5543–5546. b) Choi JY, Kim YH. Highly diastereoselective addition of trimethylsilyl cyanide to chiral hydrazones in the presence of Et2AlCl. Tetrahedron Lett 1996; 37: 7795–7796.
- 12Kim SM, Byun IS, Kim YH. Diastereoselective pinacol coupling reactions of α-ketoamides mediated by SmI2: synthesis of enantiomerically pure both S and R quaternary tartaric acids. Angew Chem Int Ed Engl 2000; 39: 728–731.
- 13a) Takahashi H, Tomita K, Otomasu H. Asymmetric synthesis of (R)-α-phenylalkylamines via alkylation of chiral hydrazones by Grignard reagents. J Chem Soc Chem Commun 1979; 668–669. b) Takahashi H, Tomita K, Nogochi H. Asymmetric synthesis by using the chirality of l-ephedrine. II. Synthesis of (R)-α-phenylalkylamine. Chem Pharm Bull 1981; 29: 3387–3391. c) Takahashi H, Suzuki Y. Alkylation of a chiral hydrazone by means of asymmetric addition of Grignard reagents to the carbon-nitrogen double bond. Chem Pharm Bull 1983; 31: 4295–4299. d) Enders D, Schubert H, Nübling C. Enantioselective synthesis of α-substituted primary amines by nucleophilic addition to aldehyde-SAMP hydrazones. Angew Chem Int Ed Engl 1986; 25: 1109–1110. e) Denmark SE, Weber T, Piotrowski DW. Organocerium additions to SAMP-hydrazones: general synthesis of chiral amines. J Am Chem Soc 1987; 109: 2224–2225.
- 14a) Seebach D, Hässig R, Gabriel J. 13C-NMR.-Spektroskopie von organolithiumverbindungen bei tiefen temperaturen. Strukturinformation aus der 13C, 6Li-Kopplung. Helv Chim Acta 1983; 66: 308–337. b) Bauer W, Seebach D. Bestimmung des aggregationsgrads lithiumorganischer verbindungen durch kryoskopie in tetrahydrofuran. Helv Chim Acta 1984; 67: 1972–1988. c) Jackman LM, Scarmoutzos LM. Structure of phenyllithium in solution. J Am Chem Soc 1984; 106: 4627–4629. d) Wehman E, Jastrzebski JTBH, Ernsting J-M, Grove DM, Koten G. Structural investigation of aryllithium clusters in solution. I. A 13C and 7Li NMR study of phenyllithium and some methyl-substituted phenyllithium derivatives. J Organomet Chem 1988; 353: 133–143. e) Eppers O, Günther H. Vicinal 2H/1H isotope shifts for 6Li-NMR and the aggregation behavior of phenyllithium. Helv Chim Acta 1992; 75: 2553–2562.
- 15Bauer W, Winchester WR, Schleyer P von R. Monomeric organolithium compounds in tetrahydrofuran: tert-butyllithium, sec-butyllithium, supermesityllithium, mesityllithium, and phenyllithium. Carbon-lithium coupling constants and the nature of carbon-lithium bonding. Organometallics 1987; 6: 2371–2379.
- 16a) Apesella L, Lamanna A. Optically active 1-phenyl-2-hydroxy-ethylamines. Chem Abstr 1954; 48: 3921. b) Saigo K, Miura H, Ishizaki K, Nohira H. Preferential crystallization of 2-amino-2-phenylethanol and its application as a resolving agent. Bull Chem Soc Jpn 1982; 55: 1188–1190.