Conformational analysis and rotation barriers of 2-aminoethanethiol and 2-aminoethanol: An ab initio study
Abstract
All the possible rotamers of 2-aminoethanol and 2-amino-ethanethiol were fully optimized at the ab initio level using the 6–31G** basis with correlation energy inclusion and zero-point energy evaluation. Thirteen local minima for the former and 14 for the latter compound were found. In both molecules, the gauche′-gauche-gauche′ (g′Gg′) is the prevailing conformation, but in the sulfurated compound, it is accompanied by relevant percentages of other conformers, owing to the very low ΔE values. The stability of the g′Gg′ accommodation derives mainly from the presence of weak hydrogen bridges (O(SINGLE BOND)H···N and S(SINGLE BOND)H···N, respectively). The rotation barriers around the C(SINGLE BOND)C and C(SINGLE BOND)N bonds are higher than those around the C(SINGLE BOND)O and C(SINGLE BOND)S ones. © 1996 John Wiley & Sons, Inc.