Interpolant polynomial technique applied to the PPP model. I. Asymptotics for excited states of cyclic polyenes in the finite cyclic Hubbard model
Corresponding Author
P. Bracken
Department of Applied Mathematics, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
Department of Applied Mathematics, University of Waterloo, Waterloo, Ontario N2L 3G1, CanadaSearch for more papers by this authorJ. Čížek
Department of Applied Mathematics, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
Search for more papers by this authorCorresponding Author
P. Bracken
Department of Applied Mathematics, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
Department of Applied Mathematics, University of Waterloo, Waterloo, Ontario N2L 3G1, CanadaSearch for more papers by this authorJ. Čížek
Department of Applied Mathematics, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
Search for more papers by this authorAbstract
For theoretical reasons, and on account of the development of a new interpolation technique, it is useful and important to examine the asymptotic behavior of the solution to the one-dimensional Hubbard model. In this article, it is shown how perturbative expansions for the energy can be developed in the asymptotic region of the relevant coupling for all the relevant excited states of cyclic polyene rings. © 1996 John Wiley & Sons, Inc.
References
- 1 P. Bracken and J. Čížek, Phys. Lett. A 194, 337 (1994).
- 2
R. G. Parr,
The Quantum Theory of Molecular Electronic Structure
(Benjamin, New York,
1963).
See the genesis of the PPP model on the American side since 1950 and the British side since 1953:
J. Linderberg and
Y. Öhrn,
Propagators in Quantum Chemistry
(Academic Press, New York,
1973);
Special PPP model issue of
Int. J. Quantum Chem.
37, (4)
(1990);
A. P. Balachandran,
E. Ercolessi,
G. Morani, and
A. M. Srivastava,
Hubbard Model and Anyon Superconductivity,
Lecture Notes in Physics,
Vol. 38
(World Scientific, Singapore,
1990);
10.1142/9789812799128 Google ScholarA. Montorsi, The Hubbard Model (A Reprint Volume) (World Scientific, Singapore, 1992).
- 3 J. Hubbard, Proc, Soc. A 276, 238 (1963): F. A. Matsen, Int. J. Quantum. Chem. 37, 389 (1990).
- 4
J. Koutecký,
Chem. Phys. Lett.
1, 249
(1967);
J. Paldus,
J. Čížek, and
I. Hubač,
Int. J. Quantum Chem. Symp.
8, 293
(1974);
J. Čížek,
J. Paldus, and
I. Hubač,
Int. J. Quantum Chem.
8, 95
(1974);
10.1016/S0065-3276(08)60060-X Google ScholarJ. Koutecký, J. L. Paldus, and J. Čížek, J. Chem. Phys. 82, 1722 (1985); J. Čížek, F. Vinette, and J. Paldus, Int. J. Quantum Chem. 38, 831 (1990); F. Vinette, Int. J. Quantum Chem. 52, 1737 (1992).
- 5 M. Takahashi, P. Bracken, J. Čížek, and J. Paldus, Int. J. Quantum Chem. 53, 457 (1995).
- 6 P. Bracken and J. Čížek, Int. J. Quantum Chem. 53, 467 (1995).
- 7 E. H. Lieb and F. Y. Wu, Phys. Rev. Lett. 20, 1445 (1968).
- 8 D. J. Klein and W. A. Seitz, Phys. Rev, B, 8, 2336 (1973).
- 9 W. A. Seitz and D. J. Klein, Phys. Rev. B 9, 2159 (1974).
- 10 D. J. Klein and W. A. Seitz, Phys. Rev. B 10, 3217 (1974).
- 11 R. Daudel, R. Lefebvre, and C. Moser, Quantum Chemistry: Methods and Applications (Wiley-Interscience, New York, 1960); L. Salem, The Molecular Orbital Theory of Conjugated Systems. (W. A. Benjamin, New York, 1966).
- 12
B. W. Char,
K. O. Geddes,
G. H. Gonnet,
B. L. Leong,
M. B. Monagan, and
S. M. Watt,
Maple V First Leaves
(Springer,
1991):
B. W. Char,
K. O. Geddes,
G. H. Gonnet,
B. L. Leong,
M. B. Monagon, and
S. M. Watt,
Maple V Library Reference Manual
(Springer
1991);
10.1007/978-1-4757-2133-1 Google ScholarB. W. Char, K. O. Geddes, G. H. Gonnet, B. L. Leong, M. B. Monagon, and S. M. Watt, Maple V. Language Reference Manual (Springer, Harrisonburg, VA, 1991).10.1007/978-1-4615-7386-9 Google Scholar
- 13 P. Bracken and J. Čížek, in preparation.
- 14 H. Bethe, Z. Phys. 71, 205 (1931); L. Hulthen, Ark. Mat., Astron. Fys. A 26, 11 (1938).
- 15 M. Gaudin, Phys. Lett. A 24, 55 (1967).
- 16 C. N. Yang, Phys. Rev. Lett. 19, 1312 (1967).
- 17 M. Gaudin, La Fonction d'Onde de Bethe (Mason, Paris, 1983).
- 18 F. Woynarovich, J. Phys. C 15, 85 (1982); J. Phys., 15, 97 (1982); J. Phys., 15, 2985 (1982).
- 19 K. Hashimoto, Int. J. Quantum Chem. 28, 581 (1985).
- 20 K. Hashimoto, Int. J. Quantum Chem. 30, 633 (1986).
- 21 O. J. Heilmann and E. H. Lieb, Trans. N.Y. Acad. Sci. 33, 116 (1971).
- 22 F. H. L. Essler, V. E. Korepin, and K. Schoutens, Nucl. Phys. B 372, 559 (1992).
- 23 J. Čížek, J. Paldus, L. Šroubkova, and J. Vojtik, J. Coll, Czech. Chem. Commun. 36, 599 (1971).
- 24 M. D. Gould, J. Paldus, and J. Čížek, Int. J. Quantum Chem. 50, 207 (1994); U. Taneri and J. Paldus, Int. J. Quantum Chem. 28, 139 (1994).
- 25 G. A. Baker, Jr., Essentials of Padé Approximants (Academic Press, New York, 1975); G. A. Baker, Jr., and P. Graves-Morris, Encyclopedia of Mathematics, Parts I and II, G.-C. Rota, Ed., Addison-Wesley, Don Mills (1981).
- 26 J. Čížek and P. Bracken, Int. J. Quantum Chem. 57, 1033 (1996).
- 27
F. A. Matsen,
Int. J. Quantum Symp.
8, 379
(1974);
Israel J. of Chem.
19, 201
(1980);
Lie Groups,
Quantum Mechanics, Many Body Theory and Organic Chemistry,
in Symmetries in Science,
Plenum, New York,
pp. 217–232
(1980);
J. Mol. Structure,
259, 65
(1992).
10.1016/0166-1280(92)87006-L Google Scholar
- 28 F. A. Matsen and R. Pauncz, The Unitary Group in Quantum Chemistry, Elsevier, Amsterdam, (1986); T. L. Welsher, W. A. Seitz, B. Yurke, R. A. Gonzales, and F. A. Matsen, J. Amer. Chem. Soc. 99, 8389 (1977); G. T. Worth, B. L. Bartlett, and F. A. Matsen, Chem. Phys. Lett. 53, 294 (1978).