The Way Forward: Improving Genetic Systems
Ulrike G. Munderloh
Department of Entomology, University of Minnesota, St. Paul, MN, 55108
Search for more papers by this authorRoderick F. Felsheim
Department of Entomology, University of Minnesota, St. Paul, MN, 55108
Search for more papers by this authorNicole Y. Burkhardt
Department of Entomology, University of Minnesota, St. Paul, MN, 55108
Search for more papers by this authorMichael J. Herron
Department of Entomology, University of Minnesota, St. Paul, MN, 55108
Search for more papers by this authorAdela S. Oliva Chávez
Department of Entomology, University of Minnesota, St. Paul, MN, 55108
Search for more papers by this authorCurtis M. Nelson
Department of Entomology, University of Minnesota, St. Paul, MN, 55108
Search for more papers by this authorTimothy J. Kurtti
Department of Entomology, University of Minnesota, St. Paul, MN, 55108
Search for more papers by this authorUlrike G. Munderloh
Department of Entomology, University of Minnesota, St. Paul, MN, 55108
Search for more papers by this authorRoderick F. Felsheim
Department of Entomology, University of Minnesota, St. Paul, MN, 55108
Search for more papers by this authorNicole Y. Burkhardt
Department of Entomology, University of Minnesota, St. Paul, MN, 55108
Search for more papers by this authorMichael J. Herron
Department of Entomology, University of Minnesota, St. Paul, MN, 55108
Search for more papers by this authorAdela S. Oliva Chávez
Department of Entomology, University of Minnesota, St. Paul, MN, 55108
Search for more papers by this authorCurtis M. Nelson
Department of Entomology, University of Minnesota, St. Paul, MN, 55108
Search for more papers by this authorTimothy J. Kurtti
Department of Entomology, University of Minnesota, St. Paul, MN, 55108
Search for more papers by this authorGuy H. Palmer
Paul G. Allen School for Global Animal Health, Washington State University, Pullman, WA
Search for more papers by this authorAbdu F. Azad
Department of Microbiology and Immunology, school of Medicine, University of Maryland-Baltimore, Baltimore, MD
Search for more papers by this authorSummary
This chapter reviews the research that has led to the first successes in genetic transformation of arthropod-borne bacteria belonging to the order Rickettsiales in the Alphaproteobacteria subdivision. Seminal results provided the very first evidence that direct genetic manipulation of rickettsiae was achievable, and that the bacteria were able to maintain and express foreign genetic sequences inserted via allelic exchange/homologous recombination under control of rickettsial or Escherichia coli promoters. This work set the stage for all subsequent research efforts aspiring to manipulate and analyze rickettsiae in a manner that is nearly commonplace in extracellular bacteria. The Himar1 transposase allele A7 has been successfully used for mutagenesis of A.phagocytophilum and fever groups of rickettsial tick symbionts have been spotted using fluorescent markers and antibiotic resistance. Selection of mutants using growth inhibitors is an indispensible strategy to recover mutants from the background of nontransformed bacteria. The most common strategy is incorporation of an antibiotic resistance gene in the transformation cassette. When working with human or animal pathogens, this is a sensitive issue, as introduction of resistance to antibiotics used to treat disease induced by the pathogen to be transformed is not encouraged. This poses a dilemma, as the most effective selection is likely achieved by using the clinically most effective antibiotics. The authors suggests that shuttle vectors would be useful for testing the function of genes that are naturally defective in certain Rickettsia spp., in complementation assays, overexpression of native or foreign genes, testing gene regulation, and other applications carried out in E.coli.
References
- Andersson, J. O., and S. E. G. Andersson. 1999. Genome degradation is an ongoing process in Rickettsia . Mol. Biol. Evol. 16: 1178–1191.
- Arora, S. K., M. Bangera, S. Lory, and R. Ramphal. 2001. A genomic island in Pseudomonas aeruginosa carries the determinants of flagellin glycosylation. Proc. Natl. Acad. Sci. USA 98: 9342–9347.
- Baldridge, G. D., N. Y. Burkhardt, R. E. Felsheim, T. J. Kurtti, and U. G. Munderloh. 2007a. Transposon insertion reveals pRM, a plasmid of Rickettsia monacensis . Appl. Environ. Microbiol. 73: 4984–4995.
- Baldridge, G. D., N. Y. Burkhardt, R. F. Felsheim, T. J. Kurtti, and U. G. Munderloh. 2008. Plasmids of the pRM/pRF family occur in diverse Rickettsia species. Appl. Environ. Microbiol. 74: 645–652.
- Baldridge, G. D., N. Burkhardt, M. J. Herron, T. J. Kurtti, and U. G. Munderloh. 2005. Analysis of fluorescent protein expression in transformants of Rickettsia monacensis, an obligate intracellular tick symbiont. Appl. Environ. Microbiol. 71: 2095–2105.
- Baldridge, G. D., N. Y. Burkhardt, M. B. Labruna, R. C. Pacheco, C. D. Paddock, P. C. Williamson, P. M. Billingsley, R. F. Felsheim, T. J. Kurtti, and U. G. Munderloh. 2010a. Wide dispersal and possible multiple origins of low-copy-number plasmids in Rickettsia species associated with blood-feeding arthropods. Appl. Environ. Microbiol. 76: 1718–1731.
- Baldridge, G. D., N. Y. Burkhardt, A. S. Oliva, T. J. Kurtti, and U. G. Munderloh. 2010b. Rickettsial ompB promoter regulated expression of GFPuv in transformed Rickettsia montanensis . PLoS One 5: e8965.
- Baldridge, G. D., T. J. Kurtti, N. Burkhardt, A. S. Baldridge, C. M. Nelson, A. S. Oliva, and U. G. Munderloh. 2007b. Infection of Ixodes scapularis ticks with Rickettsia monacensis expressing green fluorescent protein: a model system. J. Invertebr. Pathol. 94: 163–174.
- Barbet, A. F., J. T. Agnes, A. L. Moreland, A. M. Lundgren, A. R. Alleman, S. M. Noh, K. A. Brayton, U. G. Munderloh, and G. H. Palmer. 2005. Identification of functional promoters in the msp2 expression loci of Anaplasma marginale and Anaplasma phagocytophilum . Gene 353: 89–97.
- Bassler, L. 1999. How bacteria talk to each other: regulation of gene expression by quorum sensing. Curr. Opin. Microbiol. 2: 582–587.
- Bechah, Y., K. El Karkouri, O. Mediannikov, Q. Leroy, N. Pelletier, C. Robert, C. Médigue, J. L. Mege, and D. Raoult. 2010. Genomic, proteomic, and transcriptomic analysis of virulent and avirulent Rickettsia prowazekii reveals its adaptive mutation capabilities. Genome Res. 20: 655–663.
- Bertram, R., and W. Hillen. 2008. The application of Tet repressor in prokaryotic gene regulation and expression. Microb. Biotechnol. 1: 2–16.
- Blanc, G., H. Ogata, C. Robert, S. Audic, J. M. Claverie, and D. Raoult. 2007. Lateral gene transfer between obligate intracellular bacteria: evidence from the Rickettsia massiliae genome. Genome Res. 17: 1657–1664.
- Bouet, J.-Y., K. Nordstrom, and D. Lane. 2007. Plasmid partition and incompatibility—the focus shifts. Mol. Microbiol. 65: 1405–1414.
- Boussau, B., E. O. Karlberg, A. C. Frank, B. A. Legault, and S. G. E. Andersson. 2004. Computational inference of scenarios for α-proteobacterial genome evolution. Proc. Natl. Acad. Sci. USA 101: 9722–9727.
- Brayton, K. A., L. S. Kappmeyer, D. R. Herndon, M. J. Dark, D. L. Tibbals, G. H. Palmer, T. C. McGuire, and D. P. Knowles, Jr. 2005. Complete genome sequencing of Anaplasma marginale reveals that the surface is skewed to two superfamilies of outer membrane proteins. Proc. Natl. Acad. Sci. USA 102: 844–849.
- Brouqui, P., J. R. Harle, J. Delmont, C. Frances, P. J. Weiller, and D. Raoult. 1997. African tick-bite fever. An imported spotless rickettsiosis. Arch. Intern. Med. 157: 119–124.
- Burkhardt, N. Y., G. D. Baldridge, P. C. Williamson, P. M. Billingsley, R. F. Felsheim, T. J. Kurtti, and U. G. Munderloh. 2010. Development of shuttle vectors for transformation of diverse Rickettsia species, PLoS One 6: e29511.
- Cardwell, M. M., and J. J. Martinez. 2009. The Sca2 autotransporter protein from Rickettsia conorii is sufficient to mediate adherence to and invasion of cultured mammalian cells. Infect. Immun. 77: 5272–5280.
- Cevallos, M. A., R. Cervantes-Rivera, and R. M. Gutiérrez-Ríos. 2008. The repABC plasmid family. Plasmid 60: 19–37.
- Chan, Y. G., M. M. Cardwell, T. M. Hermanas, T. Uchiyama, and J. J. Martinez. 2009. Rickettsial outer-membrane protein B (rOmpB) mediates bacterial invasion through Ku70 in an actin, c-Cbl, clathrin and caveolin 2-dependent manner. Cell. Microbiol. 11: 629–644.
- Clark, T. R., D. W. Ellison, B. Kleba, and T. Hackstadt. 2011. Complementation of Rickettsia rickettsii RelA/SpoT restores a non-lytic plaque phenotype. Infect. Immun. 79: 1631–1637.
- Collins, N. E., J. Liebenberg, E. P. de Villiers, K. A. Brayton, E. Louw, A. Pretorius, F. E. Faber, H. van Heerden, A. Josemans, M. van Kleef, H. C. Steyn, M. F. van Strijp, E. Zweygarth, F. Jongejan, J. C. Maillard, D. Berthier, M. Botha, F. Joubert, C. H. Corton, N. R. Thomson, M. T. Allsopp, and B. A. Allsopp. 2005. The genome of the heartwater agent Ehrlichia ruminantium contains multiple tandem repeats of actively variable copy number. Proc. Natl. Acad. Sci. USA 102: 838–843.
- Crameri, A., E. A. Whitehorn, E. Tate, and W. P. Stemmer. 1996. Improved green fluorescent protein by molecular evolution using DNA shuffling. Nat. Biotechnol. 14: 315–319.
- de la Fuente, J., J. C. Garcia-Garcia, E. F. Blouin, and K. M. Kocan. 2001. Differential adhesion of major surface proteins 1a and 1b of the ehrlichial cattle pathogen Anaplasma marginale to bovine erythrocytes and tick cells. Int. J. Parasitol. 31: 145–153.
- de Sousa, R., L. Duque, J. Poças, J. Torgal, F. Bacellar, J. P. Olano, and D. H. Walker. 2008. Lymphangitis in a Portuguese patient infected with Rickettsia sibirica . Emerg. Infect. Dis. 14: 529–531.
- Donovan, B. J., D. J. Weber, J. C. Rublein, and R. H. Raasch. 2002. Treatment of tick-borne diseases. Ann. Pharmacother. 36: 1590–1597.
- Doré, M., R. J. Korthuis, D. N. Granger, M. L. Entman, and C. W. Smith. 1993. P-selectin mediates spontaneous leukocyte rolling in vivo. Blood 82: 1308–1316.
- Driskell, L. O., X.-J. Yu, L. Zhang, Y. Liu, V. L. Popov, D. H. Walker, A. M. Tucker, and D. O. Wood. 2009. Directed mutagenesis of the Rickettsia prowazekii pld gene encoding phospholipase D. Infect. Immun. 77: 3244–3248.
- Dunning Hotopp, J. C., M. Lin, R. Madupu, J. Crabtree, S. V. Angiuoli, J. Eisen, R. Seshadri, Q. Ren, M. Wu, T. R. Utterback, S. Smith, M. Lewis, H. Khouri, C. Zhang, H. Niu, Q. Lin, N. Ohashi, N. Zhi, W. Nelson, L. M. Brinkac, R. J. Dodson, M. J. Rosovitz, J. Sundaram, S. C. Daugherty, T. Davidsen, A. S. Durkin, M. Gwinn, D. H. Haft, J. D. Selengut, S. A. Sullivan, N. Zafar, L. Zhou, F. Benahmed, H. Forberger, R. Halpin, S. Mulligan, J. Robinson, O. White, Y. Rikihisa, and H. Tettelin. 2006. Comparative genomics of emerging human ehrlichiosis agents. PLoS Genet. 2: e21.
- Ellison, D. W., T. R. Clark, D. E. Sturdevant, K. Virtaneva, S. F. Porcella, and T. Hackstadt. 2008. Genomic comparison of virulent Rickettsia rickettsii Sheila Smith and avirulent Rickettsia rickettsii Iowa. Infect. Immun. 76: 542–550.
- Ettema, T. J. G., and S. G. E. Andersson. 2009. The α-proteobacteria: the Darwin finches of the bacterial world. Biol. Lett. 5: 429–432.
- Felsheim, R. F., M. J. Herron, C. and U. G. Munderloh. 2007. Selection of Anaplasma phagocytophilum transformants with an herbicide resistance system, abstr. 3. 21st Meet. Am. Soc. Rickettsiol., Colorado Springs, CO, 8 to 11 September 2007.
- Felsheim, R. F., M. J. Herron, C. M. Nelson, N. Y. Burkhardt, A. F. Barbet, T. J. Kurtti, and U. G. Munderloh. 2006. Transformation of Anaplasma phagocytophilum . BMC Biotechnol. 6: 42.
- Felsheim, R. F., T. J. Kurtti, and U. G. Munderloh. 2009. Genome sequence of the endosymbiont Rickettsia peacockii and comparison with virulent Rickettsia rickettsii: identification of virulence factors. PLoS One 4: e8361.
- Felsheim, R. F., A. S. Oliva Chávez, G. H. Palmer, L. Crosby, A. F. Barbet, T. J. Kurtti, and U. G. Munderloh. 2010. Transformation of Anaplasma marginale . Vet. Parasitol. 167: 167–174.
- Fournier, P. E., K. El Karkouri, Q. Leroy, C. Robert, B. Giumelli, P. Renesto, C. Socolovschi, P. Parola, S. Audic, and D. Raoult. 2009. Analysis of the Rickettsia africae genome reveals that virulence acquisition in Rickettsia species may be explained by genome reduction. BMC Genomics 10: 166.
- Fournier, P. E., F. Gouriet, P. Brouqui, F. Lucht, and D. Raoult. 2005. Lymphangitis-associated rickettsiosis, a new rickettsiosis caused by Rickettsia sibirica mongolotimonae: seven new cases and review of the literature. Clin. Infect. Dis. 40: 1435–1444.
- Funnell, B. 2005. Partition-mediated plasmid pairing. Plasmid 53: 119–125.
- Fuxelius, H. H., A. C. Darby, N. H. Cho, and S. G. E. Andersson. 2008. Visualization of pseudogenes in intracellular bacteria reveals the different tracks to gene destruction. Genome Biol. 9: R42.
- Fuxelius, H. H., A. Darby, C. K. Min, N. M. Cho, and S. G. E. Andersson. 2007. The genomic and metabolic diversity of Rickettsia . Res. Microbiol. 158: 745–753.
- Garcia-Garcia, J. C., J. de la Fuente, G. Bell-Eunice, E. F. Blouin, and K. M. Kocan. 2004. Glycosylation of Anaplasma marginale major surface protein 1a and its putative role in adhesion to tick cells. Infect. Immun. 72: 3022–3030.
- Gill, H. S., and D. Eisenberg. 2001. The crystal structure of phosphinothricin in the active site of glutamine synthetase illuminates the mechanism of enzymatic inhibition. Biochemistry 40: 1903–1912.
- Gillespie, J. J., M. S. Beier, M. S. Rahman, N. C. Ammerman, J. M. Shallom, A. Purkayastha, B. S. Sobral, and A. F. Azad. 2007. Plasmids and rickettsial evolution: insight from Rickettsia felis . PLoS One 2: e266.
- Gillespie, J. J., K. Williams, M. Shukla, E. E. Snyder, E. K. Nordberg, S. M. Ceraul, C. Dharmanolla, D. Rainey, J. Soneja, J. M. Shallom, N. D. Vishnubhat, R. Wattam, A. Purkayastha, M. Czar, O. Crasta, J. C. Setubal, A. F. Azad, and B. S. Sobral. 2008. Rickettsia phylogenomics: unwinding the intricacies of obligate intracellular life. PLoS One 3: e2018.
- Grundy, F. J. and T. M. Henkin. 2006. From ribosome to riboswitch: control of gene expression in bacteria by RNA structural rearrangements. Crit. Rev. Biochem. Mol. Biol. 41: 329–338.
- Herron, M. J., C. M. Nelson, J. Larson, K. R. Snapp, G. S. Kansas, and J. L. Goodman. 2000. Intracellular parasitism by the human granulocytic ehrlichiosis bacterium through the P-selectin ligand, PSGL-1. Science 288: 1653–1656.
- Herron, P. R., G. Hughes, G. Chandra, S. Fielding, and P. J. Dyson. 2004. Transposon Express, a software application to report the identity of insertions obtained by comprehensive transposon mutagenesis of sequenced genomes: analysis of the preference for in vitro Tn5 transposition into GC-rich DNA. Nucleic Acids Res. 32: e113.
- Holman, R. C., C. D. Paddock, A. T. Curns, J. W. Krebs, J. H. McQuiston, and J. E. Childs. 2001. Analysis of risk factors for fatal Rocky Mountain spotted fever: evidence for superiority of tetracyclines for treatment. J. Infect. Dis. 184: 1437–1444.
- Kenyon, R. H., W. M. Acree, G. G. Wright, and F. W. Melchior, Jr. 1972. Preparation of vaccines for Rocky Mountain spotted fever from rickettsiae propagated in cell culture. J. Infect. Dis. 125: 146–152.
- Kurtti, T. J., J. A. Simser, G. D. Baldridge, A. T. Palmer, and U. G. Munderloh. 2005. Factors influencing in vitro infectivity and growth of Rickettsia peacockii (Rickettsiales: Rickettsiaceae), an endosymbiont of the Rocky Mountain wood tick, Dermacentor andersoni (Acari, Ixodidae). J. Invertebr. Pathol. 90: 177–186.
- Lampe, D. J., B. J. Akerley, E. J. Rubin, J. J. Mekalanos, and H. M. Robertson. 1999. Hyperactive transposase mutants of the Himar1 mariner transposon. Proc. Natl. Acad. Sci. USA 96: 11428–11433.
- Lampe, D. J., M. E. Churchill, and H. M. Robertson. 1996. A purified mariner transposase is sufficient to mediate transposition in vitro . EMBO J. 15: 5470–5479.
- Lampe, D. J., T. E. Grant, and H. M. Robertson. 1998. Factors affecting transposition of the Himar1 mariner transposon in vitro . Genetics 149: 179–187.
- Li, H., and D. H. Walker. 1998. rOmpA is a critical protein for the adhesion of Rickettsia rickettsii to host cells. Microb. Pathog. 24: 289–298.
- Lin, M., T. Kikuchi, H. M. Brewer, A. D. Norbeck, and Y. Rikihisa. 2011. Global proteomic analysis of two tick-borne emerging zoonotic agents: Anaplasma phagocytophilum and Ehrlichia chaffeensis . Front. Microbiol. 2: 24.
- Liu, Z.-M., A. M. Tucker, L. O. Driskell, and D. O. Wood. 2007. Mariner-based transposon mutagenesis of Rickettsia prowazekii . Appl. Environ. Microbiol. 73: 6644–6649.
- Lutz, K. A., J. E. Knapp, and P. Maliga. 2001. Expression of bar in the plastid genome confers herbicide resistance. Plant Physiol. 125: 1585–1590.
- Mahan, M. J., J. M. Slauch, and J. J. Mekalanos. 1993. Selection of bacterial virulence genes that are specifically induced in host tissues. Science 259: 686–688.
- Martinez, J. J., S. Seveau, E. Veiga, S. Matsuyama, and P. Cossart. 2005. Ku70, a component of DNA-dependent protein kinase, is a mammalian receptor for Rickettsia conorii . Cell 123: 1013–1023.
- McClintock, B. 1950. The origin and behavior of mutable loci in maize. Proc. Natl. Acad. Sci. USA 36: 344–355.
- McGarey, D. J., A. F. Barbet, G. H. Palmer, T. C. McGuire, and D. R. Allred. 1994. Putative adhesins of Anaplasma marginale: major surface polypeptides 1a and 1b. Infect. Immun. 62: 4594–4601.
- Moran, J. S., and W. C. Levine. 1995. Drugs of choice for the treatment of uncomplicated gonococcal infections. Clin. Infect. Dis. 1: S47–S65.
- Munderloh, U. G., S. D. Jauron, V. Fingerle, L. Leitritz, S. F. Hayes, J. M. Hautman, C. M. Nelson, B. W. Huberty, T. J. Kurtti, G. G. Ahlstrand, B. Greig, M. A. Mellencamp, and J. L. Goodman. 1999. Invasion and intracellular development of the human granulocytic ehrlichiosis agent in tick cell culture. J. Clin. Microbiol. 37: 2518–2524.
- Munderloh, U. G., and T. J. Kurtti. 1995. Cellular and molecular interrelationships between ticks and prokaryotic tick-borne pathogens. Annu. Rev. Entomol. 40: 221–243.
- Munderloh, U. G., M. J. Lynch, M. J. Herron, A. T. Palmer, T. J. Kurtti, R. D. Nelson, and J. L. Goodman. 2004. Infection of endothelial cells with Anaplasma marginale and A. phagocytophilum . Vet. Microbiol. 101: 53–64.
- Nelson, C. M., M. J. Herron, R. F. Felsheim, B. R. Schloeder, S. M. Grindle, A. O. Chavez, T. J. Kurtti, and U. G. Munderloh. 2008. Whole genome transcription profiling of Anaplasma phagocytophilum in human and tick host cells by tiling array analysis. BMC Genomics 9: 364.
- Niebylski, M. L., M. E. Schrumpf, W. Burgdorfer, E. R. Fischer, K. L. Gage, and T. G. Schwan. 1997. Rickettsia peacockii sp. nov., a new species infecting wood ticks, Dermacentor andersoni, in western Montana. Int. J. Syst. Bacteriol. 47: 446–452.
- Ogata, H., P. Renesto, S. Audic, C. Robert, G. Blanc, P. E. Fournier, H. Parinello, J. M. Claverie, and D. Raoult. 2005. The genome sequence of Rickettsia felis identifies the first putative conjugative plasmid in an obligate intracellular parasite. PLoS Biol. 3: e248.
- Oliva Chávez, A. S., R. F. Felsheim, N. Y. Burkhardt, T. J. Kurtti, and U. G. Munderloh. 2010. Identification of genes involved in the infection process of tick (ISE6) and human (HL-60) cells by the tick-borne pathogen Anaplasma phagocytophilum . 42nd Annu. Conf. Soc. Vector Ecol., Raleigh, NC, 26 to 30 September 2010.
- Purvis, J. J., and M. S. Edwards. 2000. Doxycycline use for rickettsial disease in pediatric patients. Pediatr. Infect. Dis. J. 19: 871–874.
- Qin, A., A. M. Tucker, A. Hines, and D. O. Wood. 2004. Transposon mutagenesis of the obligate intracellular pathogen Rickettsia prowazekii . Appl. Environ. Microbiol. 70: 2816–2822.
- Rachek, L. I., A. Hines, A. M. Tucker, H. H. Winkler, and D. O. Wood. 2000. Transformation of Rickettsia prowazekii to erythromycin resistance encoded by the Escherichia coli ereB gene. J. Bacteriol. 182: 3289–3291.
- Rachek, L. I., A. M. Tucker, H. H. Winkler, and D. O. Wood. 1998. Transformation of Rickettsia prowazekii to rifampin resistance. J. Bacteriol. 180: 2118–2124.
- Ramabu, S. S., M. W. Ueti, K. A. Brayton, T. V. Baszler, and G. H. Palmer. 2010. Identification of Anaplasma marginale proteins specifically upregulated during colonization of the tick vector. Infect. Immun. 78: 3047–3052.
- Renesto, P., E. Gouin, and D. Raoult. 2002. Expression of green fluorescent protein in Rickettsia conorii . Microb. Pathog. 33: 17–21.
- Renesto, P., L. Samson. H. Ogata, S. Azza, P. Fourquet, J. P. Gorvel, R. A. Heinzen, and D. Raoult. 2006. Identification of two putative rickettsial adhesins by proteomic analysis. Res. Microbiol. 157: 605–612.
- Riley, S. P., K. C. Goh, T. M. Hermanas, M. M. Cardwell, Y. G. Chan, and J. J. Martinez. 2010. The Rickettsia conorii autotransporter protein Sca1 promotes adherence to nonphagocytic mammalian cells. Infect. Immun. 78: 1895–1904.
- Sahni, S. K. and E. Rydkina. 2009. Progress in the functional analysis of rickettsial genes through directed mutagenesis of Rickettsia prowazekii phospholipase D. Future Microbiol. 4: 1249–1253.
- Sakharkar, K. R., M. K. Sakharkar, C. Verma, and V. T. K. Chow. 2005. Comparative study of overlapping genes in bacteria, with special reference to Rickettsia prowazekii and Rickettsia conorii . Int. J. Syst. Evol. Microbiol. 55: 1205–1209.
- Shaner, N. C., P. A. Steinbach, and R. Y. Tsien. 2005. A guide to choosing fluorescent proteins. Nat. Methods 2: 905–909.
- Shapiro, J. A. 1999. Transposable elements as the key to a 21st century view of evolution. Genetica 107: 171–179.
- Simser, J. A., M. S. Rahman, S. M. Dreher-Lesnick, and A. F. Azad. 2005. A novel and naturally occurring transposon, ISRpe1 in the Rickettsia peacockii genome disrupting the rickA gene involved in actin-based motility. Mol. Microbiol. 58: 71–79.
- Stary, E., R. Gaupp, S. Lechner, M. Leibig, E. Tichy, M. Kolb, and R. Bertram. 2010. New architectures for Tet-on and Tet-off regulation in Staphylococcus aureus . Appl. Environ. Microbiol. 76: 680–687.
- Stewart, P. E., and P. A. Rosa. 2008. Transposon mutagenesis of the Lyme disease agent Borrelia burgdorferi . Methods Mol. Biol. 431: 85–95.
- Suk, J. E., A. Zmorzynska, A. Hunger, W. Biederbick, J. Sasse, H. Maidhof, and J. C. Semenza. 2011. Dual-use research and technological diffusion: reconsidering the bioterrorism threat spectrum. PLoS Pathog. 7: e1001253.
- Troyer, J. M., S. Radulovic, and A. F. Azad. 1999. Green fluorescent protein as a marker in Rickettsia typhi transformation. Infect. Immun. 67: 3308–3311.
- Uchiyama, T. 2003. Adherence to and invasion of Vero cells by recombinant Escherichia coli expressing the outer membrane protein rOmpB of Rickettsia japonica . Ann. N. Y. Acad. Sci. 990: 585–590.
- Uchiyama, T., H. Kawano, and Y. Kusuhara. 2006. The major outer membrane protein rOmpB of spotted fever group rickettsiae functions in the rickettsial adherence to and invasion of Vero cells. Microbes Infect. 8: 801–809.
- Vellaiswamy, M., M. Kowalczewska, V. Merhej, C. Nappez, R. Vincentelli, P. Renesto, and D. Raoult. 2011. Characterization of rickettsial adhesin Adr2 belonging to a new group of adhesins in α-proteobacteria. Microb. Pathog. 50: 233–242.
- Walker, D. H., G. A. Valbuena, and J. P. Olano. 2003. Pathogenic mechanisms of diseases caused by Rickettsia . Ann. N. Y. Acad. Sci. 990: 1–11.
- Wu, Q., J. Pei, C. Turse, and T. A. Ficht. 2006. Mariner mutagenesis of Brucella melitensis reveals genes with previously uncharacterized roles in virulence and survival. BMC Microbiol. 6: 102.