Transmission and the Determinants of Transmission Efficiency
Shane M. Ceraul
Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, 21201
Search for more papers by this authorShane M. Ceraul
Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, 21201
Search for more papers by this authorGuy H. Palmer
Paul G. Allen School for Global Animal Health, Washington State University, Pullman, WA
Search for more papers by this authorAbdu F. Azad
Department of Microbiology and Immunology, school of Medicine, University of Maryland-Baltimore, Baltimore, MD
Search for more papers by this authorSummary
Bacteria within the order Rickettsiales would have little impact on human and veterinary medicine in the absence of the arthropod vector. Interestingly, the influence of primary infections with one Rickettsia sp. can influence the success of transovarial transmission of a second. This chapter details some fascinating trends observed regarding vertical and horizontal transmission. Biotic and abiotic factors determine the stability of any sylvatic or zoonotic transmission cycle. The chapter centers on a discussion of the attributes of successful pathogen transmission in the context of the vector's ability to modulate (i) the mammalian host's response during acquisition and transmission and (ii) microbial growth within the vector during the maintenance phase. The discussion in these two sections essentially defines the environment and competency of both the vector and mammalian host as determinants of transmission and transmission efficiency. The chapter ends with a survey of fluctuating ecological trends that can enhance or diminish the potency of vector-borne rickettsial zoonotic cycles. Even though acquisition rates were similar for each transmission experiment, intergenera transmission required cofeeding of multiple infected mites with uninfected mites. Rickettsial diseases have the potential to change the outcomes of war and prey on the unfortunate circumstances that arise from disaster.
References
- Anderson, J. F., and L. A. Magnarelli. 2008. Biology of ticks. Infect. Dis. Clin. North Am. 22: 195–215, v.
- Azad, A. F., and C. B. Beard. 1998. Rickettsial pathogens and their arthropod vectors. Emerg. Infect. Dis. 4: 179–186.
- Azad, A. F., S. Radulovic, J. A. Higgins, B. H. Noden, and J. M. Troyer. 1997. Flea-borne rickettsioses: ecologic considerations. Emerg. Infect. Dis. 3: 319–327.
- Baldridge, G. D., T. J. Kurtti, N. Burkhardt, A. S. Baldridge, C. M. Nelson, A. S. Oliva, and U. G. Munderloh. 2007. Infection of Ixodes scapularis ticks with Rickettsia monacensis expressing green fluorescent protein: a model system. J. Invertebr. Pathol. 94: 163–174.
- Bitam, I., K. Dittmar, P. Parola, M. F. Whiting, and D. Raoult. 2010. Fleas and flea-borne diseases. Int. J. Infect. Dis. 14: e667–e676.
- Bowman, A. S., L. B. Coons, G. R. Needham, and J. R. Sauer. 1997. Tick saliva: recent advances and implications for vector competence. Med. Vet. Entomol. 11: 277–285.
- Bozeman, F. M., D. E. Sonenshine, M. S. Williams, D. P. Chadwick, D. M. Lauer, and B. L. Elisberg. 1981. Experimental infection of ectoparasitic arthropods with Rickettsia prowazekii (GvF-16 strain) and transmission to flying squirrels. Am. J. Trop. Med. Hyg. 30: 253–263.
- Brossard, M., and S. K. Wikel. 2004. Tick immunobiology. Parasitology 129(Suppl.): S161–S176.
- Burgdorfer, W., S. F. Hayes, and A. J. Mavros. 1981. Nonpathogenic rickettsiae in Dermacentor andersoni: a limiting factor for the distribution of Rickettsia rickettsii , p. 585–594. In W. Burgdorfer and R. L. Anacker (ed.), Rickettsiae and Rickettsial Diseases. Academic Press, New York, NY.
- Ceraul, S. M., A. Chung, K. T. Sears, V. L. Popov, M. Beier-Sexton, M. S. Rahman, and A. F. Azad. 2011. A Kunitz protease inhibitor from Dermacentor variabilis, a vector for spotted fever group rickettsiae, limits Rickettsia montanensis invasion. Infect. Immun. 79: 321–329.
- Ceraul, S. M., S. M. Dreher-Lesnick, J. J. Gillespie, M. S. Rahman, and A. F. Azad. 2007. New tick defensin isoform and antimicrobial gene expression in response to Rickettsia montanensis challenge. Infect. Immun. 75: 1973–1983.
- Ceraul, S. M., S. M. Dreher-Lesnick, A. Mulenga, M. S. Rahman, and A. F. Azad. 2008. Functional characterization and novel rickettsiostatic effects of a Kunitz-type serine protease inhibitor from the tick Dermacentor variabilis . Infect. Immun. 76: 5429–5435.
- Ceraul, S. M., D. E. Sonenshine, and W. L. Hynes. 2002. Resistance of the tick Dermacentor variabilis (Acari: Ixodidae) following challenge with the bacterium Escherichia coli (Enterobacteriales: Enterobacteriaceae). J. Med. Entomol. 39: 376–383.
- Ceraul, S. M., D. E. Sonenshine, R. E. Ratzlaff, and W. L. Hynes. 2003. An arthropod defensin expressed by the hemocytes of the American dog tick, Dermacentor variabilis (Acari: Ixodidae). Insect Biochem. Mol. Biol. 33: 1099–1103.
- Dautel, H., C. Dippel, R. Oehme, K. Hartelt, and E. Schettler. 2006. Evidence for an increased geographical distribution of Dermacentor reticulatus in Germany and detection of Rickettsia sp. RpA4. Int. J. Med. Microbiol. 296(Suppl. 40): 149–156.
- de la Fuente, J., E. F. Blouin, and K. M. Kocan. 2003. Infection exclusion of the rickettsial pathogen Anaplasma marginale in the tick vector Dermacentor variabilis . Clin. Diagn. Lab. Immunol. 10: 182–184.
- de la Fuente, J., J. C. Garcia-Garcia, E. F. Blouin, J. T. Saliki, and K. M. Kocan. 2002. Infection of tick cells and bovine erythrocytes with one genotype of the intracellular ehrlichia Anaplasma marginale excludes infection with other genotypes. Clin. Diagn. Lab. Immunol. 9: 658–668.
- de la Fuente, J., V. Naranjo, F. Ruiz-Fons, U. Höfle, I. G. Fernández De Mera, D. Villanúa, C. Almazán, A. Torina, S. Caracappa, K. M. Kocan, and C. Gortázar. 2005. Potential vertebrate reservoir hosts and invertebrate vectors of Anaplasma marginale and A. phagocytophilum in central Spain. Vector Borne Zoonotic Dis. 5: 390–400.
- Demma, L. J., J. H. McQuiston, W. L. Nicholson, S. M. Murphy, P. Marumoto, M. Sengebau-Kingzio, S. Kuartei, A. M. Durand, and D. L. Swerdlow. 2006. Scrub typhus, Republic of Palau. Emerg. Infect. Dis. 12: 290–295.
- Dreher-Lesnick, S. M., S. M. Ceraul, S. C. Lesnick, J. J. Gillespie, J. M. Anderson, R. C. Jochim, J. G. Valenzuela, and A. F. Azad. 2009. Analysis of Rickettsia typhi-infected and uninfected cat flea (Ctenocephalides felis) midgut cDNA libraries: deciphering molecular pathways involved in host response to R. typhi infection. Insect Mol. Biol. 19: 229–241.
- Duma, R. J., D. E. Sonenshine, F. M. Bozeman, J. M. Veazey, Jr., B. L. Elisberg, D. P. Chadwick, N. I. Stocks, T. M. McGill, G. B. Miller, Jr., and J. N. MacCormack. 1981. Epidemic typhus in the United States associated with flying squirrels. JAMA 245: 2318–2323.
- Dushay, M. S., and E. D. Eldon. 1998. Drosophila immune responses as models for human immunity. Am. J. Hum. Genet. 62: 10–14.
- Eggenberger, L. R., W. J. Lamoreaux, and L. B. Coons. 1990. Hemocytic encapsulation of implants in the tick Dermacentor variabilis . Exp. Appl. Acarol. 9: 279–287.
- Ellis, B. R., and B. A. Wilcox. 2009. The ecological dimensions of vector-borne disease research and control. Cad. Saude Publica 25(Suppl. 1): S155–S167.
- Eriks, I. S., D. Stiller, and G. H. Palmer. 1993. Impact of persistent Anaplasma marginale rickettsemia on tick infection and transmission. J. Clin. Microbiol. 31: 2091–2096.
- Feng, H. M., and D. H. Walker. 2000. Mechanisms of intracellular killing of Rickettsia conorii in infected human endothelial cells, hepatocytes, and macrophages. Infect. Immun. 68: 6729–6736.
- Fine, P. E. M. 1981. Epidemiological principles of vector-mediated transmission, p. 77–91. In J. J. McKelvey, B. F. Eldridge, and K. Maramorosche (ed.), Vectors of Disease Agents. Praeger, New York, NY.
- Fogaca, A. C., P. I. da Silva, Jr., M. T. Miranda, A. G. Bianchi, A. Miranda, P. E. Ribolla, and S. Daffre. 1999. Antimicrobial activity of a bovine hemoglobin fragment in the tick Boophilus microplus . J. Biol. Chem. 274: 25330–25334.
- Fogaca, A. C., D. M. Lorenzini, L. M. Kaku, E. Esteves, P. Bulet, and S. Daffre. 2004. Cysteine-rich antimicrobial peptides of the cattle tick Boophilus microplus: isolation, structural characterization and tissue expression profile. Dev. Comp. Immunol. 28: 191–200.
- Frances, S. P., P. Watcharapichat, D. Phulsuksombati, and P. Tanskul. 2000. Transmission of Orientia tsutsugamushi, the aetiological agent for scrub typhus, to co-feeding mites. Parasitology 120: 601–607.
- Francischetti, I. M., T. N. Mather, and J. M. Ribeiro. 2004. Penthalaris, a novel recombinant five-Kunitz tissue factor pathway inhibitor (TFPI) from the salivary gland of the tick vector of Lyme disease, Ixodes scapularis . Thromb. Haemost. 91: 886–898.
- Friggens, M. M., and P. Beier. 2010. Anthropogenic disturbance and the risk of flea-borne disease transmission. Oecologia 164: 809–820.
- Futse, J. E., M. W. Ueti, D. P. Knowles, Jr., and G. H. Palmer. 2003. Transmission of Anaplasma marginale by Boophilus microplus: retention of vector competence in the absence of vector-pathogen interaction. J. Clin. Microbiol. 41: 3829–3834.
- Gerardo, N. M., B. Altincicek, C. Anselme, H. Atamian, S. M. Barribeau, M. de Vos, E. J. Duncan, J. D. Evans, T. Gabaldón, M. Ghanim, A. Heddi, I. Kaloshian, A. Latorre, A. Moya, A. Nakabachi, B. J. Parker, V. Pérez-Brocal, M. Pignatelli, Y. Rahbé, J. S. Ramsey, C. J. Spragg, J. Tamames, D. Tamarit, C. Tamborindeguy, C. Vincent-Monegat, and A. Vilcinskas. 2010. Immunity and other defenses in pea aphids, Acyrthosiphon pisum . Genome Biol. 11: R21.
- Gray, J. S., H. Dautel, A. Estrada-Peña, O. Kahl, and E. Lindgren. 2009. Effects of climate change on ticks and tick-borne diseases in Europe. Interdiscip. Perspect. Infect. Dis. 2009: 593232.
- Huang, B., A. Hubber, J. A. McDonough, C. R. Roy, M. A. Scidmore, and J. A. Carlyon. 2010. The Anaplasma phagocytophilum-occupied vacuole selectively recruits Rab-GTPases that are predominantly associated with recycling endosomes. Cell. Microbiol. 12: 1292–1307.
- Hultmark, D. 2003. Drosophila immunity: paths and patterns. Curr. Opin. Immunol. 15: 12–19.
- Inoue, N., K. Hanada, N. Tsuji, I. Igarashi, H. Nagasawa, T. Mikami, and K. Fujisaki. 2001. Characterization of phagocytic hemocytes in Ornithodoros moubata (Acari: Ixodidae). J. Med. Entomol. 38: 514–519.
- Jensenius, M., P. E. Fournier, and D. Raoult. 2004. Rickettsioses and the international traveler. Clin. Infect. Dis. 39: 1493–1499.
- Johns, R., D. E. Sonenshine, and W. L. Hynes. 1998. Control of bacterial infections in the hard tick Dermacentor variabilis (Acari: Ixodidae): evidence for the existence of antimicrobial proteins in tick hemolymph. J. Med. Entomol. 35: 458–464.
- Johns, R., D. E. Sonenshine, and W. L. Hynes. 2001. Identification of a defensin from the hemolymph of the American dog tick, Dermacentor variabilis . Insect Biochem. Mol. Biol. 31: 857–865.
- Jones, K. E., N. G. Patel, M. A. Levy, A. Storeygard, D. Balk, J. L. Gittleman, and P. Daszak. 2008. Global trends in emerging infectious diseases. Nature 451: 990–993.
- Jongejan, F., and G. Uilenberg. 2004. The global importance of ticks. Parasitology 129(Suppl.): S3–S14.
- Kocan, K. M., and J. de la Fuente. 2003. Co-feeding studies of ticks infected with Anaplasma marginale . Vet. Parasitol. 112: 295–305.
- Kovár, L. 2004. Tick saliva in anti-tick immunity and pathogen transmission. Folia Microbiol. (Praha) 49: 327–336.
- Kovats, R. S., D. H. Campbell-Lendrum, A. J. McMichael, A. Woodward, and J. S. Cox. 2001. Early effects of climate change: do they include changes in vector-borne disease? Philos. Trans. R. Soc. Lond. B Biol. Sci. 356: 1057–1068.
- Krusell, A., J. A. Comer, and D. J. Sexton. 2002. Rickettsialpox in North Carolina: a case report. Emerg. Infect. Dis. 8: 727–728.
- Kubes, M., P. Kocakova, M. Slovak, M. Slavikova, N. Fuchsberger, and P. A. Nuttall. 2002. Heterogeneity in the effect of different ixodid tick species on human natural killer cell activity. Parasite Immunol. 24: 23–28.
- Lafferty, K. D. 2009. The ecology of climate change and infectious diseases. Ecology 90: 888–900.
- Lemaitre, B., J. M. Reichhart, and J. A. Hoffmann. 1997. Drosophila host defense: differential induction of antimicrobial peptide genes after infection by various classes of microorganisms. Proc. Natl. Acad. Sci USA 94: 14614–14619.
- Lievens, S., S. Goormachtig, and M. Holsters. 2004. Nodule-enhanced protease inhibitor gene: emerging patterns of gene expression in nodule development on Sesbania rostrata . J. Exp. Bot. 55: 89–97.
- Lockhart, J. M., W. R. Davidson, D. E. Stallknecht, and J. E. Dawson. 1998. Lack of seroreactivity to Ehrlichia chaffeensis among rodent populations. J. Wildl. Dis. 34: 392–396.
- Macaluso, K. R., A. Mulenga, J. A. Simser, and A. F. Azad. 2003. Differential expression of genes in uninfected and Rickettsia-infected Dermacentor variabilis ticks as assessed by differential-display PCR. Infect. Immun. 71: 6165–6170.
- Macaluso, K. R., D. E. Sonenshine, S. M. Ceraul, and A. F. Azad. 2002. Rickettsial infection in Dermacentor variabilis (Acari: Ixodidae) inhibits transovarial transmission of a second rickettsia. J. Med. Entomol. 39: 809–813.
- Manen, J. F., P. Simon, J. C. Van Slooten, M. Østerås, S. Frutiger, and G. J. Hughes. 1991. A nodulin specifically expressed in senescent nodules of winged bean is a protease inhibitor. Plant Cell 3: 259–270.
- Marx, J. 2004. The roots of plant-microbe collaborations. Science 304: 234–236.
- Mather, T. N., and H. S. Ginsberg. 1994. Vector-host-pathogen relationships: transmission dynamics of tick-borne infections, p. 68–90. In D. E. and T. N. Mather (ed.), Ecological Dynamics of Tick-Borne Zoonoses. Oxford University Press, New York, NY.
- McElroy, K. M., B. L. Blagburn, E. B. Breitschwerdt, P. S. Mead, and J. H. McQuiston. 2010. Flea-associated zoonotic diseases of cats in the USA: bartonellosis, flea-borne rickettsioses, and plague. Trends Parasitol. 26: 197–204.
- Mejri, N., N. Franscini, B. Rutti, and M. Brossard. 2001. Th2 polarization of the immune response of BALB/c mice to Ixodes ricinus instars, importance of several antigens in activation of specific Th2 subpopulations. Parasite Immunol. 23: 61–69.
- Mulenga, A., K. R. Macaluso, J. A. Simser, and A. F. Azad. 2003. Dynamics of Rickettsia-tick interactions: identification and characterization of differentially expressed mRNAs in uninfected and infected Dermacentor variabilis . Insect Mol. Biol. 12: 185–193.
- Nakajima, Y., J. Ishibashi, F. Yukuhiro, A. Asaoka, D. Taylor, and M. Yamakawa. 2003a. Antibacterial activity and mechanism of action of tick defensin against Gram-positive bacteria. Biochim. Biophys. Acta 1624: 125–130.
- Nakajima, Y., K. Ogihara, D. Taylor, and M. Yamakawa. 2003b. Antibacterial hemoglobin fragments from the midgut of the soft tick, Ornithodoros moubata (Acari: Argasidae). J. Med. Entomol. 40: 78–81.
- Nakajima, Y., H. Saido-Sakanaka, D. Taylor, and M. Yamakawa. 2003c. Up-regulated humoral immune response in the soft tick, Ornithodoros moubata (Acari: Argasidae). Parasitol. Res. 91: 476–481.
- Nakajima, Y., A. van der Goes van Naters-Yasui, D. Taylor, and M. Yamakawa. 2002. Antibacterial peptide defensin is involved in midgut immunity of the soft tick, Ornithodoros moubata . Insect Mol. Biol. 11: 611–618.
- Nakajima, Y., A. van der Goes van Naters-Yasui, D. Taylor, and M. Yamakawa. 2001. Two isoforms of a member of the arthropod defensin family from the soft tick, Ornithodoros moubata (Acari: Argasidae). Insect Biochem. Mol. Biol. 31: 747–751.
- Nakayama, K., K. Kurokawa, M. Fukuhara, H. Urakami, S. Yamamoto, K. Yamazaki, Y. Ogura, T. Ooka, and T. Hayashi. 2008. Genome comparison and phylogenetic analysis of Orientia tsutsugamushi strains. DNA Res. 17: 281–291.
- Niebylski, M. L., M. G. Peacock, and T. G. Schwan. 1999. Lethal effect of Rickettsia rickettsii on its tick vector (Dermacentor andersoni). Appl. Environ. Microbiol. 65: 773–778.
- Nuttall, P. A., and M. Labuda. 2004. Tick-host interactions: saliva-activated transmission. Parasitology 129(Suppl.): S177–S189.
- Oliver, J. H., Jr. 1989. Biology and systematics of ticks (Acari:Ixodida). Annu. Rev. Ecol. Syst. 20: 397–430.
- Paddock, C. D., and J. E. Childs. 2003. Ehrlichia chaffeensis: a prototypical emerging pathogen. Clin. Microbiol. Rev. 16: 37–64.
- Paddock, C. D., J. W. Sumner, J. A. Comer, S. R. Zaki, C. S. Goldsmith, J. Goddard, S. L. McLellan, C. L. Tamminga, and C. A. Ohl. 2004. Rickettsia parkeri: a newly recognized cause of spotted fever rickettsiosis in the United States. Clin. Infect. Dis. 38: 805–811.
- Parmenter, R. R., E. P. Yadav, C. A. Parmenter, P. Ettestad, and K. L. Gage. 1999. Incidence of plague associated with increasedwinter-spring precipitation in New Mexico. Am. J. Trop. Med. Hyg. 61: 814–821.
- Parola, P., C. D. Paddock, and D. Raoult. 2005. Tick-borne rickettsioses around the world: emerging diseases challenging old concepts. Clin. Microbiol. Rev. 18: 719–756.
- Pereira, L. S., P. L. Oliveira, C. Barja-Fidalgo, and S. Daffre. 2001. Production of reactive oxygen species by hemocytes from the cattle tick Boophilus microplus . Exp. Parasitol. 99: 66–72.
- Randolph, S. E. 2009. Perspectives on climate change impacts on infectious diseases. Ecology 90: 927–931.
-
Randolph, S. E., and D. J. Rogers. 2007. Ecology of tick-borne disease and the role of climate, p. 167–186. In
O. Ergonul and C. A. Whitehouse (ed.), Crimean-Congo Hemorrhagic Fever. Springer, Dordrecht, The Netherlands.
10.1007/978-1-4020-6106-6_14 Google Scholar
- Randolph, S. E., and D. J. Rogers. 2010. The arrival, establishment and spread of exotic diseases: patterns and predictions. Nat. Rev. Microbiol. 8: 361–371.
- Raoult, D., O. Dutour, L. Houhamdi, R. Jankauskas, P. E. Fournier, Y. Ardagna, M. Drancourt, M. Signoli, V. D. La, Y. Macia, and G. Aboudharam. 2006. Evidence for louse-transmitted diseases in soldiers of Napoleon's Grand Army in Vilnius. J. Infect. Dis. 193: 112–120.
- Raoult, D., J. B. Ndihokubwayo, H. Tissot-Dupont, V. Roux, B. Faugere, R. Abegbinni, and R. J. Birtles. 1998. Outbreak of epidemic typhus associated with trench fever in Burundi. Lancet 352: 353–358.
- Raoult, D., and V. Roux. 1999. The body louse as a vector of reemerging human diseases. Clin. Infect. Dis. 29: 888–911.
- Raoult, D., V. Roux, J. B. Ndihokubwayo, G. Bise, D. Baudon, G. Marte, and R. Birtles. 1997. Jail fever (epidemic typhus) outbreak in Burundi. Emerg. Infect. Dis. 3: 357–360.
- Ribeiro, J. M., F. Alarcon-Chaidez, I. M. Francischetti, B. J. Mans, T. N. Mather, J. G. Valenzuela, and S. K. Wikel. 2006. An annotated catalog of salivary gland transcripts from Ixodes scapularis ticks. Insect Biochem. Mol. Biol. 36: 111–129.
- Ribeiro, J. M., and I. M. Francischetti. 2003. Role of arthropod saliva in blood feeding: sialome and post-sialome perspectives. Annu. Rev. Entomol. 48: 73–88.
- Satta, G., V. Chisu, P. Cabras, F. Fois, and G. Masala. 2011. Pathogens and symbionts in ticks: a survey on tick species distribution and presence of tick-transmitted micro-organisms in Sardinia, Italy. J. Med. Microbiol. 60: 63–68.
- Silverman, J., M. K. Rust, and D. A. Reierson. 1981. Influence of temperature and humidity on survival and development of the cat flea, Ctenocephalides felis (Siphonaptera: Pulicidae). J. Med. Entomol. 18: 78–83.
- Simser, J. A., K. R. Macaluso, A. Mulenga, and A. F. Azad. 2004a. Immune-responsive lysozymes from hemocytes of the American dog tick, Dermacentor variabilis and an embryonic cell line of the Rocky Mountain wood tick, D. andersoni . Insect Biochem. Mol. Biol. 34: 1235–1246.
- Simser, J. A., A. Mulenga, K. R. Macaluso, and A. F. Azad. 2004b. An immune responsive factor D-like serine proteinase homologue identified from the American dog tick, Dermacentor variabilis . Insect Mol. Biol. 13: 25–35.
- Sonenshine, D. E. 1991. Biology of Ticks, vol. 1. Oxford University Press, New York, NY.
- Sonenshine, D. E. 1993. Biology of Ticks, vol. 2. Oxford University Press, New York, NY.
- Sonenshine, D. E., W. L. Hynes, S. M. Ceraul, R. Mitchell, and T. Benzine. 2005. Host blood proteins and peptides in the midgut of the tick Dermacentor variabilis contribute to bacterial control. Exp. Appl. Acarol. 36: 207–223.
-
Sonenshine, D. E., R. S. Lane, and W. L. Nicholson. 2002. Ticks (Ixodida), p. 597. In
G. Mullen and L. Durden (ed.), Medical and Veterinary Entomology. Academic Press, San Diego, CA.
10.1016/B978-012510451-7/50026-8 Google Scholar
- Tarasevich, I., E. Rydkina, and D. Raoult. 1998. Outbreak of epidemic typhus in Russia. Lancet 352: 1151.
- Telford, S. R., III. 2009. Status of the “East Side Hypothesis” (transovarial interference) 25 years later. Ann. N. Y. Acad. Sci. 1166: 144–150.
- Traub, R., and C. L. Wisseman, Jr. 1974. The ecology of chigger-borne rickettsiosis (scrub typhus). J. Med. Entomol. 11: 237–303.
- Ueti, M. W., D. P. Knowles, C. M. Davitt, G. A. Scoles, T. V. Baszler, and G. H. Palmer. 2009. Quantitative differences in salivary pathogen load during tick transmission underlie strain-specific variation in transmission efficiency ofAnaplasma marginale . Infect. Immun. 77: 70–75.
- Ueti, M. W., J. O. Reagan, Jr., D. P. Knowles, Jr., G. A. Scoles, V. Shkap, and G. H. Palmer. 2007. Identification of midgut and salivary glands as specific and distinct barriers to efficient tick-borne transmission of Anaplasma marginale . Infect. Immun. 75: 2959–2964.
- Valenzuela, J. G., I. M. Francischetti, V. M. Pham, M. K. Garfield, T. N. Mather, and J. M. Ribeiro. 2002. Exploring the sialome of the tick Ixodes scapularis . J. Exp. Biol. 205: 2843–2864.
- Valenzuela, J. G., I. M. Francischetti, V. M. Pham, M. K. Garfield, and J. M. Ribeiro. 2003. Exploring the salivary gland transcriptome and proteome of the Anopheles stephensi mosquito. Insect Biochem. Mol. Biol. 33: 717–732.
- Vasse, J., F. d. Billy, and G. Truchet. 1993. Abortion of infection during the Rhizobium meliloti-alfalfa symbiotic interaction is accompanied by a hypersensitive reaction. The Plant Journal 4: 555–566.
- Walker, D. H. 2007. Rickettsiae and rickettsial infections: the current state of knowledge. Clin. Infect. Dis. 45(Suppl. 1): S39–S44.
- Walker, D. H., C. D. Paddock, and J. S. Dumler. 2008. Emerging and re-emerging tick-transmitted rickettsial and ehrlichial infections. Med. Clin. North Am. 92: 1345–1361, x.
- Wang, J., Y. Wu, G. Yang, and S. Aksoy. 2009. Interactions between mutualist Wigglesworthia and tsetse peptidoglycan recognition protein (PGRP-LB) influence trypanosome transmission. Proc. Natl. Acad. Sci. USA 106: 12133–12138.
-
Wilson, L. B., and W. M. Chowning. 1904. Studies in pyroplasmosis hominis (‘spotted fever' or ‘tick fever' of the Rocky Mountains). J. Infect. Dis.
I: 31–33.
10.1093/infdis/1.1.31 Google Scholar
- Zaidman-Rémy, A., M. Hervé, M. Poidevin, S. Pili-Floury, M. S. Kim, D. Blanot, B. H. Oh, R. Ueda, D. Mengin-Lecreulx, and B. Lemaitre. 2006. The Drosophila amidase PGRP-LB modulates the immune response to bacterial infection. Immunity 24: 463–473.