Sexual Reproduction of Cryptococcus gattii: a Population Genetics Perspective
Dee Carter
School of Molecular Bioscience, University of Sydney, Sydney, NSW 2006 Australia
Search for more papers by this authorLeona Campbell
School of Molecular Bioscience, University of Sydney, Sydney, NSW 2006 Australia
Search for more papers by this authorNathan Saul
Faculty of Veterinary Science, University of Sydney, Sydney, NSW 2006 Australia
Search for more papers by this authorMark Krockenberger
Faculty of Veterinary Science, University of Sydney, Sydney, NSW 2006 Australia
Search for more papers by this authorDee Carter
School of Molecular Bioscience, University of Sydney, Sydney, NSW 2006 Australia
Search for more papers by this authorLeona Campbell
School of Molecular Bioscience, University of Sydney, Sydney, NSW 2006 Australia
Search for more papers by this authorNathan Saul
Faculty of Veterinary Science, University of Sydney, Sydney, NSW 2006 Australia
Search for more papers by this authorMark Krockenberger
Faculty of Veterinary Science, University of Sydney, Sydney, NSW 2006 Australia
Search for more papers by this authorJoseph Heitman
Duke University Medical Center, Durham, NC, 27710
Search for more papers by this authorThomas R. Kozel
University of Nevada School of Medicine, Reno, NV, 89557-0320
Search for more papers by this authorKyung J. Kwon-Chung
National Institute of Allergy and Infectious Diseases, Bethesda, MD, 20892
Search for more papers by this authorJohn R. Perfect
Duke University Medical Center, Durham, NC, 27710
Search for more papers by this authorArturo Casadevall
Albert Einstein College of Medicine, Bronx, NY, 10461
Search for more papers by this authorSummary
The current knowledge of sexual reproduction of Cryptococcus gattii from a population genetics perspective is reviewed in this chapter. In genetic studies, cryptic species are usually detected as exclusive groups of organisms occupying strongly supported branches on phylogenetic trees that have been derived from different, independent loci. Assessing the relative numbers of α and a cells is therefore an important aspect of determining if populations are likely to have undergone sexual recombination. The initial studies of mating type in C. gattii found 84% of clinical isolates to be of the α mating type. Mating type was assessed by coculture with tester strains, and the majority of strains (~90%) were fertile, producing basidia and basidiospores. Amplified fragment length polymorphisms (AFLPs), which are highly discriminatory molecular markers, were therefore selected to establish multilocus genotypes. The population genetics of clinical collections is generally more complicated than the study of environmental populations as humans travel and may acquire an infection far from where they eventually present with clinical disease and an isolate is obtained. The pattern of pairwise compatibility among global VGII isolates presents a striking contrast to that seen in VGI. All VGII populations studied to date are heavily biased for one or the other mating type, and the most probable scenario is that mating occurs between isolates of the same sex.
References
- Bartlett, K. H., L. MacDougall, S. Mak, C. Duncan, S. Kidd, and M. Fyfe. 2004. Abstr. 16th Biometeorol. Aerobiol. Meet. abstr. 5.5. http://ams.confex.com/ams/pdfpapers/80027.pdf.
- Boekhout, T., B. Theelen, M. Diaz, J. W. Fell, W. C. J. Hop, E. C. A. Abeln, F. Dromer, and W. Meyer. 2001. Hybrid genotypes in the pathogenic yeast Cryptococcus neoformans . Microbiology 147: 891–907.
- Boekhout, T., A. van Belkum, A. C. Leenders, H. A. Verbrugh, P. Mukamurangwa, D. Swinne, and W. A. Scheffers. 1997. Molecular typing of Cryptococcus neoformans: taxonomic and epidemiological aspects. Int. J. Syst. Evol. Bacteriol. 47: 432–442.
- Bovers, M., F. Hagen, E. E. Kuramae, and T. Boekhout. 2008. Six monophyletic lineages identified within Cryptococcus neoformans and Cryptococcus gattii by multi-locus sequence typing. Fungal Genet. Biol. 45: 400–421.
- Brandt, M. E., L. C. Hutwagner, L. A. Klug, W. S. Baughman, D. Rimland, E. A. Graviss, R. J. Hamill, C. Thomas, P. G. Pappas, A. L. Reingold, and R. W. Pinner. 1996. Molecular subtype distribution of Cryptococcus neoformans in four areas of the United States. Cryptococcal Disease Active Surveillance Group. J. Clin. Microbiol. 34: 912–917.
- Bui, T., X. Lin, R. Malik, J. Heitman, and D. Carter. 2008. Isolates of Cryptococcus neoformans from infected animals reveal genetic exchange in unisexual, alpha mating type populations. Eukaryot. Cell 7: 1771–1780.
-
Burnett, J.
2003. Fungal Populations and Species. Oxford University Press, Oxford, UK.
10.1093/oso/9780198515524.001.0001 Google Scholar
- Campbell, L. T., and D. A. Carter. 2006. Looking for sex in the fungal pathogens Cryptococcus neoformans and Cryptococcus gattii . FEMS Yeast Res. 6: 588–598.
- Campbell, L. T., B. J. Currie, M. Krockenberger, R. Malik, W. Meyer, J. Heitman, and D. Carter. 2005. Clonality and recombination in genetically differentiated subgroups of Cryptococcus gattii. Eukaryot . Cell 4: 1403–1409.
- Campbell, L. T., J. A. Fraser, C. B. Nichols, F. S. Dietrich, D. Carter, and J. Heitman. 2005. Clinical and environmental isolates of Cryptococcus gattii from Australia that retain sexual fecundity. Eukaryot. Cell 4: 1410–1419.
- Carter, D., N. Saul, L. Campbell, T. Bui, and M. Krockenberger. 2007. Sex in natural populations of Cryptococcus gattii , p. 477–487. In J. Heitman, J. Kronstad, J. W. Taylor, and L. A. Casselton (ed.), Sex in Fungi. ASM Press, Washington, DC.
- Escandón, P., P. Ngamskulrungroj, M. Meyer, and E. Castañeda. 2007. In vitro mating of Colombian isolates of the Cryptococcus neoformans species complex. Biomédica 27: 308–314.
- Escandón, P., A. Sanchez, M. Martinez, W. Meyer, and E. Castañeda. 2006. Molecular epidemiology of clinical and environmental isolates of the Cryptococcus neoformans species complex reveals a high genetic diversity and the presence of the molecular type VGII mating type a in Colombia. FEMS Yeast Res. 6: 625–635.
- Feng, X., Z. Yao, D. Ren, W. Liao, and J. Wu. 2008. Genotype and mating type analysis of Cryptococcus neoformans and Cryptococcus gattii isolates from China that mainly originated from non-HIV-infected patients. FEMS Yeast Res. 8: 930–938.
- Fisher, M. C., G. L. Koenig, T. J. White, and J. W. Taylor. 2002. Molecular and phenotypic description of Coccidioides posadasii sp. nov., previously recognized as the non-California population of Coccidioides immitis . Mycologia 94: 73–84.
- Franzot, S. P., J. S. Hamdan, B. P. Currie, and A. Casadevall. 1997. Molecular epidemiology of Cryptococcus neoformans in Brazil and the United States: evidence for both local genetic differences and a global clonal population structure. J. Clin. Microbiol. 35: 2243–2251.
- Fraser, J. A., S. S. Giles, E. C. Wenink, S. G. Geunes-Boyer, J. R. Wright, S. Diezmann, A. Allen, J. E. Stajich, F. S. Dietrich, J. R. Perfect, and J. Heitman. 2005. Same-sex mating and the origin of the Vancouver Island Cryptococcus gattii outbreak. Nature 437: 1360–1364.
- Fraser, J. A., R. L. Subaran, C. B. Nichols, and J. Heitman. 2003. Recapitulation of the sexual cycle of the primary fungal pathogen Cryptococcus neoformans var. gattii: implications for an outbreak on Vancouver Island, Canada. Eukaryot. Cell 2: 1036–1045.
- Geiser, D. M., J. I. Pitt, and J. W. Taylor. 1998. Cryptic speciation and recombination in the aflatoxin-producing fungus Aspergillus flavus . Proc. Natl. Acad. Sci. USA 95: 388–393.
- Halliday, C. L. 2000. PhD thesis, University of Sydney, Sydney, Australia.
- Halliday, C. L., T. Bui, M. Krockenberger, R. Malik, D. H. Ellis, and D. A. Carter. 1999. Presence of alpha and a mating types in environmental and clinical collections of Cryptococcus neoformans var. gattii strains from Australia. J. Clin. Microbiol. 37: 2920–2926.
- Halliday, C. L., and D. A. Carter. 2003. Clonal reproduction and limited dispersal in an environmental population of Cryptococcus neoformans var. gattii isolates from Australia. J. Clin. Microbiol. 41: 703–711.
- Kasuga, T., T. J. White, G. Koenig, J. McEwen, A. Restrepo, E. Castañeda, C. Da Silva Lacaz, E. M. Heins-Vaccari, R. S. De Freitas, R. M. Zancope-Oliveira, Z. Qin, R. Negroni, D. A. Carter, Y. Mikami, M. Tamura, M. L. Taylor, G. F. Miller, N. Poonwan, and J. W. Taylor. 2003. Phylogeography of the fungal pathogen Histoplasma capsulatum . Mol. Ecol. 12: 3383–3401.
- Kidd, S. E., F. Hagen, R. L. Tscharke, M. Huynh, K. H. Bartlett, M. Fyfe, L. MacDougall, T. Boekhout, K. J. Kwon-Chung, and W. Meyer. 2004. A rare genotype of Cryptococcus gattii caused the cryptococcosis outbreak on Vancouver Island (British Columbia, Canada). Proc. Natl. Acad. Sci. USA 101: 17258–17263.
- Koufopanou, V., A. Burt, T. Szaro, and J. W. Taylor. 2001. Gene genealogies, cryptic species, and molecular evolution in the human pathogen Coccidioides immitis and relatives (Ascomycota, Onygenales). Mol. Biol. Evol. 18: 1246–1258.
- Kwon-Chung, K. J. 1976. Morphogenesis of Filobasidiella neoformans, the sexual state of Cryptococcus neoformans . Mycologia 68: 821–833.
- Le Gac, M., M. E. Hood, E. Fournier, and T. Giraud. 2007. Phylogenetic evidence of host-specific cryptic species in the anther smut fungus. Evolution 61: 15–26.
- Lengeler, K. B., P. Wang, G. M. Cox, J. R. Perfect, and J. Heitman. 2000. Identification of the MAT a mating-type locus of Cryptococcus neoformans reveals a serotype A MAT a strain thought to have been extinct. Proc. Natl. Acad. Sci. USA 97: 14455–14460.
- Lin, X., J. C. Huang, T. G. Mitchell, and J. Heitman. 2006. Virulence attributes and hyphal growth of Cryptococcus neoformans are quantitative traits and the MATalpha allele enhances filamentation. PLoS Genet. 2:e187.
- Lin, X., C. M. Hull, and J. Heitman. 2005. Sexual reproduction between partners of the same mating type in Cryptococcus neoformans . Nature 434: 1017–1021.
- Lin, X., A. P. Litvintseva, K. Nielsen, S. Patel, A. Floyd, T. G. Mitchell, and J. Heitman. 2007. alphaADalpha hybrids of Cryptococcus neoformans: evidence of same-sex mating in nature and hybrid fitness. PLoS Genet. 3: 1975–1990.
- Litvintseva, A. P., R. E. Marra, K. Nielsen, J. Heitman, R. Vilgalys, and T. G. Mitchell. 2003. Evidence of sexual recombination among Cryptococcus neoformans serotype A isolates in sub-Saharan Africa. Eukaryot. Cell 2: 1162–1168.
- Litvintseva, A. P., R. Thakur, L. B. Reller, and T. G. Mitchell. 2005. Prevalence of clinical isolates of Cryptococcus gattii serotype C among patients with AIDS in sub-Saharan Africa. J. Infect. Dis. 192: 888–892.
- Madrenys, N., C. De Vroey, C. Raes-Wuytack, and J. M. Torres-Rodriguez. 1993. Identification of the perfect state of Cryptococcus neoformans from 195 clinical isolates including 84 from AIDS patients. Mycopathologia 123: 65–68.
- Maynard-Smith, J., N. H. Smith, M. O'Rourke, and B. G. Spratt. 1993. How clonal are bacteria? Proc. Natl. Acad. Sci. USA 90: 4384–4388.
- Ngamskulrungroj, P., T. C. Sorrell, A. Chindamporn, A. Chaiprasert, N. Poonwan, and W. Meyer. 2008. Association between fertility and molecular sub-type of global isolates of Cryptococcus gattii molecular type VGII. Med. Mycol. 46: 665–673.
- Randhawa, H. S., T. Kowshik, A. Chowdhary, K. Preeti Sinha, Z. U. Khan, S. Sun, and J. Xu. 2008. The expanding host tree species spectrum of Cryptococcus gattii and Cryptococcus neoformans and their isolations from surrounding soil in India. Med. Mycol. 46: 823–833.
- Ruma, P., S. C. Chen, T. C. Sorrell, and A. G. Brownlee. 1996. Characterization of Cryptococcus neoformans by random DNA amplification. Lett. Appl. Microbiol. 23: 312–316.
- Sato, H., and N. Murakami. 2008. Reproductive isolation among cryptic species in the ectomycorrhizal genus Strobilomyces: population-level CAPS marker-based genetic analysis. Mol. Phylogen. Evol. 48: 326–334.
- Saul, N., M. Krockenberger, and D. Carter. 2008. Evidence of recombination in mixed mating type and α-only populations of Cryptococcus gattii sourced from single Eucalyptus tree hollows. Eukaryot. Cell 7: 727–734.
- Saul, N. T. 2009. PhD thesis. University of Sydney, Sydney, Australia.
- Sorrell, T. C., S. C. Chen, P. Ruma, W. Meyer, T. J. Pfeiffer, D. H. Ellis, and A. G. Brownlee. 1996. Concordance of clinical and environmental isolates of Cryptococ-cus neoformans var . gattii by random amplification of polymorphic DNA analysis and PCR fingerprinting. J. Clin. Microbiol. 34: 1253–1260.
- Trilles, L., M. Lazera, B. Wanke, B. Theelen, and T. Boekhout. 2003. Genetic characterization of environmental isolates of the Cryptococcus neoformans species complex from Brazil. Med. Mycol. 41: 383–390.
- Tscharke, R. L., M. Lazera, Y. C. Chang, B. L. Wickes, and K. J. Kwon-Chung. 2003. Haploid fruiting in Cryptococcus neoformans is not mating type alpha-specific. Fungal Genet. Biol. 39: 230–237.
- Viviani, M. A., M. C. Esposto, M. Cogliati, M. T. Montagna, and B. L. Wickes. 2001. Isolation of a Cryptococcus neoformans serotype A MAT a strain from the Italian environment. Med. Mycol. 39: 383–386.
- Wickes, B. L., M. E. Mayorga, U. Edman, and J. C. Edman. 1996. Dimorphism and haploid fruiting in Cryptococcus neoformans: association with the alpha-mating type. Proc. Natl. Acad. Sci. USA 93: 7327–7331.
- Xu, J. 2005. Fundamentals of fungal molecular population genetic analyses, p. 87–116. In J. Xu (ed.), Evolutionary Genetics of Fungi. Horizon Bioscience, Norfolk, UK.