Volume 47, Issue 12 pp. 4849-4869
ORIGINAL ARTICLE
Open Access

Optimising height-growth predicts trait responses to water availability and other environmental drivers

Isaac R. Towers

Corresponding Author

Isaac R. Towers

Evolution & Ecology Research Centre, The University of New South Wales, Sydney, New South Wales, Australia

Correspondence Isaac R. Towers, Evolution & Ecology Research Centre, The University of New South Wales, Sydney, NSW 2052, Australia.

Email: [email protected]

Search for more papers by this author
Andrew O'Reilly-Nugent

Andrew O'Reilly-Nugent

Evolution & Ecology Research Centre, The University of New South Wales, Sydney, New South Wales, Australia

Climate Friendly, Sydney, New South Wales, Australia

Search for more papers by this author
Manon E. B. Sabot

Manon E. B. Sabot

Max Planck Institute for Biogeochemistry, Jena, Germany

ARC Centre of Excellence for Climate Extremes and Climate Change Research Centre, The University of New South Wales, Sydney, New South Wales, Australia

Search for more papers by this author
Peter A. Vesk

Peter A. Vesk

School of Agriculture, Food and Ecosystem Sciences, The University of Melbourne, Parkville, Victoria, Australia

Search for more papers by this author
Daniel S. Falster

Daniel S. Falster

Evolution & Ecology Research Centre, The University of New South Wales, Sydney, New South Wales, Australia

Search for more papers by this author
First published: 05 August 2024
Citations: 2

Abstract

Future changes in climate, together with rising atmospheric CO 2 <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0001" wiley:location="equation/pce15042-math-0001.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><msub><mtext>CO</mtext><mn>2</mn></msub></mrow></mrow></math> , may reorganise the functional composition of ecosystems. Without long-term historical data, predicting how traits will respond to environmental conditions—in particular, water availability—remains a challenge. While eco-evolutionary optimality theory (EEO) can provide insight into how plants adapt to their environment, EEO approaches to date have been formulated on the assumption that plants maximise carbon gain, which omits the important role of tissue construction and size in determining growth rates and fitness. Here, we show how an expanded optimisation framework, focussed on individual growth rate, enables us to explain shifts in four key traits: leaf mass per area, sapwood area to leaf area ratio (Huber value), wood density and sapwood-specific conductivity in response to soil moisture, atmospheric aridity, CO 2 <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0002" wiley:location="equation/pce15042-math-0002.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><msub><mtext>CO</mtext><mn>2</mn></msub></mrow></mrow></math> and light availability. In particular, we predict that as conditions become increasingly dry, height-growth optimising traits shift from resource-acquisitive strategies to resource-conservative strategies, consistent with empirical responses across current environmental gradients of rainfall. These findings can explain both the shift in traits and turnover of species along existing environmental gradients and changing future conditions and highlight the importance of both carbon assimilation and tissue construction in shaping the functional composition of vegetation across climates.

1 INTRODUCTION

The extraordinary diversity of plant species on Earth is testament to the existence of trade-offs in the ecophysiological strategies employed by plants to grow, survive, and reproduce. Biophysical constraints on plant phenotype mean that the benefits conferred by a given strategy also impose costs to fitness such that no organism is perfectly adapted to all conditions (Laughlin, 2018). As such, we expect to observe shifts in plant community composition as conditions change across space and time. Precipitation, soil types, and thus soil moisture vary widely across the globe (Fick & Hijmans, 2017), and there is ample empirical evidence that plants exhibit strong responses in their traits to water availability. These responses concern traits related to hydraulic function (such as sapwood area and conductivity), tissue construction (such as leaf mass per area and wood density), and life cycle (maximum height) (Moles et al., 2009; Niinemets, 2001; Towers et al., 2023; Wright et al., 2004). Although we understand the mechanisms underlying some of these patterns, more theory is needed to explain the selective forces causing these patterns to emerge across large spatial scales and at what temporal scales they occur.

The need for further theoretical understanding is motivated by the rapid environmental changes that Earth is experiencing. In addition to rising temperature (and thus), atmospheric dryness and carbon dioxide concentrations, climate change is expected to bring about changes in precipitation regimes across the globe (IPCC, 2023), thereby modifying the functional composition of ecosystems as populations and species adapt, migrate, or are driven extinct under new climatic conditions (Crimmins et al., 2011; Zhu et al., 2012). Indeed, there is already evidence showing an increase in the predominance of drought-affiliated species in ecosystems that are becoming drier and more seasonal and, on the other hand, the invasion of mesophilic species in locations that are becoming wetter (Fauset et al., 2012; Feeley et al., 20202011). Without theoretical predictions on how these changes may determine the favourability of different plant strategies, we are unable to anticipate the direction and rate of change in the composition of future vegetation.

Eco-evolutionary optimality frameworks (EEO) offer a means to develop process-based hypotheses for how and why traits respond to the environment (Harrison et al., 2021). Under EEO, environmentally driven trait patterns are hypothesised to emerge from a selection of trait combinations that maximise fitness. Some analyses have simulated community assembly across environmental gradients by calculating the reproductive fitness of species competing for shared resources, permitting the coexistence of multiple viable strategies (Detto et al., 2022; Falster et al., 2017). However, due to the difficulty of estimating reproductive fitness under competitive dynamics, EEO-based models often maximise some other variable as a tractable proxy (Bassiouni et al., 2023) and in the absence of competition. For example, many recent implementations of EEO optimise carbon gain on an instantaneous basis or through time at the leaf, plant, or ecosystem scale to determine a single optimal strategy for each environment. These models have been shown to successfully replicate observed environmental responses for a number of traits and variables including, amongst others, the intercellular to atmospheric ratio of CO 2 <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0004" wiley:location="equation/pce15042-math-0004.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><msub><mtext>CO</mtext><mn>2</mn></msub></mrow></mrow></math> (Wang et al., 2017), leaf maximum photosynthetic carboxylation capacity (Dong et al., 2017) and the sapwood to leaf area ratio (Trugman et al., 2019; Xu et al., 2021). Despite success, it has been argued that optimality approaches that focus on carbon acquisition alone limit the range of traits that can be represented by EEO because traits can also affect the construction cost of and relative allocation towards different plant tissues instead of, or in addition to, carbon uptake (Bartlett et al., 2019; Dong et al., 2022; Falster et al., 2018). In such cases, an approach which explicitly considers how traits influence the translation of carbon production to growth while preserving model speed may be most appropriate for understanding how trait environment gradients emerge from selection, as has been explored in other modelling work (Falster et al., 2018; Franklin, 2007; Franklin et al., 2014; King, 1996; Potkay & Feng, 2023). The question is: Can these models adequately recreate empirical phenomena?

Trait growth theory (TGT) is a theoretical framework which integrates the effects of traits on both biomass production and plant construction costs on growth rates (Falster et al., 20112018; Gibert et al., 2016; Westoby et al., 2022). This is achieved by linking both production and construction to measurable traits and the trade-offs encoded by these traits, to describe how additional biomass is allocated to different tissues as the plant grows. Thus far, TGT has been used to provide mechanistic explanations for a variety of empirical phenomena including the hump-shaped change in height-growth rate of biomass with size, the size-dependent effect of traits on growth, and effect of traits on shade tolerance (Falster et al., 2017; Westoby et al., 2022). The system of equations that make up TGT mean that, in principle, the model can be extended to include the effect of any abiotic factor on growth, so long as it influences either biomass production and/or allocation. The flexibility of TGT is particularly suited for explaining empirical patterns in the occurrence of traits along environmental gradients. To date, however, explicit representation of plant hydraulics is nonexistent and response to water availability in the TGT framework is very limited (Falster et al., 2017; Westoby et al., 2022).

Recent advances in the representation of trade-offs between photosynthetic and hydraulic functions offer a mechanistic, first-principles pathway to link stomatal response and traits to drying soil (Wolf et al., 2016). As soils dry, plants face an unavoidable trade-off between keeping their stomata open to maintain photosynthesis and closing their stomata to minimise drought-induced damaged to the water transport pathway. In contrast to empirical stomatal models, a number of optimal stomatal models assume plants to be efficient water users (Cowan & Farquhar, 1977) that actively regulate the benefits of carbon acquisition relative to the costs of water loss. Beyond their demonstrated performance in predicting observed stomatal conductance (Sabot et al., 2022), optimal stomatal models have the added advantage of being parameterised with measurable hydraulic traits, thereby mechanistically linking traits to stomatal behaviour, and thus to fitness.

Here, we integrate an optimal stomatal behaviour model into the TGT framework to generate predictions about how traits should respond to gradients in soil moisture, atmospheric vapour pressure deficit, carbon dioxide and light availability. The stomatal behaviour model is based on maximising carbon acquisition after accounting for costs associated with water acquisition. We use plant height-growth rate as a proxy for fitness, thereby integrating effects of traits on biomass production and plant construction. Our primary goal is to qualitatively capture the directions of empirically observed trait responses to changes in soil water availability as an emergent outcome of an EEO model based on height-growth rates. To evaluate the effect of processes related to tissue allocation on the predictions for each focal trait, we compare the predictions from the height-growth based model to a simpler fitness proxy based on biomass growth (i.e., carbon gain minus respiration and turnover costs). Next, we investigate whether traits are predicted to also shift with plant size, either through influencing the relative allocation of carbon to different tissues or the hydraulic transport pathway, as shifts in traits with size are also widely observed in nature (Table 1). Finally, by extending our approach to optimise across multiple trait dimensions simultaneously, we investigate our framework's ability to explain species turnover across soil moisture gradients in terms of fitness (as represented by height-growth rate).

Table 1. Phenomena analysed in the model and empirical evidence for phenomena.
Phenomenon Response of trait
ϕ <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0005" wiley:location="equation/pce15042-math-0005.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><mi>\unicode{x003D5}</mi></mrow></mrow></math> ρ <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0006" wiley:location="equation/pce15042-math-0006.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><mi>\unicode{x003C1}</mi></mrow></mrow></math> K s , max <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0007" wiley:location="equation/pce15042-math-0007.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><msub><mi>K</mi><mrow><mi mathvariant="normal">s</mi><mo>,</mo><mi>max</mi></mrow></msub></mrow></mrow></math> θ <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0008" wiley:location="equation/pce15042-math-0008.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><mi>\unicode{x003B8}</mi></mrow></mrow></math>
Variation in trait across environments
With soil dryness <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0009" wiley:location="equation/pce15042-math-0009.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><mi>\unicode{x02191}</mi></mrow></mrow></math> <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0010" wiley:location="equation/pce15042-math-0010.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><mi>\unicode{x02191}</mi></mrow></mrow></math> <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0011" wiley:location="equation/pce15042-math-0011.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><mi>\unicode{x02193}</mi></mrow></mrow></math> <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0012" wiley:location="equation/pce15042-math-0012.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><mi>\unicode{x02191}</mi></mrow></mrow></math>
With atmospheric vapour pressure deficit <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0013" wiley:location="equation/pce15042-math-0013.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><mi>\unicode{x02191}</mi></mrow></mrow></math> <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0014" wiley:location="equation/pce15042-math-0014.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><mi>\unicode{x02191}</mi></mrow></mrow></math> <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0015" wiley:location="equation/pce15042-math-0015.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><mi>\unicode{x02191}</mi></mrow></mrow></math> <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0016" wiley:location="equation/pce15042-math-0016.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><mi>\unicode{x02191}</mi></mrow></mrow></math>
With atmospheric carbon dioxide concentration <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0017" wiley:location="equation/pce15042-math-0017.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><mi>\unicode{x02191}</mi></mrow></mrow></math> <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0018" wiley:location="equation/pce15042-math-0018.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><mi>\unicode{x02193}</mi></mrow></mrow></math> <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0019" wiley:location="equation/pce15042-math-0019.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><mi>\unicode{x02193}</mi></mrow></mrow></math> <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0020" wiley:location="equation/pce15042-math-0020.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><mi>\unicode{x02193}</mi></mrow></mrow></math>
With light availability <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0021" wiley:location="equation/pce15042-math-0021.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><mi>\unicode{x02191}</mi></mrow></mrow></math> <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0022" wiley:location="equation/pce15042-math-0022.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><mi>\unicode{x02193}</mi></mrow></mrow></math> <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0023" wiley:location="equation/pce15042-math-0023.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><mi>\unicode{x02191}</mi></mrow></mrow></math> <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0024" wiley:location="equation/pce15042-math-0024.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><mi>\unicode{x02191}</mi></mrow></mrow></math>
Variation in trait within individuals
Change with <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0025" wiley:location="equation/pce15042-math-0025.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><mi>\unicode{x02191}</mi></mrow></mrow></math> size <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0026" wiley:location="equation/pce15042-math-0026.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><mi>\unicode{x02191}</mi></mrow></mrow></math> <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0027" wiley:location="equation/pce15042-math-0027.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><mi>\unicode{x02191}</mi></mrow></mrow></math> <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0028" wiley:location="equation/pce15042-math-0028.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><mi>\unicode{x02191}</mi></mrow></mrow></math> <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0029" wiley:location="equation/pce15042-math-0029.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><mi>\unicode{x02191}</mi></mrow></mrow></math>
Co-variation among traits
With <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0030" wiley:location="equation/pce15042-math-0030.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><mi>\unicode{x02191}</mi></mrow></mrow></math> ϕ <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0031" wiley:location="equation/pce15042-math-0031.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><mi>\unicode{x003D5}</mi></mrow></mrow></math> <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0032" wiley:location="equation/pce15042-math-0032.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><mi>\unicode{x02191}</mi></mrow></mrow></math> <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0033" wiley:location="equation/pce15042-math-0033.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><mi>\unicode{x02191}</mi></mrow></mrow></math> <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0034" wiley:location="equation/pce15042-math-0034.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><mi>\unicode{x02191}</mi></mrow></mrow></math>
With <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0035" wiley:location="equation/pce15042-math-0035.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><mi>\unicode{x02191}</mi></mrow></mrow></math> ρ <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0036" wiley:location="equation/pce15042-math-0036.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><mi>\unicode{x003C1}</mi></mrow></mrow></math> <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0037" wiley:location="equation/pce15042-math-0037.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><mi>\unicode{x02193}</mi></mrow></mrow></math> <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0038" wiley:location="equation/pce15042-math-0038.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><mi>\unicode{x02191}</mi></mrow></mrow></math>
With <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0039" wiley:location="equation/pce15042-math-0039.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><mi>\unicode{x02191}</mi></mrow></mrow></math> K s , max <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0040" wiley:location="equation/pce15042-math-0040.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><msub><mi>K</mi><mrow><mi mathvariant="normal">s</mi><mo>,</mo><mi>max</mi></mrow></msub></mrow></mrow></math> <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0041" wiley:location="equation/pce15042-math-0041.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><mi>\unicode{x02193}</mi></mrow></mrow></math>
  • Note: Arrows show the direction of the empirical trait response. Dashes indicate cells that were intentionally left blank.
  • a Towers et al. (2023)
  • b Onoda et al. (2010)
  • c Pickup et al. (2005)
  • d Gleason et al. (2013)
  • e Tavares et al. (2023)
  • f Westerband et al. (2023)
  • g Rocha et al. (2020)
  • h Liu et al. (2021)
  • i Olson et al. (2020)
  • j Mencuccini and Grace (1995)
  • k Hikosaka et al. (2005)
  • l Pritchard et al. (1999)
  • m Poorter et al. (2009)
  • n Bobich et al. (2010)
  • o Eguchi et al. (2008)
  • p Ellsworth and Reich (1992)
  • q Neyret et al. (2016)
  • r Poorter et al. (2019)
  • s Sellin et al. (2010)
  • t de Oliveira et al. (2023)
  • u Westoby et al. (2022)
  • v Hietz et al. (2013)
  • w Rungwattana and Hietz (2018)
  • x McDowell, Barnard et al. (2002)
  • y Mencuccini et al. (2019).

2 METHODS

2.1 Eco-evolutionary context

In this analysis, we simulate the growth response of individual plants parameterised with a suite of ecophysiological traits along a series of environmental gradients. In a similar manner to other trait-based optimality models, environmental conditions are fixed at each point of the gradient, and simulated plants do not explicitly experience density-dependent interactions (Dong et al., 20172022; Wang et al., 2017). However, the selected environmental gradients are not assumed to be exclusively spatial and thus different points along each gradient could equally represent variation across sites or through time due to exogenous fluctuations in the environment, competition for shared resources, or position in the canopy. The question our model aims to address is: What traits would a plant ideally possess to maximise performance given a set of environment conditions? Given that our framework maximises size growth rate in plants, but does not take into account processes such as mortality and reproduction, simulated optimum strategies are presumably most representative of ‘fast’ species in the global ‘fast-slow’ trait continuum that prioritise resource acquisition at the expense of high mortality rates (Reich, 2014). Nevertheless, we propose that the mechanisms underlying simulated trait responses to the environment could be broadly applicable in explaining observable community-wide trends.

Height-growth rate, as compared to other size growth rates, was selected as our primary metric of plant performance because it is conceptually simple, has long been an indicator of relative plant success and, in light-limited environments, is an indicator of a plant's future position in the canopy under competitive scenarios. However, we note that our findings could equally be centred around other size growth rates including total canopy area which may be more relevant in water-limited systems; the critical aspect of the performance metric for our analysis is that it incorporates processes related to the costs and benefits of allocating biomass production to different plant tissues while preserving model tractability. Moreover, if canopy architecture is assumed to be invariant (Falster et al., 2018), as we do in the present study, height and leaf area growth rate are directly related, meaning that predictions emerging from our model can be viewed in light of optimisation of either size metric.

2.2 TGT

TGT describes how traits influence plant growth rates and how this influence changes with plant size and the environment (Falster et al., 2018). According to TGT, the height-growth rate of an individual, d H d t <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0042" wiley:location="equation/pce15042-math-0042.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><mfrac><mrow><mi mathvariant="normal">d</mi><mi>H</mi></mrow><mrow><mi mathvariant="normal">d</mi><mi>t</mi></mrow></mfrac></mrow></mrow></math> , potentially varies with traits (here denoted by the letter x <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0043" wiley:location="equation/pce15042-math-0043.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><mi>x</mi></mrow></mrow></math> ), size ( H <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0044" wiley:location="equation/pce15042-math-0044.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><mi>H</mi></mrow></mrow></math> ), and environment ( E <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0045" wiley:location="equation/pce15042-math-0045.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><mi>E</mi></mrow></mrow></math> ), as the outcome of four processes:
d H d t ( x , H , E ) = d H d A l ( x , H ) d A l d M a ( x , H ) d M a d B ( x , H ) d B d t ( x , H , E ) , <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0046" display="block" wiley:location="equation/pce15042-math-0046.png" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><mfrac><mrow><mi mathvariant="normal">d</mi><mi>H</mi></mrow><mrow><mi mathvariant="normal">d</mi><mi>t</mi></mrow></mfrac><mrow><mo>(</mo><mrow><mi>x</mi><mo>,</mo><mi>H</mi><mo>,</mo><mi>E</mi></mrow><mo>)</mo></mrow><mo>\unicode{x0003D}</mo><mfrac><mrow><mi mathvariant="normal">d</mi><mi>H</mi></mrow><mrow><mi mathvariant="normal">d</mi><msub><mi>A</mi><mi>l</mi></msub></mrow></mfrac><mrow><mo>(</mo><mrow><mi>x</mi><mo>,</mo><mi>H</mi></mrow><mo>)</mo></mrow><mfrac><mrow><mi mathvariant="normal">d</mi><msub><mi>A</mi><mi>l</mi></msub></mrow><mrow><mi mathvariant="normal">d</mi><msub><mi>M</mi><mi>a</mi></msub></mrow></mfrac><mrow><mo>(</mo><mrow><mi>x</mi><mo>,</mo><mi>H</mi></mrow><mo>)</mo></mrow><mfrac><mrow><mi mathvariant="normal">d</mi><msub><mi>M</mi><mi>a</mi></msub></mrow><mrow><mi mathvariant="normal">d</mi><mi>B</mi></mrow></mfrac><mrow><mo>(</mo><mrow><mi>x</mi><mo>,</mo><mi>H</mi></mrow><mo>)</mo></mrow><mfrac><mrow><mi mathvariant="normal">d</mi><mi>B</mi></mrow><mrow><mi mathvariant="normal">d</mi><mi>t</mi></mrow></mfrac><mrow><mo>(</mo><mrow><mi>x</mi><mo>,</mo><mi>H</mi><mo>,</mo><mi>E</mi></mrow><mo>)</mo></mrow><mo>,</mo></mrow></mrow></math> (1)
where d B d t <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0047" wiley:location="equation/pce15042-math-0047.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><mfrac><mrow><mi mathvariant="normal">d</mi><mi>B</mi></mrow><mrow><mi mathvariant="normal">d</mi><mi>t</mi></mrow></mfrac></mrow></mrow></math> describes the growth of biomass, d M a d B <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0048" wiley:location="equation/pce15042-math-0048.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><mfrac><mrow><mi mathvariant="normal">d</mi><msub><mi>M</mi><mi>a</mi></msub></mrow><mrow><mi mathvariant="normal">d</mi><mi>B</mi></mrow></mfrac></mrow></mrow></math> describes the fraction of biomass available for allocation to growth of vegetative tissues ( M a <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0049" wiley:location="equation/pce15042-math-0049.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><msub><mi>M</mi><mi>a</mi></msub></mrow></mrow></math> ) after allocation to reproduction; d A l d M a <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0050" wiley:location="equation/pce15042-math-0050.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><mfrac><mrow><mi mathvariant="normal">d</mi><msub><mi>A</mi><mi>l</mi></msub></mrow><mrow><mi mathvariant="normal">d</mi><msub><mi>M</mi><mi>a</mi></msub></mrow></mfrac></mrow></mrow></math> describes the change in canopy leaf area ( A l <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0051" wiley:location="equation/pce15042-math-0051.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><msub><mi>A</mi><mi>l</mi></msub></mrow></mrow></math> ) for a given unit of biomass allocated to growth; and d H d A l <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0052" wiley:location="equation/pce15042-math-0052.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><mfrac><mrow><mi mathvariant="normal">d</mi><mi>H</mi></mrow><mrow><mi mathvariant="normal">d</mi><msub><mi>A</mi><mi>l</mi></msub></mrow></mfrac></mrow></mrow></math> describes the allometric relationship between plant height and crown size. For the present study, we simplify the analysis by assuming that plants do not invest in reproduction and, as mentioned above, that d H d A l <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0053" wiley:location="equation/pce15042-math-0053.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><mfrac><mrow><mi mathvariant="normal">d</mi><mi>H</mi></mrow><mrow><mi mathvariant="normal">d</mi><msub><mi>A</mi><mi>l</mi></msub></mrow></mfrac></mrow></mrow></math> is invariant across taxa. Thus, in our analysis, variation in d H d t <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0054" wiley:location="equation/pce15042-math-0054.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><mfrac><mrow><mi mathvariant="normal">d</mi><mi>H</mi></mrow><mrow><mi mathvariant="normal">d</mi><mi>t</mi></mrow></mfrac></mrow></mrow></math> is realised only through variation in d B d t <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0055" wiley:location="equation/pce15042-math-0055.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><mfrac><mrow><mi mathvariant="normal">d</mi><mi>B</mi></mrow><mrow><mi mathvariant="normal">d</mi><mi>t</mi></mrow></mfrac></mrow></mrow></math> and d A l d M a <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0056" wiley:location="equation/pce15042-math-0056.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><mfrac><mrow><mi mathvariant="normal">d</mi><msub><mi>A</mi><mi>l</mi></msub></mrow><mrow><mi mathvariant="normal">d</mi><msub><mi>M</mi><mi>a</mi></msub></mrow></mfrac></mrow></mrow></math> . Of course, we acknowledge that investment in reproduction is an important process and that canopy architecture and reproduction schedules can vary across species and environments (Fransson et al., 2021; Wenk & Falster, 2015). However, as the focal traits in the present study are not assumed to influence allocation to either total leaf area or reproductive tissues as plants grow taller, the predicted directions of trait–environment relationships are robust to this assumption.
d A l d M a <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0057" wiley:location="equation/pce15042-math-0057.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><mfrac><mrow><mi mathvariant="normal">d</mi><msub><mi>A</mi><mi>l</mi></msub></mrow><mrow><mi mathvariant="normal">d</mi><msub><mi>M</mi><mi>a</mi></msub></mrow></mfrac></mrow></mrow></math> can be further decomposed into the marginal increase in mass of each plant component required to support an additional unit of leaf area:
d A l d M a ( x , H ) = d M l d A l ( x ) + d M s d A l ( x , H ) + d M b d A l ( x , H ) + d M r d A l ( x , H ) 1 , <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0058" display="block" wiley:location="equation/pce15042-math-0058.png" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><mfrac><mrow><mi mathvariant="normal">d</mi><msub><mi>A</mi><mi>l</mi></msub></mrow><mrow><mi mathvariant="normal">d</mi><msub><mi>M</mi><mi>a</mi></msub></mrow></mfrac><mrow><mo>(</mo><mrow><mi>x</mi><mo>,</mo><mi>H</mi></mrow><mo>)</mo></mrow><mo>\unicode{x0003D}</mo><msup><mfenced close=")" open="("><mrow><mfrac><mrow><mi mathvariant="normal">d</mi><msub><mi>M</mi><mi>l</mi></msub></mrow><mrow><mi mathvariant="normal">d</mi><msub><mi>A</mi><mi>l</mi></msub></mrow></mfrac><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>\unicode{x0002B}</mo><mfrac><mrow><mi mathvariant="normal">d</mi><msub><mi>M</mi><mi>s</mi></msub></mrow><mrow><mi mathvariant="normal">d</mi><msub><mi>A</mi><mi>l</mi></msub></mrow></mfrac><mrow><mo>(</mo><mrow><mi>x</mi><mo>,</mo><mi>H</mi></mrow><mo>)</mo></mrow><mo>\unicode{x0002B}</mo><mfrac><mrow><mi mathvariant="normal">d</mi><msub><mi>M</mi><mi>b</mi></msub></mrow><mrow><mi mathvariant="normal">d</mi><msub><mi>A</mi><mi>l</mi></msub></mrow></mfrac><mrow><mo>(</mo><mrow><mi>x</mi><mo>,</mo><mi>H</mi></mrow><mo>)</mo></mrow><mo>\unicode{x0002B}</mo><mfrac><mrow><mi mathvariant="normal">d</mi><msub><mi>M</mi><mi>r</mi></msub></mrow><mrow><mi mathvariant="normal">d</mi><msub><mi>A</mi><mi>l</mi></msub></mrow></mfrac><mrow><mo>(</mo><mrow><mi>x</mi><mo>,</mo><mi>H</mi></mrow><mo>)</mo></mrow></mrow></mfenced><mrow><mo>\unicode{x02212}</mo><mn>1</mn></mrow></msup><mo>,</mo></mrow></mrow></math> (2)
where M s , M b <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0059" wiley:location="equation/pce15042-math-0059.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><msub><mi>M</mi><mi>s</mi></msub><mo>,</mo><msub><mi>M</mi><mi>b</mi></msub></mrow></mrow></math> and M r <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0060" wiley:location="equation/pce15042-math-0060.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><msub><mi>M</mi><mi>r</mi></msub></mrow></mrow></math> are the sapwood, bark, and root mass, respectively. Tissue mass is linked to leaf area according to a series of functional-balance equations which describe the relationship between plant properties (Falster et al., 2018). Here, d M l d A l <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0061" wiley:location="equation/pce15042-math-0061.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><mfrac><mrow><mi>d</mi><msub><mi>M</mi><mi>l</mi></msub></mrow><mrow><mi mathvariant="normal">d</mi><msub><mi>A</mi><mi>l</mi></msub></mrow></mfrac></mrow></mrow></math> is the leaf mass per area, ( ϕ <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0062" wiley:location="equation/pce15042-math-0062.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><mi>\unicode{x003D5}</mi></mrow></mrow></math> ), while d M s d A l , d M b d A l <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0063" wiley:location="equation/pce15042-math-0063.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><mfrac><mrow><mi>d</mi><msub><mi>M</mi><mi>s</mi></msub></mrow><mrow><mi mathvariant="normal">d</mi><msub><mi>A</mi><mi>l</mi></msub></mrow></mfrac><mo>,</mo><mfrac><mrow><mi>d</mi><msub><mi>M</mi><mi>b</mi></msub></mrow><mrow><mi mathvariant="normal">d</mi><msub><mi>A</mi><mi>l</mi></msub></mrow></mfrac></mrow></mrow></math> and d M r d A l <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0064" wiley:location="equation/pce15042-math-0064.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><mfrac><mrow><mi>d</mi><msub><mi>M</mi><mi>r</mi></msub></mrow><mrow><mi mathvariant="normal">d</mi><msub><mi>A</mi><mi>l</mi></msub></mrow></mfrac></mrow></mrow></math> emerge from the pipe model which assumes that, for plants with a given set of traits, sapwood, bark, and root surface areas ( A s , A b <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0065" wiley:location="equation/pce15042-math-0065.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><msub><mi>A</mi><mi>s</mi></msub><mo>,</mo><msub><mi>A</mi><mi>b</mi></msub></mrow></mrow></math> and A r <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0066" wiley:location="equation/pce15042-math-0066.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><msub><mi>A</mi><mi>r</mi></msub></mrow></mrow></math> , respectively) scale proportionally with leaf area (Shinozaki et al., 1964). Traits such as leaf mass per area can influence d A l d M a <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0067" wiley:location="equation/pce15042-math-0067.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><mfrac><mrow><mi mathvariant="normal">d</mi><msub><mi>A</mi><mi>l</mi></msub></mrow><mrow><mi mathvariant="normal">d</mi><msub><mi>M</mi><mi>a</mi></msub></mrow></mfrac></mrow></mrow></math> in the model by moderating the area by mass ratio of a given plant tissue or the ratio of leaf area to the area of other tissues.
Biomass growth is modelled as the net increase in biomass resulting from photosynthesis after accounting for losses related to damage to the hydraulic pathway incurred by transpiration, respiration, and turnover of tissues:
d B d t = a bio a y A l ( P ¯ net ( x , H , E ) C ¯ ( x , H , E ) ) i = l , b , s , r M i r i ( x ) i = l , b , s , r M i t i ( x ) . <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0068" display="block" wiley:location="equation/pce15042-math-0068.png" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><mfrac><mrow><mi mathvariant="normal">d</mi><mi>B</mi></mrow><mrow><mi mathvariant="normal">d</mi><mi>t</mi></mrow></mfrac><mo>\unicode{x0003D}</mo><msub><mi>a</mi><mtext>bio</mtext></msub><msub><mi>a</mi><mi>y</mi></msub><mfenced><mrow><msub><mi>A</mi><mi mathvariant="normal">l</mi></msub><mspace width="0.33em"/><mrow><mo>(</mo><msub><mover accent="true"><mi>P</mi><mo>\unicode{x000AF}</mo></mover><mi>net</mi></msub><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>H</mi><mo>,</mo><mi>E</mi><mo>)</mo></mrow><mo>\unicode{x02212}</mo><mspace width="0.33em"/><mover accent="true"><mi>C</mi><mo>\unicode{x000AF}</mo></mover><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>H</mi><mo>,</mo><mi>E</mi><mo>)</mo></mrow><mo>)</mo></mrow><mo>\unicode{x02212}</mo><munder><mo>\unicode{x02211}</mo><mrow><mi>i</mi><mo>\unicode{x0003D}</mo><mi mathvariant="normal">l</mi><mo>,</mo><mi mathvariant="normal">b</mi><mo>,</mo><mi mathvariant="normal">s</mi><mo>,</mo><mi mathvariant="normal">r</mi></mrow></munder><msub><mi>M</mi><mi>i</mi></msub><mspace width="0.33em"/><msub><mi>r</mi><mi>i</mi></msub><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow></mfenced><mo>\unicode{x02212}</mo><munder><mo>\unicode{x02211}</mo><mrow><mi>i</mi><mo>\unicode{x0003D}</mo><mi mathvariant="normal">l</mi><mo>,</mo><mi mathvariant="normal">b</mi><mo>,</mo><mi mathvariant="normal">s</mi><mo>,</mo><mi mathvariant="normal">r</mi></mrow></munder><msub><mi>M</mi><mi>i</mi></msub><mspace width="0.33em"/><msub><mi>t</mi><mi>i</mi></msub><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>.</mo></mrow></mrow></math> (3)

The whole-canopy rates of net photosynthesis and hydraulic cost are found by multiplying the total photosynthetic surface A l <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0069" wiley:location="equation/pce15042-math-0069.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><msub><mi>A</mi><mi>l</mi></msub></mrow></mrow></math> by the average rate of leaf-level net photosynthesis, P ¯ net ( x , H , E ) <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0070" wiley:location="equation/pce15042-math-0070.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><msub><mover accent="true"><mi>P</mi><mo>\unicode{x000AF}</mo></mover><mi>net</mi></msub><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>H</mi><mo>,</mo><mi>E</mi><mo>)</mo></mrow></mrow></mrow></math> and leaf-level hydraulic cost, C ¯ ( x , H , E ) <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0071" wiley:location="equation/pce15042-math-0071.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><mover accent="true"><mi>C</mi><mo>\unicode{x000AF}</mo></mover><mrow><mo>(</mo><mrow><mi>x</mi><mo>,</mo><mi>H</mi><mo>,</mo><mi>E</mi></mrow><mo>)</mo></mrow></mrow></mrow></math> , respectively, which are themselves dependent on traits, plant size, and the environment (see Section 2.3). P ¯ net <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0072" wiley:location="equation/pce15042-math-0072.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><msub><mover accent="true"><mi>P</mi><mo>\unicode{x000AF}</mo></mover><mi>net</mi></msub></mrow></mrow></math> and C ¯ <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0073" wiley:location="equation/pce15042-math-0073.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><mover accent="true"><mi>C</mi><mo>\unicode{x000AF}</mo></mover></mrow></mrow></math> are described as average values, representing the central tendency of these values due to variation in light conditions throughout the canopy of an individual. Tissue-specific rates of respiration, r i <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0074" wiley:location="equation/pce15042-math-0074.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><msub><mi>r</mi><mi>i</mi></msub></mrow></mrow></math> and turnover t i <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0075" wiley:location="equation/pce15042-math-0075.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><msub><mi>t</mi><mi>i</mi></msub></mrow></mrow></math> are mass-based and are calculated by summing across the mass of each plant tissue ( M i <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0076" wiley:location="equation/pce15042-math-0076.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><msub><mi>M</mi><mi>i</mi></msub></mrow></mrow></math> ). a y <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0077" wiley:location="equation/pce15042-math-0077.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><msub><mi>a</mi><mi>y</mi></msub></mrow></mrow></math> and a bio <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0078" wiley:location="equation/pce15042-math-0078.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><msub><mi>a</mi><mtext>bio</mtext></msub></mrow></mrow></math> are constants being the fraction of carbon per unit of biomass and the conversion rate between CO 2 <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0079" wiley:location="equation/pce15042-math-0079.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><msub><mstyle><mspace width="0.1em"/><mtext>CO</mtext><mspace width="0.1em"/></mstyle><mn>2</mn></msub></mrow></mrow></math> and biomass, respectively (Table 2).

Table 2. Variable descriptions, tested parameter values, and units.
Symbol Description Values Units
State variables
H Plant height 0.5–20 m
A i <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0080" wiley:location="equation/pce15042-math-0080.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><msub><mi>A</mi><mi mathvariant="italic">i</mi></msub></mrow></mrow></math> Total area of plant tissue, i m 2 <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0081" wiley:location="equation/pce15042-math-0081.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><msup><mi mathvariant="normal">m</mi><mn>2</mn></msup></mrow></mrow></math>
M i <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0082" wiley:location="equation/pce15042-math-0082.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><msub><mi>M</mi><mi mathvariant="italic">i</mi></msub></mrow></mrow></math> Total mass of plant tissue, i kg
M a <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0083" wiley:location="equation/pce15042-math-0083.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><msub><mi mathvariant="normal">M</mi><mi mathvariant="normal">a</mi></msub></mrow></mrow></math> Total mass of alive tissue kg
B Total plant biomass kg
V s <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0084" wiley:location="equation/pce15042-math-0084.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><msub><mi>V</mi><mi mathvariant="italic">s</mi></msub></mrow></mrow></math> Total sapwood volume m 3 <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0085" wiley:location="equation/pce15042-math-0085.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><msup><mi mathvariant="normal">m</mi><mn>3</mn></msup></mrow></mrow></math>
g w <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0086" wiley:location="equation/pce15042-math-0086.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><msub><mi>g</mi><mi mathvariant="italic">w</mi></msub></mrow></mrow></math> Stomatal conductance to H 2 O <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0087" wiley:location="equation/pce15042-math-0087.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><msub><mi mathvariant="normal">H</mi><mn>2</mn></msub><mi mathvariant="normal">O</mi></mrow></mrow></math> μ mol H 2 O m 2 s 1 <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0088" wiley:location="equation/pce15042-math-0088.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><mi mathvariant="normal">\unicode{x003BC}</mi><mtext>mol</mtext><mspace width="0.33em"/><msub><mi mathvariant="normal">H</mi><mn>2</mn></msub><mi mathvariant="normal">O</mi><mspace width="0.33em"/><msup><mi mathvariant="normal">m</mi><mrow><mo>\unicode{x02212}</mo><mn>2</mn></mrow></msup><mspace width="0.33em"/><msup><mi mathvariant="normal">s</mi><mrow><mo>\unicode{x02212}</mo><mn>1</mn></mrow></msup></mrow></mrow></math>
g s <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0089" wiley:location="equation/pce15042-math-0089.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><msub><mi>g</mi><mi>s</mi></msub></mrow></mrow></math> Stomatal conductance to CO 2 <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0090" wiley:location="equation/pce15042-math-0090.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><msub><mtext>CO</mtext><mn>2</mn></msub></mrow></mrow></math> μ mol CO 2 m 2 s 1 <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0091" wiley:location="equation/pce15042-math-0091.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><mi mathvariant="normal">\unicode{x003BC}</mi><mtext>mol</mtext><mspace width="0.33em"/><msub><mtext>CO</mtext><mn>2</mn></msub><mspace width="0.33em"/><msup><mi mathvariant="normal">m</mi><mrow><mo>\unicode{x02212}</mo><mn>2</mn></mrow></msup><mspace width="0.33em"/><msup><mi mathvariant="normal">s</mi><mrow><mo>\unicode{x02212}</mo><mn>1</mn></mrow></msup></mrow></mrow></math>
E Transpiration per leaf area kg m 2 s 1 <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0092" wiley:location="equation/pce15042-math-0092.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><mtext>kg</mtext><mspace width="0.33em"/><msup><mi mathvariant="normal">m</mi><mrow><mo>\unicode{x02212}</mo><mn>2</mn></mrow></msup><mspace width="0.33em"/><msup><mi mathvariant="normal">s</mi><mrow><mo>\unicode{x02212}</mo><mn>1</mn></mrow></msup></mrow></mrow></math>
C i <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0093" wiley:location="equation/pce15042-math-0093.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><msub><mi>C</mi><mi mathvariant="italic">i</mi></msub></mrow></mrow></math> Intercellular CO 2 <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0094" wiley:location="equation/pce15042-math-0094.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><msub><mtext>CO</mtext><mn>2</mn></msub></mrow></mrow></math> partial pressure Pa
ψ l <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0095" wiley:location="equation/pce15042-math-0095.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><msub><mi>\unicode{x003C8}</mi><mi mathvariant="normal">l</mi></msub></mrow></mrow></math> Leaf water potential -MPa
P ¯ net <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0096" wiley:location="equation/pce15042-math-0096.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><msub><mover accent="true"><mi>P</mi><mo>\unicode{x000AF}</mo></mover><mtext>net</mtext></msub></mrow></mrow></math> Net photosynthetic assimilation per leaf area μ mol m 2 s 1 <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0097" wiley:location="equation/pce15042-math-0097.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><mi mathvariant="normal">\unicode{x003BC}</mi><mtext>mol</mtext><mspace width="0.33em"/><msup><mi mathvariant="normal">m</mi><mrow><mo>\unicode{x02212}</mo><mn>2</mn></mrow></msup><mspace width="0.33em"/><msup><mi mathvariant="normal">s</mi><mrow><mo>\unicode{x02212}</mo><mn>1</mn></mrow></msup></mrow></mrow></math>
C ¯ <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0098" wiley:location="equation/pce15042-math-0098.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><mover accent="true"><mi>C</mi><mo>\unicode{x000AF}</mo></mover></mrow></mrow></math> Hydraulic cost per leaf area μ mol m 2 s 1 <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0099" wiley:location="equation/pce15042-math-0099.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><mi mathvariant="normal">\unicode{x003BC}</mi><mtext>mol</mtext><mspace width="0.33em"/><msup><mi mathvariant="normal">m</mi><mrow><mo>\unicode{x02212}</mo><mn>2</mn></mrow></msup><mspace width="0.33em"/><msup><mi mathvariant="normal">s</mi><mrow><mo>\unicode{x02212}</mo><mn>1</mn></mrow></msup></mrow></mrow></math>
k l <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0100" wiley:location="equation/pce15042-math-0100.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><msub><mi>k</mi><mi mathvariant="normal">l</mi></msub></mrow></mrow></math> Leaf-specific hydraulic conductance at ψ leaf <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0101" wiley:location="equation/pce15042-math-0101.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><msub><mi>\unicode{x003C8}</mi><mtext>leaf</mtext></msub></mrow></mrow></math> Derived from k l , max , ψ leaf <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0102" wiley:location="equation/pce15042-math-0102.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><msub><mi>k</mi><mrow><mi>l</mi><mo>,</mo><mi>max</mi></mrow></msub><mo>,</mo><msub><mi>\unicode{x003C8}</mi><mtext>leaf</mtext></msub></mrow></mrow></math> kg m 2 s 1 MPa <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0103" wiley:location="equation/pce15042-math-0103.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><mtext>kg</mtext><mspace width="0.33em"/><msup><mi mathvariant="normal">m</mi><mrow><mo>\unicode{x02212}</mo><mn>2</mn></mrow></msup><mspace width="0.33em"/><msup><mi mathvariant="normal">s</mi><mrow><mo>\unicode{x02212}</mo><mn>1</mn></mrow></msup><mspace width="0.33em"/><mtext>MPa</mtext></mrow></mrow></math>
Focal traits
θ <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0104" wiley:location="equation/pce15042-math-0104.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><mi>\unicode{x003B8}</mi></mrow></mrow></math> Sapwood area to leaf area ratio 1 e 5 5 e 4 <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0105" wiley:location="equation/pce15042-math-0105.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><mn>1</mn><msup><mi mathvariant="normal">e</mi><mrow><mo>\unicode{x02212}</mo><mn>5</mn></mrow></msup><mstyle><mo>\unicode{x02013}</mo></mstyle><mn>5</mn><msup><mi>e</mi><mrow><mo>\unicode{x02212}</mo><mn>4</mn></mrow></msup></mrow></mrow></math> m 2 SA m 2 LA <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0106" wiley:location="equation/pce15042-math-0106.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><msup><mi mathvariant="normal">m</mi><mn>2</mn></msup><mspace width="0.33em"/><mtext>SA</mtext><mspace width="0.33em"/><msup><mi mathvariant="normal">m</mi><mrow><mo>\unicode{x02212}</mo><mn>2</mn></mrow></msup><mspace width="0.33em"/><mtext>LA</mtext></mrow></mrow></math>
K s , max <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0107" wiley:location="equation/pce15042-math-0107.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><msub><mi>K</mi><mrow><mi mathvariant="normal">s</mi><mo>,</mo><mi>max</mi></mrow></msub></mrow></mrow></math> Maximum sapwood-specific conductivity 0.01–50 kg m 1 s 1 MPa <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0108" wiley:location="equation/pce15042-math-0108.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><mtext>kg</mtext><mspace width="0.33em"/><msup><mi mathvariant="normal">m</mi><mrow><mo>\unicode{x02212}</mo><mn>1</mn></mrow></msup><mspace width="0.33em"/><msup><mi mathvariant="normal">s</mi><mrow><mo>\unicode{x02212}</mo><mn>1</mn></mrow></msup><mi>MPa</mi></mrow></mrow></math>
ρ <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0109" wiley:location="equation/pce15042-math-0109.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><mi>\unicode{x003C1}</mi></mrow></mrow></math> Wood density 10–2 e 4 <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0110" wiley:location="equation/pce15042-math-0110.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><msup><mi>e</mi><mn>4</mn></msup></mrow></mrow></math> kg m 3 <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0111" wiley:location="equation/pce15042-math-0111.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><mtext>kg</mtext><mspace width="0.33em"/><msup><mi mathvariant="normal">m</mi><mrow><mo>\unicode{x02212}</mo><mn>3</mn></mrow></msup></mrow></mrow></math>
Φ <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0112" wiley:location="equation/pce15042-math-0112.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><mi mathvariant="normal">\unicode{x003A6}</mi></mrow></mrow></math> Leaf mass per area 0.01–1 kg m 2 <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0113" wiley:location="equation/pce15042-math-0113.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><mtext>kg</mtext><mspace width="0.33em"/><msup><mi mathvariant="normal">m</mi><mrow><mo>\unicode{x02212}</mo><mn>2</mn></mrow></msup></mrow></mrow></math>
Other traits
c Shape parameter for hydraulic vulnerability curve 2.04 Unitless
η c <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0114" wiley:location="equation/pce15042-math-0114.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><msub><mi>\unicode{x003B7}</mi><mi>c</mi></msub></mrow></mrow></math> Proportional height of average leaf in canopy 0.89 Unitless
V c , max <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0115" wiley:location="equation/pce15042-math-0115.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><msub><mi>V</mi><mrow><mi mathvariant="normal">c</mi><mo>,</mo><mi>max</mi></mrow></msub></mrow></mrow></math> Maximum rate of carboxylation 50 μ mol m 2 s 1 <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0116" wiley:location="equation/pce15042-math-0116.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><mi mathvariant="normal">\unicode{x003BC}</mi><mtext>mol</mtext><mspace width="0.33em"/><msup><mi mathvariant="normal">m</mi><mrow><mo>\unicode{x02212}</mo><mn>2</mn></mrow></msup><mspace width="0.33em"/><msup><mi mathvariant="normal">s</mi><mrow><mo>\unicode{x02212}</mo><mn>1</mn></mrow></msup></mrow></mrow></math>
J max <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0117" wiley:location="equation/pce15042-math-0117.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><msub><mi>J</mi><mi>max</mi></msub></mrow></mrow></math> Maximum rate of electron transport 1.74 V c , max <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0118" wiley:location="equation/pce15042-math-0118.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><mn>1.74</mn><mspace width="0.33em"/><msub><mi>V</mi><mrow><mi mathvariant="normal">c</mi><mo>,</mo><mi>max</mi></mrow></msub></mrow></mrow></math> μ mol m 2 s 1 <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0119" wiley:location="equation/pce15042-math-0119.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><mi mathvariant="normal">\unicode{x003BC}</mi><mtext>mol</mtext><mspace width="0.33em"/><msup><mi mathvariant="normal">m</mi><mrow><mo>\unicode{x02212}</mo><mn>2</mn></mrow></msup><mspace width="0.33em"/><msup><mi mathvariant="normal">s</mi><mrow><mo>\unicode{x02212}</mo><mn>1</mn></mrow></msup></mrow></mrow></math>
a bio <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0120" wiley:location="equation/pce15042-math-0120.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><msub><mi>a</mi><mtext>bio</mtext></msub></mrow></mrow></math> Biomass per mol carbon 0.0245 kg mol 1 <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0121" wiley:location="equation/pce15042-math-0121.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><mtext>kg</mtext><mspace width="0.33em"/><msup><mtext>mol</mtext><mrow><mo>\unicode{x02212}</mo><mn>1</mn></mrow></msup></mrow></mrow></math>
a y <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0122" wiley:location="equation/pce15042-math-0122.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><msub><mi>a</mi><mi mathvariant="normal">y</mi></msub></mrow></mrow></math> Fraction of assimilated CO 2 <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0123" wiley:location="equation/pce15042-math-0123.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><msub><mtext>CO</mtext><mn>2</mn></msub></mrow></mrow></math> converted into mass 0.7 μ mol m 2 s 1 <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0124" wiley:location="equation/pce15042-math-0124.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><mi mathvariant="normal">\unicode{x003BC}</mi><mtext>mol</mtext><mspace width="0.33em"/><msup><mi mathvariant="normal">m</mi><mrow><mo>\unicode{x02212}</mo><mn>2</mn></mrow></msup><mspace width="0.33em"/><msup><mi mathvariant="normal">s</mi><mrow><mo>\unicode{x02212}</mo><mn>1</mn></mrow></msup></mrow></mrow></math>
P 50 <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0125" wiley:location="equation/pce15042-math-0125.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><msub><mi mathvariant="normal">P</mi><mn>50</mn></msub></mrow></mrow></math> ψ leaf <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0126" wiley:location="equation/pce15042-math-0126.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><msub><mi>\unicode{x003C8}</mi><mtext>leaf</mtext></msub></mrow></mrow></math> at 50% conductivity lost Derived from K s , max <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0127" wiley:location="equation/pce15042-math-0127.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><msub><mi>K</mi><mrow><mi mathvariant="normal">s</mi><mo>,</mo><mi>max</mi></mrow></msub></mrow></mrow></math> -MPa
b Sensitivity parameter for K s , max ( ψ leaf ) <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0128" wiley:location="equation/pce15042-math-0128.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><msub><mi>K</mi><mrow><mi mathvariant="normal">s</mi><mo>,</mo><mi>max</mi></mrow></msub><mrow><mo>(</mo><msub><mi>\unicode{x003C8}</mi><mtext>leaf</mtext></msub><mo>)</mo></mrow></mrow></mrow></math> curve Derived from P 50 <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0129" wiley:location="equation/pce15042-math-0129.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><msub><mi mathvariant="normal">P</mi><mn>50</mn></msub></mrow></mrow></math> -MPa
k l , max <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0130" wiley:location="equation/pce15042-math-0130.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><msub><mi>k</mi><mrow><mi mathvariant="normal">l</mi><mo>,</mo><mi>max</mi></mrow></msub></mrow></mrow></math> Maximum leaf-specific hydraulic conductance Derived from K s , max , θ <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0131" wiley:location="equation/pce15042-math-0131.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><msub><mi>K</mi><mrow><mi mathvariant="normal">s</mi><mo>,</mo><mi>max</mi></mrow></msub><mo>,</mo><mi>\unicode{x003B8}</mi></mrow></mrow></math> , h kg m 1 s 1 MPa <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0132" wiley:location="equation/pce15042-math-0132.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><mtext>kg</mtext><mspace width="0.33em"/><msup><mi mathvariant="normal">m</mi><mrow><mo>\unicode{x02212}</mo><mn>1</mn></mrow></msup><mspace width="0.33em"/><msup><mi mathvariant="normal">s</mi><mrow><mo>\unicode{x02212}</mo><mn>1</mn></mrow></msup><mi>MPa</mi></mrow></mrow></math>
ψ crit <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0133" wiley:location="equation/pce15042-math-0133.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><msub><mi>\unicode{x003C8}</mi><mtext>crit</mtext></msub></mrow></mrow></math> ψ leaf <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0134" wiley:location="equation/pce15042-math-0134.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><msub><mi>\unicode{x003C8}</mi><mtext>leaf</mtext></msub></mrow></mrow></math> at 99% conductivity lost Derived from b, c -MPa
N area <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0135" wiley:location="equation/pce15042-math-0135.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><msub><mi>N</mi><mtext>area</mtext></msub></mrow></mrow></math> Leaf nitrogen per area Derived from V cmax , 25 , J max , 25 , Φ <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0136" wiley:location="equation/pce15042-math-0136.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><msub><mi>V</mi><mrow><mi>cmax</mi><mo>,</mo><mn>25</mn></mrow></msub><mo>,</mo><msub><mi mathvariant="normal">J</mi><mrow><mi>max</mi><mo>,</mo><mn>25</mn></mrow></msub><mo>,</mo><mi mathvariant="normal">\unicode{x003A6}</mi></mrow></mrow></math> kg m 2 <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0137" wiley:location="equation/pce15042-math-0137.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><mtext>kg</mtext><mspace width="0.33em"/><msup><mi mathvariant="normal">m</mi><mrow><mo>\unicode{x02212}</mo><mn>2</mn></mrow></msup></mrow></mrow></math>
β <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0138" wiley:location="equation/pce15042-math-0138.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><mi>\unicode{x003B2}</mi></mrow></mrow></math> Carbon cost per unit V s A l <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0139" wiley:location="equation/pce15042-math-0139.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><mfrac><msub><mi mathvariant="normal">V</mi><mi mathvariant="normal">s</mi></msub><msub><mi mathvariant="normal">A</mi><mi mathvariant="normal">l</mi></msub></mfrac></mrow></mrow></math> per second Derived from ρ <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0140" wiley:location="equation/pce15042-math-0140.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><mi>\unicode{x003C1}</mi></mrow></mrow></math> μ mol m 3 s 1 <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0141" wiley:location="equation/pce15042-math-0141.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><mi mathvariant="normal">\unicode{x003BC}</mi><mtext>mol</mtext><mspace width="0.33em"/><msup><mi mathvariant="normal">m</mi><mrow><mo>\unicode{x02212}</mo><mn>3</mn></mrow></msup><mspace width="0.33em"/><msup><mi mathvariant="normal">s</mi><mrow><mo>\unicode{x02212}</mo><mn>1</mn></mrow></msup></mrow></mrow></math>
Turnover and respiration rates
t l <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0142" wiley:location="equation/pce15042-math-0142.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><msub><mi>t</mi><mi mathvariant="italic">l</mi></msub></mrow></mrow></math> Leaf turnover rate Derived from ϕ <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0143" wiley:location="equation/pce15042-math-0143.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><mi>\unicode{x003D5}</mi></mrow></mrow></math> year 1 <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0144" wiley:location="equation/pce15042-math-0144.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><msup><mtext>year</mtext><mrow><mo>\unicode{x02212}</mo><mn>1</mn></mrow></msup></mrow></mrow></math>
t s <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0145" wiley:location="equation/pce15042-math-0145.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><msub><mi>t</mi><mi mathvariant="italic">s</mi></msub></mrow></mrow></math> Hydraulic-independent sapwood turnover rate 0.2 year 1 <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0146" wiley:location="equation/pce15042-math-0146.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><msup><mtext>year</mtext><mrow><mo>\unicode{x02212}</mo><mn>1</mn></mrow></msup></mrow></mrow></math>
t r <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0147" wiley:location="equation/pce15042-math-0147.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><msub><mi>t</mi><mi>r</mi></msub></mrow></mrow></math> Root turnover 1 year 1 <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0148" wiley:location="equation/pce15042-math-0148.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><msup><mtext>year</mtext><mrow><mo>\unicode{x02212}</mo><mn>1</mn></mrow></msup></mrow></mrow></math>
t b <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0149" wiley:location="equation/pce15042-math-0149.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><msub><mi>t</mi><mi mathvariant="italic">b</mi></msub></mrow></mrow></math> Bark turnover 0.2 year 1 <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0150" wiley:location="equation/pce15042-math-0150.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><msup><mtext>year</mtext><mrow><mo>\unicode{x02212}</mo><mn>1</mn></mrow></msup></mrow></mrow></math>
r l <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0151" wiley:location="equation/pce15042-math-0151.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><msub><mi>r</mi><mi mathvariant="normal">l</mi></msub></mrow></mrow></math> Leaf respiration Derived from N area <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0152" wiley:location="equation/pce15042-math-0152.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><msub><mi>N</mi><mtext>area</mtext></msub></mrow></mrow></math> mol year 1 kg 1 <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0153" wiley:location="equation/pce15042-math-0153.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><mtext>mol</mtext><mspace width="0.33em"/><msup><mtext>year</mtext><mrow><mo>\unicode{x02212}</mo><mn>1</mn></mrow></msup><mspace width="0.33em"/><msup><mtext>kg</mtext><mrow><mo>\unicode{x02212}</mo><mn>1</mn></mrow></msup></mrow></mrow></math>
r s <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0154" wiley:location="equation/pce15042-math-0154.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><msub><mi>r</mi><mi mathvariant="italic">s</mi></msub></mrow></mrow></math> Sapwood respiration Derived from ρ <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0155" wiley:location="equation/pce15042-math-0155.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><mi>\unicode{x003C1}</mi></mrow></mrow></math> mol year 1 kg 1 <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0156" wiley:location="equation/pce15042-math-0156.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><mtext>mol</mtext><mspace width="0.33em"/><msup><mtext>year</mtext><mrow><mo>\unicode{x02212}</mo><mn>1</mn></mrow></msup><mspace width="0.33em"/><msup><mtext>kg</mtext><mrow><mo>\unicode{x02212}</mo><mn>1</mn></mrow></msup></mrow></mrow></math>
r r <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0157" wiley:location="equation/pce15042-math-0157.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><msub><mi>r</mi><mi mathvariant="italic">r</mi></msub></mrow></mrow></math> Root respiration 217 mol year 1 kg 1 <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0158" wiley:location="equation/pce15042-math-0158.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><mtext>mol</mtext><mspace width="0.33em"/><msup><mtext>year</mtext><mrow><mo>\unicode{x02212}</mo><mn>1</mn></mrow></msup><mspace width="0.33em"/><msup><mtext>kg</mtext><mrow><mo>\unicode{x02212}</mo><mn>1</mn></mrow></msup></mrow></mrow></math>
r b <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0159" wiley:location="equation/pce15042-math-0159.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><msub><mi>r</mi><mi>b</mi></msub></mrow></mrow></math> Bark respiration Derived from ρ <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0160" wiley:location="equation/pce15042-math-0160.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><mi>\unicode{x003C1}</mi></mrow></mrow></math> mol year 1 kg 1 <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0161" wiley:location="equation/pce15042-math-0161.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><mspace width="0.1em"/><mtext>mol year</mtext><msup><mspace width="0.1em"/><mrow><mo>\unicode{x02212}</mo><mn>1</mn></mrow></msup><mspace width="0.33em"/><mspace width="0.33em"/><mtext>kg</mtext><msup><mspace width="0.1em"/><mrow><mo>\unicode{x02212}</mo><mn>1</mn></mrow></msup></mrow></mrow></math>
Other parameters
B hks , 1 <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0162" wiley:location="equation/pce15042-math-0162.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><msub><mi mathvariant="normal">B</mi><mrow><mtext>hks</mtext><mo>,</mo><mn>1</mn></mrow></msub></mrow></mrow></math> Rate of hydraulically dependent sapwood loss at ρ 0 <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0163" wiley:location="equation/pce15042-math-0163.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><msub><mi>\unicode{x003C1}</mi><mn>0</mn></msub></mrow></mrow></math> 75 year 1 <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0164" wiley:location="equation/pce15042-math-0164.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><msup><mtext>year</mtext><mrow><mo>\unicode{x02212}</mo><mn>1</mn></mrow></msup></mrow></mrow></math>
B hks , 2 <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0165" wiley:location="equation/pce15042-math-0165.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><msub><mi mathvariant="normal">B</mi><mrow><mtext>hks</mtext><mo>,</mo><mn>2</mn></mrow></msub></mrow></mrow></math> Exponent for ρ <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0166" wiley:location="equation/pce15042-math-0166.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><mi>\unicode{x003C1}</mi></mrow></mrow></math> in β <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0167" wiley:location="equation/pce15042-math-0167.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><mi>\unicode{x003B2}</mi></mrow></mrow></math> 1.7 Unitless
t l , 0 <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0168" wiley:location="equation/pce15042-math-0168.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><msub><mi mathvariant="normal">t</mi><mrow><mi mathvariant="normal">l</mi><mo>,</mo><mn>0</mn></mrow></msub></mrow></mrow></math> Rate of leaf turnover at ϕ 0 <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0169" wiley:location="equation/pce15042-math-0169.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><msub><mi>\unicode{x003D5}</mi><mn>0</mn></msub></mrow></mrow></math> 0.457 year 1 <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0170" wiley:location="equation/pce15042-math-0170.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><msup><mtext>year</mtext><mrow><mo>\unicode{x02212}</mo><mn>1</mn></mrow></msup></mrow></mrow></math>
B k , l <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0171" wiley:location="equation/pce15042-math-0171.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><msub><mi mathvariant="normal">B</mi><mrow><mi mathvariant="normal">k</mi><mo>,</mo><mi mathvariant="normal">l</mi></mrow></msub></mrow></mrow></math> Exponent for ϕ <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0172" wiley:location="equation/pce15042-math-0172.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><mi>\unicode{x003D5}</mi></mrow></mrow></math> in t l <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0173" wiley:location="equation/pce15042-math-0173.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><msub><mi>t</mi><mi>l</mi></msub></mrow></mrow></math> 1.7 Unitless
P 50 , 0 <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0174" wiley:location="equation/pce15042-math-0174.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><msub><mi mathvariant="normal">P</mi><mrow><mn>50</mn><mo>,</mo><mn>0</mn></mrow></msub></mrow></mrow></math> P 50 <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0175" wiley:location="equation/pce15042-math-0175.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><msub><mi mathvariant="normal">P</mi><mn>50</mn></msub></mrow></mrow></math> at K s , max , 0 <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0176" wiley:location="equation/pce15042-math-0176.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><msub><mi>K</mi><mrow><mi mathvariant="normal">s</mi><mo>,</mo><mi>max</mi><mo>,</mo><mn>0</mn></mrow></msub></mrow></mrow></math> 0.461 kg m 1 s 1 MPa 1 <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0177" wiley:location="equation/pce15042-math-0177.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><mtext>kg</mtext><mspace width="0.33em"/><msup><mi mathvariant="normal">m</mi><mrow><mo>\unicode{x02212}</mo><mn>1</mn></mrow></msup><mspace width="0.33em"/><msup><mi mathvariant="normal">s</mi><mrow><mo>\unicode{x02212}</mo><mn>1</mn></mrow></msup><msup><mi>MPa</mi><mrow><mo>\unicode{x02212}</mo><mn>1</mn></mrow></msup></mrow></mrow></math>
B hv , 1 <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0178" wiley:location="equation/pce15042-math-0178.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><msub><mi mathvariant="normal">B</mi><mrow><mtext>hv</mtext><mo>,</mo><mn>1</mn></mrow></msub></mrow></mrow></math> Exponent for K s , max , 0 <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0179" wiley:location="equation/pce15042-math-0179.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><msub><mi>K</mi><mrow><mi mathvariant="normal">s</mi><mo>,</mo><mi>max</mi><mo>,</mo><mn>0</mn></mrow></msub></mrow></mrow></math> in P 50 <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0180" wiley:location="equation/pce15042-math-0180.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><msub><mi mathvariant="normal">P</mi><mn>50</mn></msub></mrow></mrow></math> 0.35 Unitless
B hv , 2 <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0181" wiley:location="equation/pce15042-math-0181.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><msub><mi mathvariant="normal">B</mi><mrow><mtext>hv</mtext><mo>,</mo><mn>2</mn></mrow></msub></mrow></mrow></math> Exponent for K s , max , 0 <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0182" wiley:location="equation/pce15042-math-0182.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><msub><mi>K</mi><mrow><mi mathvariant="normal">s</mi><mo>,</mo><mi>max</mi><mo>,</mo><mn>0</mn></mrow></msub></mrow></mrow></math> in P 50 <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0183" wiley:location="equation/pce15042-math-0183.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><msub><mi mathvariant="normal">P</mi><mn>50</mn></msub></mrow></mrow></math> 0.46 Unitless
ρ 0 <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0184" wiley:location="equation/pce15042-math-0184.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><msub><mi>\unicode{x003C1}</mi><mn>0</mn></msub></mrow></mrow></math> Average ρ <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0185" wiley:location="equation/pce15042-math-0185.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><mi>\unicode{x003C1}</mi></mrow></mrow></math> 608 kg m 3 <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0186" wiley:location="equation/pce15042-math-0186.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><mtext>kg</mtext><mspace width="0.33em"/><msup><mi mathvariant="normal">m</mi><mrow><mo>\unicode{x02212}</mo><mn>3</mn></mrow></msup></mrow></mrow></math>
ϕ 0 <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0187" wiley:location="equation/pce15042-math-0187.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><msub><mi>\unicode{x003D5}</mi><mn>0</mn></msub></mrow></mrow></math> Average ϕ <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0188" wiley:location="equation/pce15042-math-0188.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><mi>\unicode{x003D5}</mi></mrow></mrow></math> 0.1978 kg m 2 <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0189" wiley:location="equation/pce15042-math-0189.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><mtext>kg</mtext><mspace width="0.33em"/><msup><mi mathvariant="normal">m</mi><mrow><mo>\unicode{x02212}</mo><mn>2</mn></mrow></msup></mrow></mrow></math>
K s , max , 0 <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0190" wiley:location="equation/pce15042-math-0190.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><msub><mi>K</mi><mrow><mi mathvariant="normal">s</mi><mo>,</mo><mi>max</mi><mo>,</mo><mn>0</mn></mrow></msub></mrow></mrow></math> Average K s , max <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0191" wiley:location="equation/pce15042-math-0191.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><msub><mi>K</mi><mrow><mi mathvariant="normal">s</mi><mo>,</mo><mi>max</mi></mrow></msub></mrow></mrow></math> 2 kg m 1 s 1 MPa 1 <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0192" wiley:location="equation/pce15042-math-0192.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><mtext>kg</mtext><mspace width="0.33em"/><msup><mi mathvariant="normal">m</mi><mrow><mo>\unicode{x02212}</mo><mn>1</mn></mrow></msup><mspace width="0.33em"/><msup><mi mathvariant="normal">s</mi><mrow><mo>\unicode{x02212}</mo><mn>1</mn></mrow></msup><msup><mi>MPa</mi><mrow><mo>\unicode{x02212}</mo><mn>1</mn></mrow></msup></mrow></mrow></math>
Focal environmental variables
ψ s <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0193" wiley:location="equation/pce15042-math-0193.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><msub><mi>\unicode{x003C8}</mi><mi mathvariant="normal">s</mi></msub></mrow></mrow></math> Soil water potential 0.3–3 MPa <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0194" wiley:location="equation/pce15042-math-0194.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><mo>\unicode{x02212}</mo><mtext>MPa</mtext></mrow></mrow></math>
C a <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0195" wiley:location="equation/pce15042-math-0195.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><msub><mi mathvariant="normal">C</mi><mi mathvariant="normal">a</mi></msub></mrow></mrow></math> Atmospheric CO 2 <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0196" wiley:location="equation/pce15042-math-0196.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><msub><mtext>CO</mtext><mn>2</mn></msub></mrow></mrow></math> 20–80 Pa
D Vapour pressure deficit 0.1–3 kPa
I 0 <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0197" wiley:location="equation/pce15042-math-0197.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><msub><mi mathvariant="normal">I</mi><mn>0</mn></msub></mrow></mrow></math> Above-canopy photon flux density 180–1800 μ mol m 2 s 1 <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0198" wiley:location="equation/pce15042-math-0198.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><mi mathvariant="normal">\unicode{x003BC}</mi><mtext>mol</mtext><mspace width="0.33em"/><msup><mi mathvariant="normal">m</mi><mrow><mo>\unicode{x02212}</mo><mn>2</mn></mrow></msup><mspace width="0.33em"/><msup><mi mathvariant="normal">s</mi><mrow><mo>\unicode{x02212}</mo><mn>1</mn></mrow></msup></mrow></mrow></math>
Other environmental variables
P atm <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0199" wiley:location="equation/pce15042-math-0199.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><msub><mi>P</mi><mtext mathvariant="italic">atm</mtext></msub></mrow></mrow></math> Atmospheric pressure 101.3 kPa
O a <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0200" wiley:location="equation/pce15042-math-0200.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><msub><mi mathvariant="normal">O</mi><mi mathvariant="normal">a</mi></msub></mrow></mrow></math> Atmospheric O 2 <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0201" wiley:location="equation/pce15042-math-0201.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><msub><mi mathvariant="normal">O</mi><mn>2</mn></msub></mrow></mrow></math> 21 kPa
T l <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0202" wiley:location="equation/pce15042-math-0202.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><msub><mi>T</mi><mi mathvariant="italic">l</mi></msub></mrow></mrow></math> Leaf temperature 25 C <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0203" wiley:location="equation/pce15042-math-0203.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><msup><mspace width="0.33em"/><mo>\unicode{x02218}</mo></msup><mi mathvariant="normal">C</mi></mrow></mrow></math>
Day Day in year 20 Days
Δ <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0204" wiley:location="equation/pce15042-math-0204.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><mi mathvariant="normal">\unicode{x00394}</mi></mrow></mrow></math> T Diurnal temperature variation 10 C <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0205" wiley:location="equation/pce15042-math-0205.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><msup><mspace width="0.33em"/><mo>\unicode{x02218}</mo></msup><mi mathvariant="normal">C</mi></mrow></mrow></math>
RH Relative humidity 50 %
Lat. Latitude 34 <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0206" wiley:location="equation/pce15042-math-0206.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><msup><mspace width="0.33em"/><mo>\unicode{x02218}</mo></msup></mrow></mrow></math> S
  • Note: Values for state variables left intentionally blank as these vary dynamically.
  • a Subscript i <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0207" wiley:location="equation/pce15042-math-0207.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><mi>i</mi></mrow></mrow></math> refers to different plant tissues: leaves, l <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0208" wiley:location="equation/pce15042-math-0208.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><mi>l</mi></mrow></mrow></math> , sapwood, s <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0209" wiley:location="equation/pce15042-math-0209.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><mi>s</mi></mrow></mrow></math> , bark, b <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0210" wiley:location="equation/pce15042-math-0210.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><mi>b</mi></mrow></mrow></math> , root, r <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0211" wiley:location="equation/pce15042-math-0211.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><mi>r</mi></mrow></mrow></math>
  • b Falster et al. (2021)
  • c Falster et al. (2016)
  • d Kumarathunge et al. (2019)
  • e Dong et al. (2022)
  • f Liu et al. (2019)
  • g Used in diurnal simulation.

2.3 Stomatal behaviour model

We extended the photosynthesis submodel used in previous implementations of the plant model, by incorporating stomatal behavioural responses to the environment into the model. Specifically, inspired by the work of Bartlett et al. (2019) linking stomatal behaviour to evolutionary traits on the basis of maximising carbon acquisition relative to hydraulic costs, and following the idea that stomatal optimality should apply at any given instant (Sperry et al., 2017; Wolf et al., 2016), we propose a new extension of an instantaneous stomatal optimisation model that explicitly accounts for sapwood traits. During photosynthesis, CO 2 <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0212" wiley:location="equation/pce15042-math-0212.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><msub><mstyle><mspace width="0.1em"/><mtext>CO</mtext><mspace width="0.1em"/></mstyle><mn>2</mn></msub></mrow></mrow></math> is assimilated from the atmosphere through stomata in exchange for H 2 O <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0213" wiley:location="equation/pce15042-math-0213.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><msub><mstyle><mspace width="0.1em"/><mi mathvariant="normal">H</mi></mstyle><mn>2</mn></msub><mstyle><mi mathvariant="normal">O</mi><mspace width="0.1em"/></mstyle></mrow></mrow></math> , which is drawn from the soil to the leaves by negative pressures along water potential gradient. Negative water potentials impose costs on the plant through a heightened risk of xylem cavitation, subsequent loss of conductivity, and cost of restoring conductivity (Choat et al., 2018). Given that plants must compromise between increasing photosynthesis and reducing hydraulic costs, the stomatal optimisation model seeks to maximise net photosynthesis at any moment by balancing these opposing forces.

For a given height, trait, and environment, the stomatal model maximises the difference between the instantaneous net rate of photosynthesis ( P ¯ net <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0214" wiley:location="equation/pce15042-math-0214.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><msub><mover accent="true"><mi>P</mi><mo>\unicode{x000AF}</mo></mover><mi>net</mi></msub></mrow></mrow></math> ) and hydraulic costs ( C ¯ <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0215" wiley:location="equation/pce15042-math-0215.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><mover accent="true"><mi>C</mi><mo>\unicode{x000AF}</mo></mover></mrow></mrow></math> ) associated with the transpiration of water, both of which vary as a function of the leaf water potential ( ψ leaf <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0216" wiley:location="equation/pce15042-math-0216.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><msub><mi>\unicode{x003C8}</mi><mtext>leaf</mtext></msub></mrow></mrow></math> ):
max ( P ¯ net ( ψ leaf ) C ¯ ( ψ leaf ) ) . <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0217" display="block" wiley:location="equation/pce15042-math-0217.png" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><mi>max</mi><mrow><mo>(</mo><msub><mover accent="true"><mi>P</mi><mo>\unicode{x000AF}</mo></mover><mi>net</mi></msub><mrow><mo>(</mo><msub><mi>\unicode{x003C8}</mi><mtext>leaf</mtext></msub><mo>)</mo></mrow><mo>\unicode{x02212}</mo><mover accent="true"><mi>C</mi><mo>\unicode{x000AF}</mo></mover><mrow><mo>(</mo><msub><mi>\unicode{x003C8}</mi><mtext>leaf</mtext></msub><mo>)</mo></mrow><mo>)</mo></mrow><mo>.</mo></mrow></mrow></math> (4)

We assume here that instantaneous adjustments in ψ leaf <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0218" wiley:location="equation/pce15042-math-0218.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><msub><mi>\unicode{x003C8}</mi><mtext>leaf</mtext></msub></mrow></mrow></math> do not affect biomass allocation, turnover, or respiration rates beyond those captured in C ¯ <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0219" wiley:location="equation/pce15042-math-0219.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><mover accent="true"><mi>C</mi><mo>\unicode{x000AF}</mo></mover></mrow></mrow></math> . Given this assumption, the ψ leaf <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0220" wiley:location="equation/pce15042-math-0220.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><msub><mi>\unicode{x003C8}</mi><mtext>leaf</mtext></msub></mrow></mrow></math> that maximises Equation (4) necessarily also maximises biomass production, and the growth rate of the plant, given all other traits.

P ¯ net <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0221" wiley:location="equation/pce15042-math-0221.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><msub><mover accent="true"><mi>P</mi><mo>\unicode{x000AF}</mo></mover><mi>net</mi></msub></mrow></mrow></math> was modelled using a standard coupled stomatal-photosynthesis model, based on Fick's first law of diffusion:
P ¯ net ( C i ) = g s ( ψ leaf ) ( C a C i ) P atm ; <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0222" display="block" wiley:location="equation/pce15042-math-0222.png" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><msub><mover accent="true"><mi>P</mi><mo>\unicode{x000AF}</mo></mover><mi>net</mi></msub><mrow><mo>(</mo><mrow><msub><mi>C</mi><mi mathvariant="normal">i</mi></msub></mrow><mo>)</mo></mrow><mo>\unicode{x0003D}</mo><msub><mi>g</mi><mi>s</mi></msub><mrow><mo>(</mo><mrow><msub><mi>\unicode{x003C8}</mi><mtext>leaf</mtext></msub></mrow><mo>)</mo></mrow><mfrac><mrow><mo>(</mo><mrow><msub><mi>C</mi><mi mathvariant="normal">a</mi></msub><mo>\unicode{x02212}</mo><msub><mi>C</mi><mi mathvariant="normal">i</mi></msub></mrow><mo>)</mo></mrow><msub><mi>P</mi><mtext>atm</mtext></msub></mfrac><mi>;</mi></mrow></mrow></math> (5)
and the Farquhar-von Caemmerer-Berry (Farquhar et al. 1980)biochemical photosynthesis model (see Supporting Information). Here,  C a <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0223" wiley:location="equation/pce15042-math-0223.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><msub><mi>C</mi><mi mathvariant="normal">a</mi></msub></mrow></mrow></math> is the atmospheric concentration of CO 2 , C i <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0224" wiley:location="equation/pce15042-math-0224.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><msub><mstyle><mspace width="0.1em"/><mtext>CO</mtext><mspace width="0.1em"/></mstyle><mn>2</mn></msub><mo>,</mo><msub><mi>C</mi><mi mathvariant="normal">i</mi></msub></mrow></mrow></math> is the intercellular concentration of CO 2 , P atm <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0225" wiley:location="equation/pce15042-math-0225.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><msub><mstyle><mspace width="0.1em"/><mtext>CO</mtext><mspace width="0.1em"/></mstyle><mn>2</mn></msub><mo>,</mo><msub><mi>P</mi><mtext>atm</mtext></msub></mrow></mrow></math> is the atmospheric pressure, and g s <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0226" wiley:location="equation/pce15042-math-0226.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><msub><mi>g</mi><mi>s</mi></msub></mrow></mrow></math> is the rate of stomatal conductance to CO 2 <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0227" wiley:location="equation/pce15042-math-0227.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><msub><mstyle><mspace width="0.1em"/><mtext>CO</mtext><mspace width="0.1em"/></mstyle><mn>2</mn></msub></mrow></mrow></math> .

To solve Equations (4) and (5) requires values for C i <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0228" wiley:location="equation/pce15042-math-0228.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><msub><mi>C</mi><mi mathvariant="normal">i</mi></msub></mrow></mrow></math> and g s <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0229" wiley:location="equation/pce15042-math-0229.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><msub><mi>g</mi><mi>s</mi></msub></mrow></mrow></math> , which are a priori unknown. An important insight from Sperry et al. (2017) and included in subsequent stomatal optimisations is that the three variables C i , g s <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0230" wiley:location="equation/pce15042-math-0230.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><msub><mi>C</mi><mi mathvariant="normal">i</mi></msub><mo>,</mo><msub><mi>g</mi><mi>s</mi></msub></mrow></mrow></math> and Ψ leaf <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0231" wiley:location="equation/pce15042-math-0231.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><msub><mi>\unicode{x003A8}</mi><mi>leaf</mi></msub></mrow></mrow></math> are all interlinked and can be solved simultaneously. All three are emergent outcomes of the stomatal optimisation. Following Sperry et al. (2017) and others(e.g. Sabot et al. 2020), we used ψ leaf <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0232" wiley:location="equation/pce15042-math-0232.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><msub><mi>\unicode{x003C8}</mi><mtext>leaf</mtext></msub></mrow></mrow></math> to calculate g s <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0233" wiley:location="equation/pce15042-math-0233.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><msub><mi>g</mi><mi>s</mi></msub></mrow></mrow></math> , and then C i <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0234" wiley:location="equation/pce15042-math-0234.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><msub><mi>C</mi><mi>i</mi></msub></mrow></mrow></math> . However, note that since the equations specify a monotonic relationship between the three variables, the stomatal optimisation in Equation (4) could be performed with respect to any of them and achieve the same result.

g s <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0235" wiley:location="equation/pce15042-math-0235.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><msub><mi>g</mi><mi>s</mi></msub></mrow></mrow></math> is directly linked to ψ leaf <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0236" wiley:location="equation/pce15042-math-0236.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><msub><mi>\unicode{x003C8}</mi><mtext>leaf</mtext></msub></mrow></mrow></math> under the assumption that instantaneous water supply, via xylem transport ( E supply <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0237" wiley:location="equation/pce15042-math-0237.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><msub><mi>E</mi><mtext>supply</mtext></msub></mrow></mrow></math> ), must be equivalent to the atmospheric demand for water ( E demand <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0238" wiley:location="equation/pce15042-math-0238.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><msub><mi>E</mi><mtext>demand</mtext></msub></mrow></mrow></math> ; Sperry & Love, 2015; Sperry et al., 2017). Assuming no segmentation in the xylem, E supply <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0239" wiley:location="equation/pce15042-math-0239.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><msub><mi>E</mi><mtext>supply</mtext></msub></mrow></mrow></math> depends on the water potential gradient between the soil and the leaf, given by the definite integral of the unique hydraulic vulnerability curve (Equation 10), bounded by ψ leaf <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0240" wiley:location="equation/pce15042-math-0240.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><msub><mi>\unicode{x003C8}</mi><mtext>leaf</mtext></msub></mrow></mrow></math> and ψ soil <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0241" wiley:location="equation/pce15042-math-0241.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><msub><mi>\unicode{x003C8}</mi><mtext>soil</mtext></msub></mrow></mrow></math> :
E supply ( ψ leaf ) = ψ soil ψ leaf k l ( ψ ) d ψ , <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0242" display="block" wiley:location="equation/pce15042-math-0242.png" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><msub><mi>E</mi><mtext>supply</mtext></msub><mrow><mo stretchy="false">(</mo><msub><mi>\unicode{x003C8}</mi><mtext>leaf</mtext></msub><mo stretchy="false">)</mo></mrow><mo>\unicode{x0003D}</mo><msubsup><mo>\unicode{x0222B}</mo><msub><mi>\unicode{x003C8}</mi><mtext>soil</mtext></msub><msub><mi>\unicode{x003C8}</mi><mtext>leaf</mtext></msub></msubsup><msub><mi>k</mi><mi>l</mi></msub><mrow><mo>(</mo><mi>\unicode{x003C8}</mi><mo>)</mo></mrow><mi>d</mi><mi>\unicode{x003C8}</mi><mo>,</mo></mrow></mrow></math> (6)
where leaf-specific hydraulic conductance ( k l <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0243" wiley:location="equation/pce15042-math-0243.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><msub><mi>k</mi><mi>l</mi></msub></mrow></mrow></math> ) varies with ψ <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0244" wiley:location="equation/pce15042-math-0244.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><mi>\unicode{x003C8}</mi></mrow></mrow></math> . For a given ψ soil , E supply <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0245" wiley:location="equation/pce15042-math-0245.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><msub><mi>\unicode{x003C8}</mi><mtext>soil</mtext></msub><mo>,</mo><msub><mi>E</mi><mtext>supply</mtext></msub></mrow></mrow></math> increases with declining ψ leaf <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0246" wiley:location="equation/pce15042-math-0246.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><msub><mi>\unicode{x003C8}</mi><mtext>leaf</mtext></msub></mrow></mrow></math> but at a diminishing rate (Sperry et al., 2017).
Ignoring the leaf boundary layer conductance to water vapour, E demand <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0247" wiley:location="equation/pce15042-math-0247.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><msub><mi>E</mi><mtext>demand</mtext></msub></mrow></mrow></math> depends on the atmospheric vapour pressure deficit ( D <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0248" wiley:location="equation/pce15042-math-0248.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><mi>D</mi></mrow></mrow></math> ) and the rate of stomatal conductance of water vapour ( g w = 1.6 g s <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0249" wiley:location="equation/pce15042-math-0249.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><msub><mi>g</mi><mi>w</mi></msub><mo>\unicode{x0003D}</mo><mn>1.6</mn><mspace width="0.33em"/><msub><mi>g</mi><mi>s</mi></msub></mrow></mrow></math> ), which in turn varies with ψ leaf <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0250" wiley:location="equation/pce15042-math-0250.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><msub><mi>\unicode{x003C8}</mi><mtext>leaf</mtext></msub></mrow></mrow></math> :
E demand ( ψ leaf ) = 1.6 g s ( ψ leaf ) D P atm , <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0251" display="block" wiley:location="equation/pce15042-math-0251.png" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><msub><mi>E</mi><mtext>demand</mtext></msub><mrow><mo>(</mo><mrow><msub><mi>\unicode{x003C8}</mi><mtext>leaf</mtext></msub></mrow><mo>)</mo></mrow><mo>\unicode{x0003D}</mo><mn>1.6</mn><mspace width="0.33em"/><msub><mi>g</mi><mi>s</mi></msub><mrow><mo>(</mo><mrow><msub><mi>\unicode{x003C8}</mi><mtext>leaf</mtext></msub></mrow><mo>)</mo></mrow><mspace width="0.33em"/><mfrac><mi>D</mi><msub><mi>P</mi><mtext>atm</mtext></msub></mfrac><mo>,</mo></mrow></mrow></math> (7)
where 1.6 represents the molecular diffusion ratio of H 2 O <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0252" wiley:location="equation/pce15042-math-0252.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><msub><mi mathvariant="normal">H</mi><mn>2</mn></msub><mi mathvariant="normal">O</mi></mrow></mrow></math> to CO 2 <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0253" wiley:location="equation/pce15042-math-0253.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><msub><mtext>CO</mtext><mn>2</mn></msub></mrow></mrow></math> . Setting E demand = E supply <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0254" wiley:location="equation/pce15042-math-0254.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><msub><mi>E</mi><mtext>demand</mtext></msub><mo>\unicode{x0003D}</mo><msub><mi>E</mi><mtext>supply</mtext></msub></mrow></mrow></math> and rearranging shows how g s <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0255" wiley:location="equation/pce15042-math-0255.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><msub><mi>g</mi><mi>s</mi></msub></mrow></mrow></math> varies as a function of ψ leaf <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0256" wiley:location="equation/pce15042-math-0256.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><msub><mi>\unicode{x003C8}</mi><mtext>leaf</mtext></msub></mrow></mrow></math> and other parameters:
g s ( ψ leaf ) = P atm 1.6 D ψ soil ψ leaf k l ( ψ ) d ψ . <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0257" display="block" wiley:location="equation/pce15042-math-0257.png" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><msub><mi>g</mi><mi>s</mi></msub><mrow><mo>(</mo><mrow><msub><mi>\unicode{x003C8}</mi><mtext>leaf</mtext></msub></mrow><mo>)</mo></mrow><mo>\unicode{x0003D}</mo><mfrac><msub><mi>P</mi><mtext>atm</mtext></msub><mrow><mn>1.6</mn><mi>D</mi></mrow></mfrac><mspace width="0.33em"/><msubsup><mo>\unicode{x0222B}</mo><msub><mi>\unicode{x003C8}</mi><mtext>soil</mtext></msub><msub><mi>\unicode{x003C8}</mi><mtext>leaf</mtext></msub></msubsup><msub><mi>k</mi><mi>l</mi></msub><mrow><mo>(</mo><mi>\unicode{x003C8}</mi><mo>)</mo></mrow><mi>d</mi><mi>\unicode{x003C8}</mi><mo>.</mo></mrow></mrow></math> (8)

2.3.1 Hydraulic costs

We implemented a novel representation of hydraulic costs ( C <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0258" wiley:location="equation/pce15042-math-0258.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><mi>C</mi></mrow></mrow></math> ), extending a previous cost function that expresses costs in rates of carbon loss per unit leaf area (Bartlett et al., 2019). In this model, C <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0259" wiley:location="equation/pce15042-math-0259.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><mi>C</mi></mrow></mrow></math> is assumed to account for the loss of conductivity in the xylem pathway incurred by negative ψ leaf <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0260" wiley:location="equation/pce15042-math-0260.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><msub><mi>\unicode{x003C8}</mi><mtext>leaf</mtext></msub></mrow></mrow></math> . The hydraulic cost function therefore represents the absolute amount of carbon required to restore xylem conductivity.

Following Bartlett et al. (2019), we assume C ¯ <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0261" wiley:location="equation/pce15042-math-0261.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><mover accent="true"><mi>C</mi><mo>\unicode{x000AF}</mo></mover></mrow></mrow></math> increases with declining ψ leaf <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0262" wiley:location="equation/pce15042-math-0262.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><msub><mi>\unicode{x003C8}</mi><mtext>leaf</mtext></msub></mrow></mrow></math> , as k l <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0263" wiley:location="equation/pce15042-math-0263.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><msub><mi>k</mi><mi>l</mi></msub></mrow></mrow></math> declines from its maximum possible rate ( k l , max <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0264" wiley:location="equation/pce15042-math-0264.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><msub><mi>k</mi><mrow><mi mathvariant="normal">l</mi><mo>,</mo><mi mathvariant="normal">max</mi></mrow></msub></mrow></mrow></math> ):
C ¯ ( ψ leaf ) = β V s A l 1 k l ( ψ leaf ) k l , max . <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0265" display="block" wiley:location="equation/pce15042-math-0265.png" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><mover accent="true"><mi>C</mi><mo>\unicode{x000AF}</mo></mover><mrow><mo>(</mo><msub><mi>\unicode{x003C8}</mi><mtext>leaf</mtext></msub><mo>)</mo></mrow><mo>\unicode{x0003D}</mo><mi>\unicode{x003B2}</mi><mfrac><msub><mi>V</mi><mi>s</mi></msub><msub><mi>A</mi><mi>l</mi></msub></mfrac><mfenced close=")" open="("><mrow><mn>1</mn><mo>\unicode{x02212}</mo><mfrac><mrow><msub><mi>k</mi><mi mathvariant="normal">l</mi></msub><mrow><mo>(</mo><msub><mi>\unicode{x003C8}</mi><mtext>leaf</mtext></msub><mo>)</mo></mrow></mrow><msub><mi>k</mi><mrow><mi mathvariant="normal">l</mi><mo>,</mo><mi mathvariant="normal">max</mi></mrow></msub></mfrac></mrow></mfenced><mo>.</mo></mrow></mrow></math> (9)

Here, V s <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0266" wiley:location="equation/pce15042-math-0266.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><msub><mi>V</mi><mi>s</mi></msub></mrow></mrow></math> is the sapwood volume which is normalised by A l <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0267" wiley:location="equation/pce15042-math-0267.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><msub><mi>A</mi><mi>l</mi></msub></mrow></mrow></math> to define C <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0268" wiley:location="equation/pce15042-math-0268.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><mi>C</mi></mrow></mrow></math> in units per leaf area and β <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0269" wiley:location="equation/pce15042-math-0269.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><mi>\unicode{x003B2}</mi></mrow></mrow></math> is the carbon cost of embolism per unit of sapwood volume per unit time. Importantly, this formulation implies plants will experience carbon costs even when stomata are closed, which could act as a proxy for the effect of cuticular conductance of water from the leaf to the atmosphere (Choat et al., 2018).

k l <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0270" wiley:location="equation/pce15042-math-0270.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><msub><mi>k</mi><mi>l</mi></msub></mrow></mrow></math> is assumed to decline from k l , max <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0271" wiley:location="equation/pce15042-math-0271.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><msub><mi>k</mi><mrow><mi>l</mi><mo>,</mo><mi>max</mi></mrow></msub></mrow></mrow></math> as ψ leaf <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0272" wiley:location="equation/pce15042-math-0272.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><msub><mi>\unicode{x003C8}</mi><mtext>leaf</mtext></msub></mrow></mrow></math> becomes more negative following a Weibull distribution:
k l ( ψ leaf ) = k l , max exp ψ leaf b c . <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0273" display="block" wiley:location="equation/pce15042-math-0273.png" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><msub><mi>k</mi><mi>l</mi></msub><mrow><mo>(</mo><msub><mi>\unicode{x003C8}</mi><mtext>leaf</mtext></msub><mo>)</mo></mrow><mo>\unicode{x0003D}</mo><msub><mi>k</mi><mrow><mi mathvariant="normal">l</mi><mo>,</mo><mi mathvariant="normal">max</mi></mrow></msub><mtext>exp</mtext><mfenced close=")" open="("><mrow><mo>\unicode{x02212}</mo><msup><mfenced close=")" open="("><mfrac><msub><mi>\unicode{x003C8}</mi><mtext>leaf</mtext></msub><mi>b</mi></mfrac></mfenced><mi>c</mi></msup></mrow></mfenced><mo>.</mo></mrow></mrow></math> (10)

Here, c <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0274" wiley:location="equation/pce15042-math-0274.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><mi>c</mi></mrow></mrow></math> , and b <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0275" wiley:location="equation/pce15042-math-0275.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><mi>b</mi></mrow></mrow></math> , are the sensitivity and shape parameters of the Weibull distribution, respectively. Embolism damage is assumed to recover instantaneously as leaf water potential becomes less negative, with the carbon cost to repair this damage being accounted for in Equation (3).

We made two extensions to Bartlett's cost function (Equation 9), to better capture carbon costs in relation to traits and size. First, sapwood volume per leaf area ( V s A l <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0276" wiley:location="equation/pce15042-math-0276.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><mfrac><msub><mi>V</mi><mi>s</mi></msub><msub><mi>A</mi><mi>l</mi></msub></mfrac></mrow></mrow></math> ) was calculated from our allometric model as:
V s A l = θ H η c , <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0277" display="block" wiley:location="equation/pce15042-math-0277.png" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><mfrac><msub><mi>V</mi><mi>s</mi></msub><msub><mi>A</mi><mi>l</mi></msub></mfrac><mo>\unicode{x0003D}</mo><mi>\unicode{x003B8}</mi><mi>H</mi><msub><mi>\unicode{x003B7}</mi><mi>c</mi></msub><mo>,</mo></mrow></mrow></math> (11)
where θ <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0278" wiley:location="equation/pce15042-math-0278.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><mi>\unicode{x003B8}</mi></mrow></mrow></math> is the sapwood to leaf area ratio (also known as the Huber value) and η c <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0279" wiley:location="equation/pce15042-math-0279.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><msub><mi>\unicode{x003B7}</mi><mi>c</mi></msub></mrow></mrow></math> represents the average position of a leaf in the canopy as a proportion of the height of the plant (H).
Second, we developed a more mechanistic foundation for the rate parameter β <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0280" wiley:location="equation/pce15042-math-0280.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><mi>\unicode{x003B2}</mi></mrow></mrow></math> . In Bartlett et al. (2019), β <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0281" wiley:location="equation/pce15042-math-0281.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><mi>\unicode{x003B2}</mi></mrow></mrow></math> was parameterised based on an empirical correlation between the water potential of the transpiration pathway at which conductivity is halved (i.e., P 50 <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0282" wiley:location="equation/pce15042-math-0282.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><msub><mi>P</mi><mn>50</mn></msub></mrow></mrow></math> ) and the amount of embolism that occurs at stomatal closure. There, β <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0283" wiley:location="equation/pce15042-math-0283.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><mi>\unicode{x003B2}</mi></mrow></mrow></math> is assumed to increase with P 50 <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0284" wiley:location="equation/pce15042-math-0284.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><msub><mi>P</mi><mn>50</mn></msub></mrow></mrow></math> , representing the additional carbon investment in stem material required to increase drought tolerance. Instead, we assume that β <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0285" wiley:location="equation/pce15042-math-0285.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><mi>\unicode{x003B2}</mi></mrow></mrow></math> is linked to the density of nonlumen sapwood tissue, ρ <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0286" wiley:location="equation/pce15042-math-0286.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><mi>\unicode{x003C1}</mi></mrow></mrow></math> , hereafter referred to as wood density, based on the assumption that ρ <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0287" wiley:location="equation/pce15042-math-0287.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><mi>\unicode{x003C1}</mi></mrow></mrow></math> is needed to translate a volume of wood into biomass, and that ρ <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0288" wiley:location="equation/pce15042-math-0288.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><mi>\unicode{x003C1}</mi></mrow></mrow></math> additionally affects the risk of damage at a given pressure. This second assumption reflects empirical evidence showing that denser wood often confers greater resistance to embolism (Hacke et al., 2001; Hoffmann et al., 2011; Janssen et al., 2020; Kiorapostolou et al., 2019; Preston et al., 2006). These two effects are described by an equation with two parts
β = ρ a bio B h k s , 1 ρ ρ 0 B h k s , 2 . <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0289" display="block" wiley:location="equation/pce15042-math-0289.png" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><mi>\unicode{x003B2}</mi><mo>\unicode{x0003D}</mo><mfenced><mfrac><mi>\unicode{x003C1}</mi><msub><mi>a</mi><mtext>bio</mtext></msub></mfrac></mfenced><mspace width="0.33em"/><mfenced><mrow><msub><mi>B</mi><mrow><mi>h</mi><mi>k</mi><mi>s</mi><mo>,</mo><mn>1</mn></mrow></msub><msup><mfenced><mfrac><mi>\unicode{x003C1}</mi><msub><mi>\unicode{x003C1}</mi><mn>0</mn></msub></mfrac></mfenced><mrow><mo>\unicode{x02212}</mo><msub><mi>B</mi><mrow><mi>h</mi><mi>k</mi><mi>s</mi><mo>,</mo><mn>2</mn></mrow></msub></mrow></msup></mrow></mfenced><mo>.</mo></mrow></mrow></math> (12)

The first part of the right-hand side of Equation (12) represents the fact that embolism would incur a greater loss of mass per unit sapwood volume for denser wood. The second part of the right-hand side of Equation (12) gives the rate of turnover, dependent on ρ <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0290" wiley:location="equation/pce15042-math-0290.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><mi>\unicode{x003C1}</mi></mrow></mrow></math> , where B h k s , 1 <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0291" wiley:location="equation/pce15042-math-0291.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><msub><mi>B</mi><mrow><mi>h</mi><mi>k</mi><mi>s</mi><mo>,</mo><mn>1</mn></mrow></msub></mrow></mrow></math> is the average rate of sapwood turnover rate for a fully cavitated stem when ρ <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0292" wiley:location="equation/pce15042-math-0292.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><mi>\unicode{x003C1}</mi></mrow></mrow></math> is equal to the global average, ρ 0 <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0293" wiley:location="equation/pce15042-math-0293.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><msub><mi>\unicode{x003C1}</mi><mn>0</mn></msub></mrow></mrow></math> (Table 2), and B h k s , 2 <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0294" wiley:location="equation/pce15042-math-0294.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><msub><mi>B</mi><mrow><mi>h</mi><mi>k</mi><mi>s</mi><mo>,</mo><mn>2</mn></mrow></msub></mrow></mrow></math> defines the strength of the trade-off between ρ <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0295" wiley:location="equation/pce15042-math-0295.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><mi>\unicode{x003C1}</mi></mrow></mrow></math> and β <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0296" wiley:location="equation/pce15042-math-0296.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><mi>\unicode{x003B2}</mi></mrow></mrow></math> . Thus, although β <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0297" wiley:location="equation/pce15042-math-0297.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><mi>\unicode{x003B2}</mi></mrow></mrow></math> is assumed to increase linearly with ρ <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0298" wiley:location="equation/pce15042-math-0298.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><mi>\unicode{x003C1}</mi></mrow></mrow></math> owing to the first term on the right-hand side of Equation (12), β <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0299" wiley:location="equation/pce15042-math-0299.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><mi>\unicode{x003B2}</mi></mrow></mrow></math> is also assumed to decline exponentially with increasing ρ <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0300" wiley:location="equation/pce15042-math-0300.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><mi>\unicode{x003C1}</mi></mrow></mrow></math> , representing a greater resistance to embolism-inducing water potentials (Hacke et al., 2001).

Finally, we parameterise k l , max <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0301" wiley:location="equation/pce15042-math-0301.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><msub><mi>k</mi><mrow><mi>l</mi><mo>,</mo><mi>max</mi></mrow></msub></mrow></mrow></math> by normalising the maximum sapwood-specific conductivity, K s , max <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0302" wiley:location="equation/pce15042-math-0302.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><msub><mi>K</mi><mrow><mi>s</mi><mo>,</mo><mi>max</mi></mrow></msub></mrow></mrow></math> by θ <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0303" wiley:location="equation/pce15042-math-0303.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><mi>\unicode{x003B8}</mi></mrow></mrow></math> and by dividing the path length of the conducting tissue (Xu et al., 2021):
k l , max = K s , max θ H η c . <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0304" display="block" wiley:location="equation/pce15042-math-0304.png" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><msub><mi>k</mi><mrow><mi mathvariant="normal">l</mi><mo>,</mo><mi>max</mi></mrow></msub><mo>\unicode{x0003D}</mo><mfrac><mrow><msub><mi>K</mi><mrow><mi>s</mi><mo>,</mo><mi>max</mi></mrow></msub><mi>\unicode{x003B8}</mi></mrow><mrow><mi>H</mi><msub><mi>\unicode{x003B7}</mi><mi>c</mi></msub></mrow></mfrac><mo>.</mo></mrow></mrow></math> (13)

2.4 Trait-based trade-offs

In order for trait-environment gradients to emerge, traits must capture trade-offs in ecological function with costs and benefits that vary with respect to the environment. These trade-offs are discussed below.

LMA, ϕ <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0305" wiley:location="equation/pce15042-math-0305.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><mi>\unicode{x003D5}</mi></mrow></mrow></math> : Increasing ϕ <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0306" wiley:location="equation/pce15042-math-0306.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><mi>\unicode{x003D5}</mi></mrow></mrow></math> reduces the rate of leaf area deployment for a given unit of biomass growth via its effect on the construction cost of leaves ( d A l M a <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0307" wiley:location="equation/pce15042-math-0307.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><mfrac><mrow><mi mathvariant="normal">d</mi><msub><mi>A</mi><mi>l</mi></msub></mrow><msub><mi>M</mi><mi>a</mi></msub></mfrac></mrow></mrow></math> ) but also reduces the rate of leaf turnover ( t l <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0308" wiley:location="equation/pce15042-math-0308.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><msub><mi>t</mi><mi>l</mi></msub></mrow></mrow></math> ) according to the well-recognised leaf economics spectrum (Wright et al., 2004):
t l = t l , 0 ϕ ϕ 0 B k , l , <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0309" display="block" wiley:location="equation/pce15042-math-0309.png" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><msub><mi>t</mi><mi>l</mi></msub><mo>\unicode{x0003D}</mo><msub><mi>t</mi><mrow><mi>l</mi><mo>,</mo><mn>0</mn></mrow></msub><msup><mfenced close=")" open="("><mfrac><mi>\unicode{x003D5}</mi><msub><mi>\unicode{x003D5}</mi><mn>0</mn></msub></mfrac></mfenced><mrow><mo>\unicode{x02212}</mo><msub><mi>B</mi><mrow><mi>k</mi><mo>,</mo><mi>l</mi></mrow></msub></mrow></msup><mo>,</mo></mrow></mrow></math> (14)
where ϕ 0 <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0310" wiley:location="equation/pce15042-math-0310.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><msub><mi>\unicode{x003D5}</mi><mn>0</mn></msub></mrow></mrow></math> is the global average of ϕ <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0311" wiley:location="equation/pce15042-math-0311.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><mi>\unicode{x003D5}</mi></mrow></mrow></math> (see Table 2), t l , 0 <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0312" wiley:location="equation/pce15042-math-0312.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><msub><mi>t</mi><mrow><mi>l</mi><mo>,</mo><mn>0</mn></mrow></msub></mrow></mrow></math> is the leaf turnover rate at ϕ 0 <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0313" wiley:location="equation/pce15042-math-0313.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><msub><mi>\unicode{x003D5}</mi><mn>0</mn></msub></mrow></mrow></math> , and B k , l <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0314" wiley:location="equation/pce15042-math-0314.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><msub><mi>B</mi><mrow><mi>k</mi><mo>,</mo><mi>l</mi></mrow></msub></mrow></mrow></math> is the steepness of the relationship between LMA and the turnover rate on a log-log scale. For ϕ <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0315" wiley:location="equation/pce15042-math-0315.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><mi>\unicode{x003D5}</mi></mrow></mrow></math>  and other traits, the global average value is included such that variation in the magnitude of the trade-off exponent causes the trade-off axis to rotate upon a central trait value.
Maximum sapwood-specific conductivity, K s , max <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0316" wiley:location="equation/pce15042-math-0316.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><msub><mi>K</mi><mrow><mi>s</mi><mo>,</mo><mi>max</mi></mrow></msub></mrow></mrow></math> : k l , max <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0317" wiley:location="equation/pce15042-math-0317.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><msub><mi>k</mi><mrow><mi mathvariant="normal">l</mi><mo>,</mo><mi mathvariant="normal">max</mi></mrow></msub></mrow></mrow></math> increases with K s , max <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0318" wiley:location="equation/pce15042-math-0318.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><msub><mi>K</mi><mrow><mi>s</mi><mo>,</mo><mi>max</mi></mrow></msub></mrow></mrow></math> which increases the rate of water transport. However, sapwood with a higher K s , max <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0319" wiley:location="equation/pce15042-math-0319.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><msub><mi>K</mi><mrow><mi>s</mi><mo>,</mo><mi>max</mi></mrow></msub></mrow></mrow></math> is also assumed to be less resistant to embolism, consistent with the hypothesis of a hydraulic safety-efficiency trade-off (Franklin et al., 2023; Liu et al., 20192021):
P 50 = P 50 , 0 K s , m a x K s , m a x , 0 - B h v <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0320" display="block" wiley:location="equation/pce15042-math-0320.png" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><mtable><mtr><mtd><msub><mi>P</mi><mn>50</mn></msub></mtd><mtd><mo>\unicode{x0003D}</mo><msub><mi>P</mi><mrow><mn>50</mn><mo>,</mo><mn>0</mn></mrow></msub></mtd><mtd><msup><mfenced><mfrac><msub><mi>K</mi><mrow><mi>s</mi><mo>,</mo><mi>m</mi><mi>a</mi><mi>x</mi></mrow></msub><msub><mi>K</mi><mrow><mi>s</mi><mo>,</mo><mi>m</mi><mi>a</mi><mi>x</mi><mo>,</mo><mn>0</mn></mrow></msub></mfrac></mfenced><mrow><mo>\unicode{x02010}</mo><msub><mi>B</mi><mrow><mi>h</mi><mi>v</mi></mrow></msub></mrow></msup></mtd></mtr></mtable></mrow></mrow></math> (15)
where P 50 <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0321" wiley:location="equation/pce15042-math-0321.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><msub><mi>P</mi><mn>50</mn></msub></mrow></mrow></math> is the xylem pressure at which 50% of conductivity is lost and B h v , 1 <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0322" wiley:location="equation/pce15042-math-0322.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><msub><mi>B</mi><mrow><mi>h</mi><mi>v</mi><mo>,</mo><mn>1</mn></mrow></msub></mrow></mrow></math> and B h v , 2 <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0323" wiley:location="equation/pce15042-math-0323.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><msub><mi>B</mi><mrow><mi>h</mi><mi>v</mi><mo>,</mo><mn>2</mn></mrow></msub></mrow></mrow></math> are the intercept and slope, respectively, of the relationship between K s , max <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0324" wiley:location="equation/pce15042-math-0324.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><msub><mi>K</mi><mrow><mi>s</mi><mo>,</mo><mi>max</mi></mrow></msub></mrow></mrow></math> and P 50 <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0325" wiley:location="equation/pce15042-math-0325.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><msub><mi>P</mi><mn>50</mn></msub></mrow></mrow></math> on a log-log scale. B h v , 1 <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0326" wiley:location="equation/pce15042-math-0326.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><msub><mi>B</mi><mrow><mi>h</mi><mi>v</mi><mo>,</mo><mn>1</mn></mrow></msub></mrow></mrow></math> and B h v , 2 <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0327" wiley:location="equation/pce15042-math-0327.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><msub><mi>B</mi><mrow><mi>h</mi><mi>v</mi><mo>,</mo><mn>2</mn></mrow></msub></mrow></mrow></math> were parameterised based on the data presented in Liu et al. (2019).
P 50 <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0328" wiley:location="equation/pce15042-math-0328.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><msub><mi>P</mi><mn>50</mn></msub></mrow></mrow></math> , in turn, determines the sensitivity parameter of the hydraulic vulnerability curve, b <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0329" wiley:location="equation/pce15042-math-0329.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><mi>b</mi></mrow></mrow></math> :
b = P 50 l o g 1 50 100 1 c . <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0330" display="block" wiley:location="equation/pce15042-math-0330.png" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><mi>b</mi><mo>\unicode{x0003D}</mo><mfrac><msub><mi>P</mi><mn>50</mn></msub><mrow><mo>\unicode{x02212}</mo><mi>l</mi><mi>o</mi><mi>g</mi><msup><mfenced close=")" open="("><mrow><mn>1</mn><mo>\unicode{x02212}</mo><mfrac><mn>50</mn><mn>100</mn></mfrac></mrow></mfenced><mfrac><mn>1</mn><mi>c</mi></mfrac></msup></mrow></mfrac><mo>.</mo></mrow></mrow></math> (16)

The shape parameter ( c <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0331" wiley:location="equation/pce15042-math-0331.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><mi>c</mi></mrow></mrow></math> ) might also vary with K s , max <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0332" wiley:location="equation/pce15042-math-0332.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><msub><mi>K</mi><mrow><mi>s</mi><mo>,</mo><mi>max</mi></mrow></msub></mrow></mrow></math> and P 50 <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0333" wiley:location="equation/pce15042-math-0333.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><msub><mi>P</mi><mn>50</mn></msub></mrow></mrow></math> , perhaps to capture a trade-off between the width of the hydraulic safety margin (e.g., P50–P88) and the maintenance of high conductivity under low soil moisture stress. However, as the validity of such covariation remains unclear, we instead set it as a constant value (Table 2).

Huber value, θ <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0334" wiley:location="equation/pce15042-math-0334.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><mi>\unicode{x003B8}</mi></mrow></mrow></math> : The cross-sectional sapwood area to leaf area ratio ( θ <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0335" wiley:location="equation/pce15042-math-0335.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><mi>\unicode{x003B8}</mi></mrow></mrow></math> ), influences growth rates in a number of ways. k l , max <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0336" wiley:location="equation/pce15042-math-0336.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><msub><mi>k</mi><mrow><mi mathvariant="normal">l</mi><mo>,</mo><mi mathvariant="normal">max</mi></mrow></msub></mrow></mrow></math> increases with θ <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0337" wiley:location="equation/pce15042-math-0337.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><mi>\unicode{x003B8}</mi></mrow></mrow></math> by increasing the cross-sectional area of sapwood supplying a given area of leaf with water. However, d A l d M a <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0338" wiley:location="equation/pce15042-math-0338.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><mfrac><mrow><mi mathvariant="normal">d</mi><msub><mi>A</mi><mi>l</mi></msub></mrow><mrow><mi mathvariant="normal">d</mi><msub><mi>M</mi><mi>a</mi></msub></mrow></mfrac></mrow></mrow></math> declines with θ <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0339" wiley:location="equation/pce15042-math-0339.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><mi>\unicode{x003B8}</mi></mrow></mrow></math> due to its effect on the construction cost of sapwood and bark (see Supplementary Information of Falster et al. [2016]). In addition, C ¯ <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0340" wiley:location="equation/pce15042-math-0340.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><mover accent="true"><mi>C</mi><mo>\unicode{x000AF}</mo></mover></mrow></mrow></math> increases with θ <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0341" wiley:location="equation/pce15042-math-0341.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><mi>\unicode{x003B8}</mi></mrow></mrow></math> via its effect on the sapwood volume per leaf area because a given unit of xylem damage incurs a greater absolute loss of carbon in plants with a greater amount of sapwood in our model.

Wood density, ρ <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0342" wiley:location="equation/pce15042-math-0342.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><mi>\unicode{x003C1}</mi></mrow></mrow></math> : Increasing ρ <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0343" wiley:location="equation/pce15042-math-0343.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><mi>\unicode{x003C1}</mi></mrow></mrow></math> reduces d A l d M a <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0344" wiley:location="equation/pce15042-math-0344.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><mfrac><mrow><mi mathvariant="normal">d</mi><msub><mi>A</mi><mi>l</mi></msub></mrow><mrow><mi mathvariant="normal">d</mi><msub><mi>M</mi><mi>a</mi></msub></mrow></mfrac></mrow></mrow></math> via its effect on the construction cost of sapwood and bark but also reduces the rate of sapwood damage per unit of conductivity loss as described in Equation (12).

2.5 Implementation and trait optimisation

Plant growth was simulated in the plant R package (Falster et al., 2016) using the TF24 physiological module. The TF24 physiological module adds the stomatal submodel described above into the base FF16 module. Instantaneous height-growth rates were numerically solved across gradients of soil water potential ( ψ soil <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0345" wiley:location="equation/pce15042-math-0345.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><msub><mi>\unicode{x003C8}</mi><mtext>soil</mtext></msub></mrow></mrow></math> ), vapour pressure deficit ( D <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0346" wiley:location="equation/pce15042-math-0346.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><mi>D</mi></mrow></mrow></math> ), atmospheric CO 2 <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0347" wiley:location="equation/pce15042-math-0347.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><msub><mstyle><mspace width="0.1em"/><mtext>CO</mtext><mspace width="0.1em"/></mstyle><mn>2</mn></msub></mrow></mrow></math> concentration ( C a <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0348" wiley:location="equation/pce15042-math-0348.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><msub><mi>C</mi><mi>a</mi></msub></mrow></mrow></math> ), and above-canopy photon flux density ( I 0 <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0349" wiley:location="equation/pce15042-math-0349.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><msub><mi>I</mi><mn>0</mn></msub></mrow></mrow></math> ), as well as at different plant heights. When simulating across environmental gradients, height-growth rates were calculated for 1 m tall plants.

For a plant of specified size, traits, and environment, we solved for the optimum ψ leaf <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0350" wiley:location="equation/pce15042-math-0350.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><msub><mi>\unicode{x003C8}</mi><mtext>leaf</mtext></msub></mrow></mrow></math> using numerical methods, as no analytical solution for the ψ leaf <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0351" wiley:location="equation/pce15042-math-0351.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><msub><mi>\unicode{x003C8}</mi><mtext>leaf</mtext></msub></mrow></mrow></math> that satisfies Equation (4) exists. We solved Equation (4) using the golden-section search algorithm which requires upper and lower boundary values (Kiefer, 1953). For the upper boundary value, we assumed that ψ leaf <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0352" wiley:location="equation/pce15042-math-0352.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><msub><mi>\unicode{x003C8}</mi><mtext>leaf</mtext></msub></mrow></mrow></math> cannot be less negative than ψ soil <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0353" wiley:location="equation/pce15042-math-0353.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><msub><mi>\unicode{x003C8}</mi><mtext>soil</mtext></msub></mrow></mrow></math> . For the lower boundary value, we assumed that ψ leaf <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0354" wiley:location="equation/pce15042-math-0354.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><msub><mi>\unicode{x003C8}</mi><mtext>leaf</mtext></msub></mrow></mrow></math> could not be more negative than the critical point at which 95% of hydraulic conductivity is lost ( ψ crit <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0355" wiley:location="equation/pce15042-math-0355.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><msub><mi>\unicode{x003C8}</mi><mtext>crit</mtext></msub></mrow></mrow></math> ).

To find the value of a traits optimising height-growth rates in a given environment, we minimised the objective function: f ( x ) = d H d t ( x ) 1 <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0356" wiley:location="equation/pce15042-math-0356.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><mi>f</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>\unicode{x0003D}</mo><mfrac><mrow><mi mathvariant="normal">d</mi><mi>H</mi></mrow><mrow><mi mathvariant="normal">d</mi><mi>t</mi></mrow></mfrac><msup><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mrow><mo>\unicode{x02212}</mo><mn>1</mn></mrow></msup></mrow></mrow></math> . When considering a single trait, we used the optimise function from the stats R package. When considering multiple traits, we used generalised simulated annealing, as implemented in the GenSA R package (Xiang et al., 2013), using a maximum of 1500 iterations of the search algorithm. Finally, to compare the predicted trait–environment relationships emerging from the optimisation of height-growth rate to a simpler model based on biomass growth (and to better understand the mechanisms driving emergent patters in the height-growth optimisation), we visualised rates of height growth and net biomass growth across focal traits for 1 m tall plants and inspected how the optimum trait value for each growth rate responded to variation in the environment (Figure 4, Supporting Information S1: Figures S1S3).

2.6 Parameterisation

In addition to any sources described above, extra parameters in the TF24 module were either obtained from existing literature or were parameterised where data was available to represent a self-supporting woody plant using the AusTraits trait database (Table 2), which is a collation of Australian plant trait data and is the single largest collation of trait data within a single continent (Falster et al., 2021). We considered our use of the AusTraits database appropriate given our focus in the present study on simulating qualitative predictions of trait–environment relationships, rather than matching site or species-specific observations. Along these lines, for parameters which relatively little is known, such as B hks , 1 <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0357" wiley:location="equation/pce15042-math-0357.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><msub><mi mathvariant="normal">B</mi><mrow><mtext>hks</mtext><mo>,</mo><mn>1</mn></mrow></msub></mrow></mrow></math> , we simply selected values which yielded realistic simulations of trait optima. Otherwise, the model was parameterised largely using the default parameters available in the base FF16 module of the plant (Falster et al., 2016).

3 RESULTS

3.1 Emergent response of stomatal behaviour to traits and environment

Under our optimality framework, sensitivity of stomatal conductance to the environment is an emergent property rather than the outcome of an empirical relationship.

In line with empirical observations, our stomatal optimisation model predicts a depression in g s <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0358" wiley:location="equation/pce15042-math-0358.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><msub><mi>g</mi><mi>s</mi></msub></mrow></mrow></math> (Figure 1) shortly after midday due to a peak in the atmospheric vapour pressure deficit (Koyama & Takemoto, 2014), as well as a downregulation of g s <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0359" wiley:location="equation/pce15042-math-0359.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><msub><mi>g</mi><mi>s</mi></msub></mrow></mrow></math> as soils dry (Zhou et al., 2013). Considering univariate responses of g s <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0360" wiley:location="equation/pce15042-math-0360.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><msub><mi>g</mi><mi>s</mi></msub></mrow></mrow></math> to the environment, our model predicts a decline in g s <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0361" wiley:location="equation/pce15042-math-0361.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><msub><mi>g</mi><mi>s</mi></msub></mrow></mrow></math> with decreasing soil water potential ( ψ soil <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0362" wiley:location="equation/pce15042-math-0362.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><msub><mi>\unicode{x003C8}</mi><mtext>soil</mtext></msub></mrow></mrow></math> ), vapour pressure deficit ( D <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0363" wiley:location="equation/pce15042-math-0363.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><mi>D</mi></mrow></mrow></math> ), and atmospheric CO 2 <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0364" wiley:location="equation/pce15042-math-0364.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><msub><mstyle><mspace width="0.1em"/><mtext>CO</mtext><mspace width="0.1em"/></mstyle><mn>2</mn></msub></mrow></mrow></math> concentration ( C a <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0365" wiley:location="equation/pce15042-math-0365.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><msub><mi>C</mi><mi>a</mi></msub></mrow></mrow></math> ), but an increase with above-canopy photon flux density ( I 0 <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0366" wiley:location="equation/pce15042-math-0366.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><msub><mi>I</mi><mn>0</mn></msub></mrow></mrow></math> ). Moreover, traits influence the response of g s <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0367" wiley:location="equation/pce15042-math-0367.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><msub><mi>g</mi><mi>s</mi></msub></mrow></mrow></math> to the environment; plants with greater K s , max <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0368" wiley:location="equation/pce15042-math-0368.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><msub><mi>K</mi><mrow><mi>s</mi><mo>,</mo><mi>max</mi></mrow></msub></mrow></mrow></math> and θ <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0369" wiley:location="equation/pce15042-math-0369.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><mi>\unicode{x003B8}</mi></mrow></mrow></math> achieve a higher g s <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0370" wiley:location="equation/pce15042-math-0370.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><msub><mi>g</mi><mi>s</mi></msub></mrow></mrow></math> in a given environment, and are more water-profligate (Figure 1).

Details are in the caption following the image
The sensitivity of stomatal conductance of C O 2 <math wiley:location="equation/pce15042-math-0620.png" altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0620" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><mi>C</mi><msub><mi>O</mi><mn mathvariant="italic">2</mn></msub></mrow></mrow></math> , g s <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0371" wiley:location="equation/pce15042-math-0371.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><msub><mi>g</mi><mi>s</mi></msub></mrow></mrow></math> , to the environment and traits emerges from our stomatal optimisation framework. The model successfully predicts stomatal response to diurnal fluctuation in atmospheric vapour pressure deficit (D) and light availability ( I 0 <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0372" wiley:location="equation/pce15042-math-0372.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><msub><mi>I</mi><mn>0</mn></msub></mrow></mrow></math> ) as (a) soils dry and with (b) increasing sapwood to leaf area allocation, θ and (c) maximum sapwood conductivity, K s , max <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0373" wiley:location="equation/pce15042-math-0373.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><msub><mi>K</mi><mrow><mi mathvariant="normal">s</mi><mo>,</mo><mi>max</mi></mrow></msub></mrow></mrow></math> . In (a–c), diurnal variation in D and I 0 <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0375" wiley:location="equation/pce15042-math-0375.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><msub><mi>I</mi><mn>0</mn></msub></mrow></mrow></math> are simulated for a summer day in the southern hemisphere using parameters available in Table 2. Diurnal temperature variation is calculated according to Parton and Logan (1981) and exclusively influences D. g s <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0376" wiley:location="equation/pce15042-math-0376.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><msub><mi>g</mi><mi mathvariant="normal">s</mi></msub></mrow></mrow></math> is plotted during the sunlit period (i.e., I 0 > 100 <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0377" wiley:location="equation/pce15042-math-0377.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><msub><mi>I</mi><mn>0</mn></msub><mo>\unicode{x0003E}</mo><mn>100</mn></mrow></mrow></math> ). The model also predicts that stomatal closure occurs as (d–f) ψ soil <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0378" wiley:location="equation/pce15042-math-0378.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><msub><mi>\unicode{x003C8}</mi><mtext>soil</mtext></msub></mrow></mrow></math> and I 0 <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0379" wiley:location="equation/pce15042-math-0379.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><msub><mi>I</mi><mn>0</mn></msub></mrow></mrow></math> decrease, C a <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0380" wiley:location="equation/pce15042-math-0380.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><msub><mi>C</mi><mi mathvariant="normal">a</mi></msub></mrow></mrow></math> increases and as the air becomes drier.

3.2 Emergent response of height-growth rate to the environment

For a given set of traits at a fixed height, absolute height-growth rates were greater in wetter soils (i.e., less negative ψ soil <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0381" wiley:location="equation/pce15042-math-0381.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><msub><mi>\unicode{x003C8}</mi><mtext>soil</mtext></msub></mrow></mrow></math> ), lower D <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0382" wiley:location="equation/pce15042-math-0382.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><mi>D</mi></mrow></mrow></math> , higher C a <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0383" wiley:location="equation/pce15042-math-0383.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><msub><mi>C</mi><mi>a</mi></msub></mrow></mrow></math> , and higher I 0 <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0384" wiley:location="equation/pce15042-math-0384.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><msub><mi>I</mi><mn>0</mn></msub></mrow></mrow></math> (as represented by the contour lines in Figure 2).

Details are in the caption following the image
Predicted environmental sensitivity of four traits (viewed horizantally from a, e, i, and m). Red lines connect the trait values optimising height-growth rate across 50 simulated points for each environmental gradient (viewed vertically from a, b, c and d). Traits were optimised one at a time with all other traits held at their default value. Environmental variables were also varied one at a time, with all other variables being held at constant values: ψ soil = 0.5 <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0385" wiley:location="equation/pce15042-math-0385.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><msub><mi>\unicode{x003C8}</mi><mtext>soil</mtext></msub><mo>\unicode{x0003D}</mo><mn>0.5</mn></mrow></mrow></math>  MPa, D = 0.5 <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0386" wiley:location="equation/pce15042-math-0386.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><mspace width="0.1em"/><mi>D</mi><mspace width="0.1em"/><mo>\unicode{x0003D}</mo><mn>0.5</mn></mrow></mrow></math>  kPa, C a = 40 <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0387" wiley:location="equation/pce15042-math-0387.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><mspace width="0.1em"/><mi>C</mi><msub><mspace width="0.1em"/><mi mathvariant="normal">a</mi></msub><mo>\unicode{x0003D}</mo><mn>40</mn></mrow></mrow></math>  Pa, and I 0 = 1800 μ mol m 2 s 1 <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0388" wiley:location="equation/pce15042-math-0388.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><msub><mi>I</mi><mn>0</mn></msub><mo>\unicode{x0003D}</mo><mn>1800</mn><mspace width="0.33em"/><mi mathvariant="normal">\unicode{x003BC}</mi><mspace width="0.1em"/><mtext>mol m</mtext><msup><mspace width="0.1em"/><mrow><mo>\unicode{x02212}</mo><mn>2</mn></mrow></msup><mspace width="0.33em"/><mspace width="0.1em"/><mi mathvariant="normal">s</mi><msup><mspace width="0.1em"/><mrow><mo>\unicode{x02212}</mo><mn>1</mn></mrow></msup></mrow></mrow></math> . The grey contours represent height-growth rates for a 1 m tall plant. [Color figure can be viewed at wileyonlinelibrary.com]

3.3 Individual trait responses to the environment

Optimal Huber value, θ <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0389" wiley:location="equation/pce15042-math-0389.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><mi>\unicode{x003B8}</mi></mrow></mrow></math> : Increasing θ <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0390" wiley:location="equation/pce15042-math-0390.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><mi>\unicode{x003B8}</mi></mrow></mrow></math> entails an increase in the water transport rate per leaf area at the cost of a reduced leaf area deployment. Moreover, greater θ <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0391" wiley:location="equation/pce15042-math-0391.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><mi>\unicode{x003B8}</mi></mrow></mrow></math> leads to greater volume-based hydraulic costs and mass-based respiration and turnover rates. Thus, in general, θ <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0392" wiley:location="equation/pce15042-math-0392.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><mi>\unicode{x003B8}</mi></mrow></mrow></math> is expected to become larger where the benefit of a greater k l , max <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0393" wiley:location="equation/pce15042-math-0393.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><msub><mi>k</mi><mrow><mi>l</mi><mo>,</mo><mi>max</mi></mrow></msub></mrow></mrow></math> to P ¯ net <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0394" wiley:location="equation/pce15042-math-0394.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><msub><mover accent="true"><mi>P</mi><mo>\unicode{x000AF}</mo></mover><mi>net</mi></msub></mrow></mrow></math> are more apparent relative to the combined costs of construction, respiration, and tissue turnover. Specifically, we found that the response of θ <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0395" wiley:location="equation/pce15042-math-0395.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><mi>\unicode{x003B8}</mi></mrow></mrow></math> to ψ soil <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0396" wiley:location="equation/pce15042-math-0396.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><msub><mi>\unicode{x003C8}</mi><mtext>soil</mtext></msub></mrow></mrow></math> was nonmonotonic (leading to the flat response in wetter soils in Figure 2a), especially at greater heights (e.g., by following the horizontal gradient towards the top of Figure 3a), and this was because the d B d t <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0397" wiley:location="equation/pce15042-math-0397.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><mfrac><mrow><mi mathvariant="normal">d</mi><mi>B</mi></mrow><mrow><mi mathvariant="normal">d</mi><mi>t</mi></mrow></mfrac></mrow></mrow></math> -optimising θ <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0398" wiley:location="equation/pce15042-math-0398.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><mi>\unicode{x003B8}</mi></mrow></mrow></math> initially declined as soils dried, before increasing again in very dry soil (Figure 4a). The initial decline occurred because it was more profitable for plants to obtain water for transpiration by making ψ leaf <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0399" wiley:location="equation/pce15042-math-0399.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><msub><mi>\unicode{x003C8}</mi><mtext>leaf</mtext></msub></mrow></mrow></math> more negative and saving on instantaneous costs associated with greater sapwood volume. In very dry soils, however, θ <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0400" wiley:location="equation/pce15042-math-0400.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><mi>\unicode{x003B8}</mi></mrow></mrow></math> increased again because ψ soil <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0401" wiley:location="equation/pce15042-math-0401.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><msub><mi>\unicode{x003C8}</mi><mi>soil</mi></msub></mrow></mrow></math> approached the critical xylem pressure, ψ crit <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0402" wiley:location="equation/pce15042-math-0402.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><msub><mi>\unicode{x003C8}</mi><mtext>crit</mtext></msub></mrow></mrow></math> , such that it was more profitable to supply the transpiration stream by increasing sapwood volume (Supporting Information S1: Figure S5). θ <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0403" wiley:location="equation/pce15042-math-0403.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><mi>\unicode{x003B8}</mi></mrow></mrow></math> also increased with D <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0404" wiley:location="equation/pce15042-math-0404.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><mi>D</mi></mrow></mrow></math> and declined with C a <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0405" wiley:location="equation/pce15042-math-0405.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><msub><mi>C</mi><mi>a</mi></msub></mrow></mrow></math> (Figure 2b,c). In the former case, this increase in the atmospheric demand for water induced by D <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0406" wiley:location="equation/pce15042-math-0406.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><mi>D</mi></mrow></mrow></math> (Equation 7) was compensated for by an increase in the water transport rate via increasing θ <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0407" wiley:location="equation/pce15042-math-0407.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><mi>\unicode{x003B8}</mi></mrow></mrow></math> . In the latter case, increasing C a <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0408" wiley:location="equation/pce15042-math-0408.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><msub><mi mathvariant="normal">C</mi><mi mathvariant="normal">a</mi></msub></mrow></mrow></math> caused partial stomatal closure (i.e., lower g s <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0409" wiley:location="equation/pce15042-math-0409.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><msub><mi>g</mi><mi>s</mi></msub></mrow></mrow></math> ; Figure 1) and a reduction in E demand <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0410" wiley:location="equation/pce15042-math-0410.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><msub><mi>E</mi><mtext>demand</mtext></msub></mrow></mrow></math> which was achieved by reducing θ <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0411" wiley:location="equation/pce15042-math-0411.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><mi>\unicode{x003B8}</mi></mrow></mrow></math> .

Details are in the caption following the image
Predicted ontogenetic shifts in four traits (viewed horizantally from a, e, i and m). Cell shading represents the value of the height-growth optimising trait for a plant of a given height and under a given set of environmental conditions (viewed vertically from a, b, c and d). Traits were optimised one at a time with all other traits held at their default value. Environmental variables were also varied one at a time, with all other variables being held at constant values: ψ soil = 0.5 <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0412" wiley:location="equation/pce15042-math-0412.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><msub><mi>\unicode{x003C8}</mi><mtext>soil</mtext></msub><mo>\unicode{x0003D}</mo><mn>0.5</mn></mrow></mrow></math>  MPa, D = 0.5 <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0413" wiley:location="equation/pce15042-math-0413.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><mspace width="0.1em"/><mi>D</mi><mspace width="0.1em"/><mo>\unicode{x0003D}</mo><mn>0.5</mn></mrow></mrow></math>  kPa, C a = 40 <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0414" wiley:location="equation/pce15042-math-0414.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><msub><mstyle mathvariant="italic"><mspace width="0.1em"/><mi mathvariant="normal">C</mi><mspace width="0.1em"/></mstyle><mi mathvariant="normal">a</mi></msub><mo>\unicode{x0003D}</mo><mn>40</mn></mrow></mrow></math>  Pa, and I 0 = 1800 μ mol m 2 s 1 <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0415" wiley:location="equation/pce15042-math-0415.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><msub><mi>I</mi><mn>0</mn></msub><mo>\unicode{x0003D}</mo><mn>1800</mn><mspace width="0.33em"/><mi mathvariant="normal">\unicode{x003BC}</mi><mspace width="0.1em"/><mtext>mol m</mtext><msup><mspace width="0.1em"/><mrow><mo>\unicode{x02212}</mo><mn>2</mn></mrow></msup><mspace width="0.33em"/><mspace width="0.1em"/><mi mathvariant="normal">s</mi><msup><mspace width="0.1em"/><mrow><mo>\unicode{x02212}</mo><mn>1</mn></mrow></msup></mrow></mrow></math> . White space in each panel indicates positions in the environment-height space under which no trait conferred positive height-growth rates. [Color figure can be viewed at wileyonlinelibrary.com]
Details are in the caption following the image
Decomposition of the components determining trait optima across a soil water availability ( ψ soil <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0416" wiley:location="equation/pce15042-math-0416.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><msub><mi>\unicode{x003C8}</mi><mi>soil</mi></msub></mrow></mrow></math> ) gradient. The top row of panels (a-d) shows how net biomass production, d B d t <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0417" wiley:location="equation/pce15042-math-0417.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><mfrac><mrow><mi mathvariant="normal">d</mi><mi>B</mi></mrow><mrow><mi mathvariant="normal">d</mi><mi>t</mi></mrow></mfrac></mrow></mrow></math> emerges for each trait across a declining soil water availability gradient (i.e., from the top to the bottom of panels a–d) as the residual of total assimilation, ( A l P net ¯ <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0418" wiley:location="equation/pce15042-math-0418.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><msub><mi>A</mi><mi>l</mi></msub><mover accent="true"><msub><mi>P</mi><mi>net</mi></msub><mo>\unicode{x000AF}</mo></mover></mrow></mrow></math> ), after accounting for hydraulic costs, A l C ¯ <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0419" wiley:location="equation/pce15042-math-0419.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><msub><mi>A</mi><mi>l</mi></msub><mover accent="true"><mi>C</mi><mo>\unicode{x000AF}</mo></mover></mrow></mrow></math> , turnover M i t i <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0420" wiley:location="equation/pce15042-math-0420.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><mo>\unicode{x02211}</mo><msub><mi>M</mi><mi>i</mi></msub><msub><mi>t</mi><mi>i</mi></msub></mrow></mrow></math> and respiration M i r i <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0421" wiley:location="equation/pce15042-math-0421.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><mo>\unicode{x02211}</mo><msub><mi>M</mi><mi>i</mi></msub><msub><mi>r</mi><mi>i</mi></msub></mrow></mrow></math> of each plant tissue, i <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0422" wiley:location="equation/pce15042-math-0422.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><mi>i</mi></mrow></mrow></math> . The trait value maximising d B d t <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0423" wiley:location="equation/pce15042-math-0423.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><mfrac><mrow><mi mathvariant="normal">d</mi><mi>B</mi></mrow><mrow><mi mathvariant="normal">d</mi><mi>t</mi></mrow></mfrac></mrow></mrow></math> is indicated by the dashed vertical bar. The solid vertical line indicates the trait value maximising the height-growth rate, d H d t <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0424" wiley:location="equation/pce15042-math-0424.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><mfrac><mrow><mi>d</mi><mi>H</mi></mrow><mrow><mi>d</mi><mi>t</mi></mrow></mfrac></mrow></mrow></math> . The d H d t <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0425" wiley:location="equation/pce15042-math-0425.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><mfrac><mrow><mi>d</mi><mi>H</mi></mrow><mrow><mi>d</mi><mi>t</mi></mrow></mfrac></mrow></mrow></math> optima emerge through multiplication of d B d t <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0426" wiley:location="equation/pce15042-math-0426.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><mfrac><mrow><mi>d</mi><mi>B</mi></mrow><mrow><mi>d</mi><mi>t</mi></mrow></mfrac></mrow></mrow></math> with the rate of leaf area deployment per unit of live mass growth d A l d M a <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0427" wiley:location="equation/pce15042-math-0427.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><mfrac><mrow><mi mathvariant="normal">d</mi><msub><mi>A</mi><mi>l</mi></msub></mrow><mrow><mi mathvariant="normal">d</mi><msub><mi>M</mi><mi>a</mi></msub></mrow></mfrac></mrow></mrow></math> , shown in the bottom row (e-h). For most traits, this causes the d H d t <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0428" wiley:location="equation/pce15042-math-0428.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><mfrac><mrow><mi>d</mi><mi>H</mi></mrow><mrow><mi>d</mi><mi>t</mi></mrow></mfrac></mrow></mrow></math> optima to be lower than the d B d t <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0429" wiley:location="equation/pce15042-math-0429.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><mfrac><mrow><mi>d</mi><mi>B</mi></mrow><mrow><mi>d</mi><mi>t</mi></mrow></mfrac></mrow></mrow></math> optima, owing to the greater value of d A l d M a <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0430" wiley:location="equation/pce15042-math-0430.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><mfrac><mrow><mi mathvariant="normal">d</mi><msub><mi>A</mi><mi>l</mi></msub></mrow><mrow><mi mathvariant="normal">d</mi><msub><mi>M</mi><mi>a</mi></msub></mrow></mfrac></mrow></mrow></math> at low trait values in panels e–g but also explains why the optima are equivalent for K s , max <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0431" wiley:location="equation/pce15042-math-0431.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><msub><mi>K</mi><mrow><mi mathvariant="normal">s</mi><mo>,</mo><mi>max</mi></mrow></msub></mrow></mrow></math> . [Color figure can be viewed at wileyonlinelibrary.com]

The nonmonotonic response of the height-growth optimising θ <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0432" wiley:location="equation/pce15042-math-0432.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><mi>\unicode{x003B8}</mi></mrow></mrow></math> to I 0 <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0433" wiley:location="equation/pce15042-math-0433.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><msub><mi>I</mi><mn>0</mn></msub></mrow></mrow></math> in Figure 2 emerged despite the fact that the θ <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0434" wiley:location="equation/pce15042-math-0434.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><mi>\unicode{x003B8}</mi></mrow></mrow></math> optimising d B d t <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0435" wiley:location="equation/pce15042-math-0435.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><mfrac><mrow><mi mathvariant="normal">d</mi><mi>B</mi></mrow><mrow><mi mathvariant="normal">d</mi><mi>t</mi></mrow></mfrac></mrow></mrow></math> responded monotonically positive to I 0 <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0436" wiley:location="equation/pce15042-math-0436.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><msub><mi>I</mi><mn>0</mn></msub></mrow></mrow></math> (Supporting Information S1: Figure S2a). This was because, under very low light, d A l d M a <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0437" wiley:location="equation/pce15042-math-0437.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><mfrac><mrow><mi mathvariant="normal">d</mi><msub><mi>A</mi><mi>l</mi></msub></mrow><mrow><mi mathvariant="normal">d</mi><msub><mi>M</mi><mi>a</mi></msub></mrow></mfrac></mrow></mrow></math> causes the height-growth optima to shift more strongly towards the value of θ <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0438" wiley:location="equation/pce15042-math-0438.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><mi>\unicode{x003B8}</mi></mrow></mrow></math> optimising d B d t <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0439" wiley:location="equation/pce15042-math-0439.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><mfrac><mrow><mi mathvariant="normal">d</mi><mi>B</mi></mrow><mrow><mi mathvariant="normal">d</mi><mi>t</mi></mrow></mfrac></mrow></mrow></math> (Supporting Information S1: Figure S2a,e) than it does under high light conditions.

Optimal LMA, ϕ <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0440" wiley:location="equation/pce15042-math-0440.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><mi>\unicode{x003D5}</mi></mrow></mrow></math> : ϕ <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0441" wiley:location="equation/pce15042-math-0441.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><mi>\unicode{x003D5}</mi></mrow></mrow></math> increased with environmental harshness, namely increasing with soil and atmospheric aridity but declining with increasing atmospheric CO 2 <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0442" wiley:location="equation/pce15042-math-0442.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><msub><mstyle><mspace width="0.1em"/><mtext>CO</mtext><mspace width="0.1em"/></mstyle><mn>2</mn></msub></mrow></mrow></math> and light availability (Figure 2).

In our model, leaf respiration increases with ϕ <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0443" wiley:location="equation/pce15042-math-0443.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><mi>\unicode{x003D5}</mi></mrow></mrow></math> while leaf turnover decreases, yielding a hump-shaped relationship between ϕ <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0444" wiley:location="equation/pce15042-math-0444.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><mi>\unicode{x003D5}</mi></mrow></mrow></math> and d B d t <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0445" wiley:location="equation/pce15042-math-0445.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><mfrac><mrow><mi mathvariant="normal">d</mi><mi>B</mi></mrow><mrow><mi mathvariant="normal">d</mi><mi>t</mi></mrow></mfrac></mrow></mrow></math> . However, because ϕ <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0446" wiley:location="equation/pce15042-math-0446.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><mi>\unicode{x003D5}</mi></mrow></mrow></math> does not mediate the response of P ¯ <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0447" wiley:location="equation/pce15042-math-0447.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><mover accent="true"><mi>P</mi><mo>\unicode{x000AF}</mo></mover></mrow></mrow></math> to the environment (Figure 4), the ϕ <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0448" wiley:location="equation/pce15042-math-0448.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><mi>\unicode{x003D5}</mi></mrow></mrow></math> maximising d B d t <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0449" wiley:location="equation/pce15042-math-0449.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><mfrac><mrow><mi mathvariant="normal">d</mi><mi>B</mi></mrow><mrow><mi mathvariant="normal">d</mi><mi>t</mi></mrow></mfrac></mrow></mrow></math> is also invariant to the environment. Nevertheless, ϕ <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0450" wiley:location="equation/pce15042-math-0450.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><mi>\unicode{x003D5}</mi></mrow></mrow></math> -environment relationships emerge as changes in the height of the d B d t <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0451" wiley:location="equation/pce15042-math-0451.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><mfrac><mrow><mi mathvariant="normal">d</mi><mi>B</mi></mrow><mrow><mi mathvariant="normal">d</mi><mi>t</mi></mrow></mfrac></mrow></mrow></math> curve shift the balance between the relative value of biomass production and d A l d M a <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0452" wiley:location="equation/pce15042-math-0452.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><mfrac><mrow><mi mathvariant="normal">d</mi><msub><mi>A</mi><mi>l</mi></msub></mrow><mrow><mi mathvariant="normal">d</mi><msub><mi>M</mi><mi>a</mi></msub></mrow></mfrac></mrow></mrow></math> , which decreases monotonically with ϕ <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0453" wiley:location="equation/pce15042-math-0453.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><mi>\unicode{x003D5}</mi></mrow></mrow></math> . Put simply, the advantageous effect of low ϕ <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0454" wiley:location="equation/pce15042-math-0454.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><mi>\unicode{x003D5}</mi></mrow></mrow></math> on plant construction outweighs the combined carbon losses to respiration and turnover when d B d t <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0455" wiley:location="equation/pce15042-math-0455.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><mfrac><mrow><mi mathvariant="normal">d</mi><mi>B</mi></mrow><mrow><mi mathvariant="normal">d</mi><mi>t</mi></mrow></mfrac></mrow></mrow></math> is high.

Optimal wood density, ρ <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0456" wiley:location="equation/pce15042-math-0456.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><mi>\unicode{x003C1}</mi></mrow></mrow></math> : Increasing ρ <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0457" wiley:location="equation/pce15042-math-0457.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><mi>\unicode{x003C1}</mi></mrow></mrow></math> reduces the maximum rate of embolism incurred by a given proportional loss of conductivity (Equation 12) but also incurs an increasing construction cost of sapwood and bark. Thus, ρ <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0458" wiley:location="equation/pce15042-math-0458.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><mi>\unicode{x003C1}</mi></mrow></mrow></math> was predicted to be larger in more arid environments or environments with lower atmospheric CO 2 <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0459" wiley:location="equation/pce15042-math-0459.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><msub><mstyle><mspace width="0.1em"/><mtext>CO</mtext><mspace width="0.1em"/></mstyle><mn>2</mn></msub></mrow></mrow></math> (Figure 2) where more negative optimal ψ leaf <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0460" wiley:location="equation/pce15042-math-0460.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><msub><mi>\unicode{x003C8}</mi><mtext>leaf</mtext></msub></mrow></mrow></math> , and thus embolism risk are encountered. Counter-intuitively, even though the optimal ψ leaf <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0461" wiley:location="equation/pce15042-math-0461.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><msub><mi>\unicode{x003C8}</mi><mtext>leaf</mtext></msub></mrow></mrow></math> also becomes more negative as g s <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0462" wiley:location="equation/pce15042-math-0462.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><msub><mi>g</mi><mi>s</mi></msub></mrow></mrow></math> and A net <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0463" wiley:location="equation/pce15042-math-0463.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><msub><mi>A</mi><mi>net</mi></msub></mrow></mrow></math> increase with light availability, potentially necessitating greater resistance to embolism via higher ρ <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0464" wiley:location="equation/pce15042-math-0464.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><mi>\unicode{x003C1}</mi></mrow></mrow></math> (as indicated by the positive shift in the d B d t <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0465" wiley:location="equation/pce15042-math-0465.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><mfrac><mrow><mi mathvariant="normal">d</mi><mi>B</mi></mrow><mrow><mi mathvariant="normal">d</mi><mi>t</mi></mrow></mfrac></mrow></mrow></math> -optimising ρ <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0466" wiley:location="equation/pce15042-math-0466.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><mi>\unicode{x003C1}</mi></mrow></mrow></math> in Figure S2c), we found that ρ <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0467" wiley:location="equation/pce15042-math-0467.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><mi>\unicode{x003C1}</mi></mrow></mrow></math> declines with light availability. This occurred because carbon assimilation increased with increasing light availability, reducing the relative importance of maximising net biomass production and causing the ρ <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0468" wiley:location="equation/pce15042-math-0468.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><mi>\unicode{x003C1}</mi></mrow></mrow></math> optimising d H d t <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0469" wiley:location="equation/pce15042-math-0469.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><mfrac><mrow><mi mathvariant="normal">d</mi><mi>H</mi></mrow><mrow><mi mathvariant="normal">d</mi><mi>t</mi></mrow></mfrac></mrow></mrow></math> to shift more strongly towards lower values of ρ <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0470" wiley:location="equation/pce15042-math-0470.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><mi>\unicode{x003C1}</mi></mrow></mrow></math> which maximise the rate of leaf area deployment (i.e., d A l d M a <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0471" wiley:location="equation/pce15042-math-0471.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><mfrac><mrow><mi>d</mi><msub><mi>A</mi><mi>l</mi></msub></mrow><mrow><mi>d</mi><msub><mi>M</mi><mi>a</mi></msub></mrow></mfrac></mrow></mrow></math> ) (Supporting Information S1: Figure S2c,g).

Optimal maximum sapwood-specific conductivity, K s , max <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0472" wiley:location="equation/pce15042-math-0472.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><msub><mi>K</mi><mrow><mi>s</mi><mo>,</mo><mi>max</mi></mrow></msub></mrow></mrow></math> : K s , max <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0473" wiley:location="equation/pce15042-math-0473.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><msub><mi>K</mi><mrow><mi>s</mi><mo>,</mo><mi>max</mi></mrow></msub></mrow></mrow></math> directly traded-off with P 50 <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0474" wiley:location="equation/pce15042-math-0474.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><msub><mi>P</mi><mn>50</mn></msub></mrow></mrow></math> such that, all else being equal, a plant with a higher K s , max <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0475" wiley:location="equation/pce15042-math-0475.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><msub><mi>K</mi><mrow><mi>s</mi><mo>,</mo><mi>max</mi></mrow></msub></mrow></mrow></math> had a greater k l , max <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0476" wiley:location="equation/pce15042-math-0476.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><msub><mi>k</mi><mrow><mi>l</mi><mo>,</mo><mi>max</mi></mrow></msub></mrow></mrow></math> but experienced greater embolism at less negative ψ leaf <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0477" wiley:location="equation/pce15042-math-0477.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><msub><mi>\unicode{x003C8}</mi><mtext>leaf</mtext></msub></mrow></mrow></math> . Importantly, because K s , max <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0478" wiley:location="equation/pce15042-math-0478.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><msub><mi>K</mi><mrow><mi>s</mi><mo>,</mo><mi>max</mi></mrow></msub></mrow></mrow></math> does not influence d A l d M a <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0479" wiley:location="equation/pce15042-math-0479.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><mfrac><mrow><mi mathvariant="normal">d</mi><msub><mi>A</mi><mi>l</mi></msub></mrow><mrow><mi mathvariant="normal">d</mi><msub><mi>M</mi><mi>a</mi></msub></mrow></mfrac></mrow></mrow></math> , the K s , max <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0480" wiley:location="equation/pce15042-math-0480.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><msub><mi>K</mi><mrow><mi>s</mi><mo>,</mo><mi>max</mi></mrow></msub></mrow></mrow></math> optimising d H d t <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0481" wiley:location="equation/pce15042-math-0481.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><mfrac><mrow><mi mathvariant="normal">d</mi><mi>H</mi></mrow><mrow><mi mathvariant="normal">d</mi><mi>t</mi></mrow></mfrac></mrow></mrow></math> is equivalent to the K s , max <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0482" wiley:location="equation/pce15042-math-0482.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><msub><mi>K</mi><mrow><mi>s</mi><mo>,</mo><mi>max</mi></mrow></msub></mrow></mrow></math> optimising d B d t <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0483" wiley:location="equation/pce15042-math-0483.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><mfrac><mrow><mi mathvariant="normal">d</mi><mi>B</mi></mrow><mrow><mi mathvariant="normal">d</mi><mi>t</mi></mrow></mfrac></mrow></mrow></math> (Figure 4). We observed contrasting responses of K s , max <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0484" wiley:location="equation/pce15042-math-0484.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><msub><mi>K</mi><mrow><mi>s</mi><mo>,</mo><mi>max</mi></mrow></msub></mrow></mrow></math> to ψ soil <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0485" wiley:location="equation/pce15042-math-0485.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><msub><mi>\unicode{x003C8}</mi><mtext>soil</mtext></msub></mrow></mrow></math> and D <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0486" wiley:location="equation/pce15042-math-0486.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><mi>D</mi></mrow></mrow></math> , with K s , max <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0487" wiley:location="equation/pce15042-math-0487.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><msub><mi>K</mi><mrow><mi>s</mi><mo>,</mo><mi>max</mi></mrow></msub></mrow></mrow></math> declining in the former case and increasing in the latter case (Figure 2). Contrasting responses emerged because variation in K s , max <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0488" wiley:location="equation/pce15042-math-0488.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><msub><mi>K</mi><mrow><mi>s</mi><mo>,</mo><mi>max</mi></mrow></msub></mrow></mrow></math> impacted the net carbon assimilation and hydraulic cost differently. In the case of ψ soil <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0489" wiley:location="equation/pce15042-math-0489.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><msub><mi>\unicode{x003C8}</mi><mtext>soil</mtext></msub></mrow></mrow></math> , the predicted response emerged because hydraulic costs rose more rapidly as K s , max <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0490" wiley:location="equation/pce15042-math-0490.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><msub><mi>K</mi><mrow><mi>s</mi><mo>,</mo><mi>max</mi></mrow></msub></mrow></mrow></math> increased in drier soils, such that maximum leaf-level P ¯ <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0491" wiley:location="equation/pce15042-math-0491.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><mover accent="true"><mi>P</mi><mo>\unicode{x000AF}</mo></mover></mrow></mrow></math> occurred at lower K s , max <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0492" wiley:location="equation/pce15042-math-0492.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><msub><mi>K</mi><mrow><mi>s</mi><mo>,</mo><mi>max</mi></mrow></msub></mrow></mrow></math> (Supporting Information S1: Figure S4). In other words, K s , max <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0493" wiley:location="equation/pce15042-math-0493.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><msub><mi>K</mi><mrow><mi>s</mi><mo>,</mo><mi>max</mi></mrow></msub></mrow></mrow></math> was predicted to decline to improve embolism resistance in the xylem in moisture-stressed locations. In the case of D <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0494" wiley:location="equation/pce15042-math-0494.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><mi>D</mi></mrow></mrow></math> , the predicted increasing response emerged because the marginal benefit to A net <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0495" wiley:location="equation/pce15042-math-0495.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><msub><mi>A</mi><mi>net</mi></msub></mrow></mrow></math> of increasing K s , max <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0496" wiley:location="equation/pce15042-math-0496.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><msub><mi>K</mi><mrow><mi>s</mi><mo>,</mo><mi>max</mi></mrow></msub></mrow></mrow></math> was much greater under high atmospheric aridity than low, meaning that maximum leaf-level P ¯ <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0497" wiley:location="equation/pce15042-math-0497.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><mover accent="true"><mi>P</mi><mo>\unicode{x000AF}</mo></mover></mrow></mrow></math> occurred at higher K s , max <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0498" wiley:location="equation/pce15042-math-0498.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><msub><mi>K</mi><mrow><mi>s</mi><mo>,</mo><mi>max</mi></mrow></msub></mrow></mrow></math> (Supporting Information S1: Figure S4). In other words, for plants experiencing dry air, more rapid water transport is more beneficial to growth, provided sufficient soil water is available to maintain the transpiration stream.

3.4 Individual trait responses to height

In our model, individuals do not experience competition and thus increasing height has no effect on the environmental conditions experienced by plants. Instead, the response of traits to ontogeny primarily emerges through the effect of height on d B d t <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0499" wiley:location="equation/pce15042-math-0499.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><mfrac><mrow><mi mathvariant="normal">d</mi><mi>B</mi></mrow><mrow><mi mathvariant="normal">d</mi><mi>t</mi></mrow></mfrac></mrow></mrow></math> on a per-leaf basis (i.e., the total biomass growth of the plant divided by A l <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0500" wiley:location="equation/pce15042-math-0500.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><msub><mi>A</mi><mi>l</mi></msub></mrow></mrow></math> ). As height increases, the cost of respiration and turnover in nonphotosynthetic tissues as a fraction of leaf-level assimilation also increases. Moreover, the hydraulic cost of water transport increases with the sapwood volume as height increases, all else being equal. Thus, in our model, the predicted trait responses to height reflect functional adjustments to declining leaf-level efficiency as plants grow taller.

It follows from our above analysis of trait-environment predictions, then, that for traits influencing the relative allocation and construction cost of plant tissues (i.e.,  θ , ρ , ϕ <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0501" wiley:location="equation/pce15042-math-0501.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><mi>\unicode{x003B8}</mi><mo>,</mo><mi>\unicode{x003C1}</mi><mo>,</mo><mi>\unicode{x003D5}</mi></mrow></mrow></math> ), increasing height caused the trait value optimising height-growth to move towards the construction of more expensive tissues (e.g., more dense wood; Figure 3a–l, viewing each subpanel vertically) which minimise losses to tissue turnover.

The very minor, yet positive, response of K s , max <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0502" wiley:location="equation/pce15042-math-0502.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><msub><mi>K</mi><mrow><mi>s</mi><mo>,</mo><mi>max</mi></mrow></msub></mrow></mrow></math> to height has a more simple explanation (Figure 3m–p). In our model, K s , max <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0503" wiley:location="equation/pce15042-math-0503.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><msub><mi>K</mi><mrow><mi>s</mi><mo>,</mo><mi>max</mi></mrow></msub></mrow></mrow></math> does not influence the construction cost of tissues and therefore exerts influence on height-growth rates exclusively through P ¯ net <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0504" wiley:location="equation/pce15042-math-0504.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><msub><mover accent="true"><mi>P</mi><mo>\unicode{x000AF}</mo></mover><mi>net</mi></msub></mrow></mrow></math> . As plants grow taller, k l , max <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0505" wiley:location="equation/pce15042-math-0505.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><msub><mi>k</mi><mrow><mi>l</mi><mo>,</mo><mi>max</mi></mrow></msub></mrow></mrow></math> declines, reflecting an increase in the length of the hydraulic pathway (Equation 13). Thus, plants are predicted to compensate for greater heights by increasing K s , max <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0506" wiley:location="equation/pce15042-math-0506.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><msub><mi>K</mi><mrow><mi>s</mi><mo>,</mo><mi>max</mi></mrow></msub></mrow></mrow></math> . Opposing this shift towards greater K s , max <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0507" wiley:location="equation/pce15042-math-0507.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><msub><mi>K</mi><mrow><mi>s</mi><mo>,</mo><mi>max</mi></mrow></msub></mrow></mrow></math> is the fact that taller plants experience greater damage to the hydraulic pathway per unit of lost conductivity (Equation 9), and must therefore balance the benefit of more rapid water transport against the need for safer xylem (i.e., a more negative P 50 <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0508" wiley:location="equation/pce15042-math-0508.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><msub><mi mathvariant="normal">P</mi><mn>50</mn></msub></mrow></mrow></math> ) at greater heights, explaining the low sensitivity of this trait to plant height.

3.5 Species turnover across soil moisture gradients

In the analyses above, we have explored how trait optima shifts across environmental gradients considering one trait at a time. However, selection operates on fitness integrated across multiple traits. Using the same framework as above, we jointly optimised height-growth rate across the four traits to evaluate whole-plant functional strategy. In general, traits responded in the same direction as when optimised in isolation, but we observed much greater sensitivity in K s , max <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0509" wiley:location="equation/pce15042-math-0509.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><msub><mi>K</mi><mrow><mi>s</mi><mo>,</mo><mi>max</mi></mrow></msub></mrow></mrow></math> and a much-reduced sensitivity in the remaining traits (Figure 5). Presumably, this occurred because flexibility in other traits allowed P 50 <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0510" wiley:location="equation/pce15042-math-0510.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><msub><mi>P</mi><mn>50</mn></msub></mrow></mrow></math> , via K s , max <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0511" wiley:location="equation/pce15042-math-0511.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><msub><mi>K</mi><mrow><mi>s</mi><mo>,</mo><mi>max</mi></mrow></msub></mrow></mrow></math> to more closely track presiding soil water conditions. For example, at the driest end of the gradient (−3 MPa), the optimum P 50 <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0512" wiley:location="equation/pce15042-math-0512.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><msub><mi>P</mi><mn>50</mn></msub></mrow></mrow></math> was slightly more negative at −3.68 MPa and at the wettest end of the gradient (−0.5 MPa), the optimum P 50 <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0513" wiley:location="equation/pce15042-math-0513.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><msub><mi>P</mi><mn>50</mn></msub></mrow></mrow></math> was −0.62 MPa. Considering the above predictions in terms of trait covariance, the multi-trait optimisation predicted that K s , max <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0514" wiley:location="equation/pce15042-math-0514.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><msub><mi>K</mi><mrow><mi>s</mi><mo>,</mo><mi>max</mi></mrow></msub></mrow></mrow></math> negatively co-varies with θ , ρ <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0515" wiley:location="equation/pce15042-math-0515.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><mi>\unicode{x003B8}</mi><mo>,</mo><mi>\unicode{x003C1}</mi></mrow></mrow></math> and ϕ <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0516" wiley:location="equation/pce15042-math-0516.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><mi>\unicode{x003D5}</mi></mrow></mrow></math> , that ρ <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0517" wiley:location="equation/pce15042-math-0517.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><mi>\unicode{x003C1}</mi></mrow></mrow></math> positively co-varies with θ <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0518" wiley:location="equation/pce15042-math-0518.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><mi>\unicode{x003B8}</mi></mrow></mrow></math> and ϕ <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0519" wiley:location="equation/pce15042-math-0519.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><mi>\unicode{x003D5}</mi></mrow></mrow></math> and that θ <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0520" wiley:location="equation/pce15042-math-0520.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><mi>\unicode{x003B8}</mi></mrow></mrow></math> positively co-varies with ϕ <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0521" wiley:location="equation/pce15042-math-0521.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><mi>\unicode{x003D5}</mi></mrow></mrow></math> , consistent with a global-scale bivariate trait-trait analysis (Mencuccini et al., 2019).

Details are in the caption following the image
Species turnover across a soil moisture gradient emerges from height-growth rate optimisation of multiple traits simultaneously. Joint optimisation of four traits, being the sapwood to leaf area ratio ( θ <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0522" wiley:location="equation/pce15042-math-0522.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><mi>\unicode{x003B8}</mi></mrow></mrow></math> ), wood density ( ρ <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0523" wiley:location="equation/pce15042-math-0523.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><mi>\unicode{x003C1}</mi></mrow></mrow></math> ), leaf mass per area ( ϕ <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0524" wiley:location="equation/pce15042-math-0524.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><mi>\unicode{x003D5}</mi></mrow></mrow></math> ), and sapwood conductivity ( K s , max <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0525" wiley:location="equation/pce15042-math-0525.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><msub><mi>K</mi><mrow><mi mathvariant="normal">s</mi><mo>,</mo><mi>max</mi></mrow></msub></mrow></mrow></math> ) reveals a coordinated shift toward drought-resilient traits in drier environment (i.e., higher θ , ϕ <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0526" wiley:location="equation/pce15042-math-0526.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><mi>\unicode{x003B8}</mi><mo>,</mo><mi>\unicode{x003D5}</mi></mrow></mrow></math> and ρ <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0527" wiley:location="equation/pce15042-math-0527.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><mi>\unicode{x003C1}</mi></mrow></mrow></math> and lower K s , max <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0528" wiley:location="equation/pce15042-math-0528.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><msub><mi>K</mi><mrow><mi mathvariant="normal">s</mi><mo>,</mo><mi>max</mi></mrow></msub></mrow></mrow></math> ) (panels a-f). Generating height-growth rate curves for four hypothetical species optimised to different points along the soil moisture gradient (i.e., psi soil * <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0529" wiley:location="equation/pce15042-math-0529.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><msubsup><mi>psi</mi><mtext>soil</mtext><mo>\unicode{x0002A}</mo></msubsup></mrow></mrow></math> reveals a trade-off between the maximum achievable growth rate and tolerance for dry soils) (panel g). [Color figure can be viewed at wileyonlinelibrary.com]

Our optimisation approach can also yield insights into how the emergent properties of plant communities respond to turnover in plant strategies across soil water availability gradients. We found that, regardless of which environment a plant is optimised to grow in, all plants grow faster when water is more plentiful (Figure 5). However, plants that are optimised to grow in wet soils achieve the highest growth rates. This is because they have traits which maximise water transport rates and minimise tissues construction costs, including high K s , max <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0530" wiley:location="equation/pce15042-math-0530.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><msub><mi>K</mi><mrow><mi>s</mi><mo>,</mo><mi>max</mi></mrow></msub></mrow></mrow></math> and low ϕ , ρ <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0531" wiley:location="equation/pce15042-math-0531.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><mi>\unicode{x003D5}</mi><mo>,</mo><mi>\unicode{x003C1}</mi></mrow></mrow></math> and θ <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0532" wiley:location="equation/pce15042-math-0532.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><mi>\unicode{x003B8}</mi></mrow></mrow></math> . However, species with such traits are also predicted to have narrow fundamental niches (as defined by the range of conditions where they can maintain positive growth), because their growth rate declines rapidly as soils dry. In drier soils, species with low K s , max <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0533" wiley:location="equation/pce15042-math-0533.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><msub><mi>K</mi><mrow><mi>s</mi><mo>,</mo><mi>max</mi></mrow></msub></mrow></mrow></math> and high ϕ , ρ <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0534" wiley:location="equation/pce15042-math-0534.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><mi>\unicode{x003D5}</mi><mo>,</mo><mi>\unicode{x003C1}</mi></mrow></mrow></math> and θ <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0535" wiley:location="equation/pce15042-math-0535.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><mi>\unicode{x003B8}</mi></mrow></mrow></math> are expected to dominate because they can maintain positive growth rates even under drought (i.e., have wider environmental tolerances; Figure 5).

4 DISCUSSION

Recent advances in plant optimality theory that link stomatal behaviour and gas exchange with plant hydraulics are enabling a mechanistic link between plant traits and the environment. By integrating a stomatal optimisation criterion into an existing height-growth model, we made predictions for how four key traits (LMA, SA:LA, sapwood-specific conductivity and wood density) should shift to optimise plant performance over a range of environmental gradients, including soil moisture. Broadly speaking, these predictions qualitatively match empirical trait–environment patterns (Table 1). Moreover, we predicted how these traits should shift throughout individual ontogeny. Our framework establishes the groundwork for future modelling work seeking to understand how the trait composition of vegetation, and thus, ecosystem processes, are likely to respond to future changes in water availability (Feeley & Zuleta, 2022; Harrison et al., 2021; Sakschewski et al., 2015).

4.1 Trait responses to soil moisture

We predicted an increase in wood density as soil moisture declined, in line with many (Onoda et al., 2010; Pickup et al., 2005; Sakschewski et al., 2015; Towers et al., 2023) but not all (Chave et al., 2009; Swenson & Enquist, 2007) large-scale empirical studies. This prediction emerges from our modification of the hydraulic cost function implemented in Bartlett et al. (2019), whereby we assumed that permanent damage to the xylem imposed by xylem cavitation declines with wood density, which is consistent with empirical evidence showing that denser wood has a higher resistance to xylem implosion (Hacke et al., 2001). In principle, the same outcome would emerge if wood density instead had a negative relationship with P 50 <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0536" wiley:location="equation/pce15042-math-0536.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><msub><mi>P</mi><mn>50</mn></msub></mrow></mrow></math> ; the critical process underlying the predicted response of wood density to soil moisture is that minimising hydraulic costs becomes more beneficial relative to minimising stem construction costs in drier conditions.

As soils dried, wood density for 1 m tall seedlings was predicted to increase 35-fold from 47.8 <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0537" wiley:location="equation/pce15042-math-0537.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><mn>47.8</mn></mrow></mrow></math> to 1651 kg m 3 <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0538" wiley:location="equation/pce15042-math-0538.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><mn>1651</mn><mspace width="0.33em"/><msup><mstyle><mspace width="0.1em"/><mtext>kg m</mtext><mspace width="0.1em"/></mstyle><mrow><mo>\unicode{x02212}</mo><mn>3</mn></mrow></msup></mrow></mrow></math> , approximating the smallest and largest observed values in Australia but far exceeding observed fold-changes at a community level (Figure 6; Towers et al. (2023)). Our primary goal in this article was to explore directional relationships in traits based on simplified trait trade-offs, and in this sense, we have captured empirical patterns. However, the exaggerated response of ρ <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0539" wiley:location="equation/pce15042-math-0539.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><mi>\unicode{x003C1}</mi></mrow></mrow></math> to the environment suggests that key processes which are currently missing in the model may help constrain the range of predicted values. For example, the risk of stem breakage due to wind load would put upward selective pressure on wood density (Rifai et al., 2016). Similarly, if denser wood was more resistant to stem damage inflicted by pathogen attacks and other causes, this would also cause wood density to be larger (Larjavaara & Muller-Landau, 2010 and references within). The high values of wood density that we predicted, especially for taller plants, probably relate to uncertainty regarding the parameters B h k s , 1 <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0540" wiley:location="equation/pce15042-math-0540.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><msub><mi>B</mi><mrow><mi>h</mi><mi>k</mi><mi>s</mi><mo>,</mo><mn>1</mn></mrow></msub></mrow></mrow></math> and B h k s , 2 <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0541" wiley:location="equation/pce15042-math-0541.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><mo>\unicode{x02212}</mo><msub><mi>B</mi><mrow><mi>h</mi><mi>k</mi><mi>s</mi><mo>,</mo><mn>2</mn></mrow></msub></mrow></mrow></math> , which represent the cavitation-related maximum yearly rate of sapwood loss and the trade-off slope between B h k s , 1 <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0542" wiley:location="equation/pce15042-math-0542.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><msub><mi>B</mi><mrow><mi>h</mi><mi>k</mi><mi>s</mi><mo>,</mo><mn>1</mn></mrow></msub></mrow></mrow></math> and wood density, respectively. Indeed, although much is known about how xylem conductance relates to stem water potential, little is known about how loss of conductivity translates into a holistic cost to the plant in absolute carbon units (Bartlett et al., 2019; Potkay & Feng, 2023), and in this case, we simply selected a value of B h k s , 1 <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0543" wiley:location="equation/pce15042-math-0543.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><msub><mi>B</mi><mrow><mi>h</mi><mi>k</mi><mi>s</mi><mo>,</mo><mn>1</mn></mrow></msub></mrow></mrow></math> which best captured realistic values of the four focal traits (Figure 6). Moreover, persistent exposure to the dry end of our simulated gradient (i.e., −3 MPa) represents a recurring, extreme drought which, in the absence of covariation in other focal traits such as K s , max <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0545" wiley:location="equation/pce15042-math-0545.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><msub><mi>K</mi><mrow><mi>s</mi><mo>,</mo><mi>max</mi></mrow></msub></mrow></mrow></math> , potentially explains the unrealistically high values of ρ <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0546" wiley:location="equation/pce15042-math-0546.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><mi>\unicode{x003C1}</mi></mrow></mrow></math> that we predicted via our single-trait optimisation (Figures 2 and 5).

Details are in the caption following the image
Simulated focal trait sensitivity to soil moisture relative to the distribution of empirical observations. The red points represent the minimum and maximum simulated value of each trait across the soil moisture gradient depicted in Figure 2. Blue fields are the scaled density plots of empirical observations for each of the four focal traits for woody plants in the AusTraits trait database (Falster et al., 2021). [Color figure can be viewed at wileyonlinelibrary.com]

In a similar manner to wood density, our model predicted a shift towards denser, more expensive leaves (i.e., higher LMA) in drier soils. This outcome is consistent with empirical studies at a variety of spatial scales (Dwyer et al., 2014; Niinemets, 2001; Towers et al., 2023; Wright et al., 2004). Notably, the predicted response of LMA to soil moisture emerges without influencing the plant hydraulic pathway. Instead, it emerges from the well-recognised trade-off between leaf dry mass per area and the rate of leaf turnover (Wright et al., 2004). Put simply, when photosynthetic rates decline with soil moisture, plants are incentivised to invest carbon in longer-lasting tissues to avoid frequent leaf turnover, even if this leads to a more expensive upfront cost to growth. In reality, LMA could also influence plant hydraulics in addition to the above-mentioned effect, and this could help to explain the relatively low sensitivity that we predicted in this trait (Figure 6). For example, while we predicted an approximately two-fold increase in LMA for a 1ṁ tall plant along the simulated soil moisture gradient, a 10-fold shift in mean LMA has been observed across a continental rainfall gradient in Australia (Towers et al., 2023). Possible mechanisms include the involvement of LMA in maintaining leaf rigidity under dry conditions (Poorter et al., 2009), as well as determining the conductivity of the leaf hydraulic pathway (Simonin et al., 2012). Additionally, higher light in harsh environments selects for higher leaf nitrogen per area, and thus LMA (Dong et al., 2017), an effect not captured in our current model formulation.

Maximum sapwood-specific conductivity declined with a drying soil, as expected from theory and directly encoded in a model trade-off between sapwood conductivity (i.e., sapwood efficiency) and vulnerability of the xylem to cavitation (Equation 15). Evidence for the hydraulic safety-efficiency trade-off is mixed, with some studies demonstrating moderate correlations between maximum sapwood-specific conductivity and P 50 <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0547" wiley:location="equation/pce15042-math-0547.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><msub><mi>P</mi><mn>50</mn></msub></mrow></mrow></math> (Liu et al., 20192021), whereas others demonstrate little to no correlation between these variables (Gleason et al., 2016). However, triangular distributions in empirical data demonstrates that, while species can exhibit a range of combinations of maximum sapwood-specific conductivity and P 50 <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0548" wiley:location="equation/pce15042-math-0548.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><msub><mi>P</mi><mn>50</mn></msub></mrow></mrow></math> , achieving both high safety and efficiency appears very uncommon, implying the presence an upper boundary for the combined value of these traits (Gleason et al., 2016; Liu et al., 2021). As for species which fall towards the lower corner of the safety-efficiency space (i.e., low safety and efficiency), emerging evidence suggests that these taxa occur more often in mesic, nonseasonal environments, because neither high maximum sapwood-specific conductivity nor low P 50 <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0549" wiley:location="equation/pce15042-math-0549.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><msub><mi>P</mi><mn>50</mn></msub></mrow></mrow></math> are required in these locations (Liu et al., 2021). Thus, our prediction may be more appropriate for seasonal climates where selection co-optimises these traits.

Another important consideration is that, while most analyses of the hydraulic safety-efficiency trade-off, including this analysis, focus on xylem efficiency at the sapwood-level, recent evidence suggests that the trade-off is mediated instead at the individual conduit level (Franklin et al., 2023). The implication of this is that the safety-efficiency trade-off may be weaker at the sapwood-level because maximum sapwood-specific conductivity is determined by both the conductivity of an individual conduit ( K c <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0550" wiley:location="equation/pce15042-math-0550.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><msub><mi>K</mi><mi>c</mi></msub></mrow></mrow></math> ) and the number of conduits, which can vary independently (i.e., by moving along both the S and F axis described in Zanne et al., 2010). Conceptually, then, our model can be considered a special case of optimising K c <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0551" wiley:location="equation/pce15042-math-0551.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><msub><mi>K</mi><mi>c</mi></msub></mrow></mrow></math> when the lumen fraction is fixed. Further modelling work could investigate a link between maximum sapwood-specific conductivity and plant construction costs in addition to the vulnerability of xylem to cavitation.

Our analysis of SA:LA builds on existing work investigating the theoretical relationship between this trait and ψ soil <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0552" wiley:location="equation/pce15042-math-0552.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><msub><mi>\unicode{x003C8}</mi><mtext>soil</mtext></msub></mrow></mrow></math> (Westoby et al., 2012). Westoby et al. (2012) predicted that SA:LA responds in a hump-shaped manner to soil water availability, because the initial benefit to plant revenue of increasing sapwood area to maintain the transpiration stream is countered by the increasing resistivity of soil as ψ soil <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0553" wiley:location="equation/pce15042-math-0553.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><msub><mi>\unicode{x003C8}</mi><mtext>soil</mtext></msub></mrow></mrow></math> declines. Our study also reveals a nonmonotonic response of SA:LA to ψ soil <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0554" wiley:location="equation/pce15042-math-0554.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><msub><mi>\unicode{x003C8}</mi><mtext>soil</mtext></msub></mrow></mrow></math> but for different reasons. Against our expectation, the SA:LA maximising d B d t <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0555" wiley:location="equation/pce15042-math-0555.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><mfrac><mrow><mi mathvariant="normal">d</mi><mi>B</mi></mrow><mrow><mi mathvariant="normal">d</mi><mi>t</mi></mrow></mfrac></mrow></mrow></math> initially declined as soils dried because plants responded by reducing sapwood area and making ψ leaf <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0556" wiley:location="equation/pce15042-math-0556.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><msub><mi>\unicode{x003C8}</mi><mtext>leaf</mtext></msub></mrow></mrow></math> more negative, enlarging the sapwood area only when ψ soil <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0557" wiley:location="equation/pce15042-math-0557.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><msub><mi>\unicode{x003C8}</mi><mtext>soil</mtext></msub></mrow></mrow></math> approached ψ crit <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0558" wiley:location="equation/pce15042-math-0558.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><msub><mi>\unicode{x003C8}</mi><mtext>crit</mtext></msub></mrow></mrow></math> at the driest end of the moisture gradient. The reason why this occurred is that our model assumes hydraulic costs are proportional to sapwood volume. In other words, a loss of conductivity in a larger sapwood volume represents embolism in a greater absolute number of conduits. As such, the potential marginal benefit of a greater sapwood area in drier conditions is more than offset by greater hydraulic costs. The multiplication of proportional conductivity loss by sapwood volume is a chosen aspect of our representation of the hydraulic cost function in carbon units, but this implicitly assumes that hydraulic costs are associated with rebuilding the xylem (Gauthey et al., 2022). Hydraulic recovery may, however, be achieved via other mechanisms including bubble dissolution and xylem refilling (Klein et al., 2018) which, if less costly than rebuilding xylem, would potentially increase the selective advantage of higher SA:LA in drier environments, as is observed in nature (Towers et al., 2023), although we note that evidence for these mechanisms remains limited.

4.2 Trait responses to other environmental variables

A key outcome of our model is that it predicted the diverging response of maximum sapwood-specific conductivity to increasing soil dryness (i.e., declining) and atmospheric aridity (i.e., increasing) that is often observed in nature (Gleason et al., 2013; Olson et al., 2020). Increasing maximum sapwood-specific conductivity with atmospheric aridity emerged as a prediction from our model because it is more economical for plants to satisfy the additional evaporative demand for water by increasing the sapflow rate and minimising the water potential gradient between soil and the canopy. For brevity, we do not consider the interactive effect of environmental variables in this analysis. However, as hypothesised in other studies (e.g., Gleason et al., 2013), the positive response of maximum sapwood-specific conductivity to atmospheric aridity is likely the strongest when soil water is plentiful and the cost of low embolism resistance (due to a less negative P 50 <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0559" wiley:location="equation/pce15042-math-0559.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><msub><mi mathvariant="normal">P</mi><mn>50</mn></msub></mrow></mrow></math> ) is minimal. It is less clear how maximum sapwood-specific conductivity would respond to the combined effect of increasing soil and atmospheric dryness where the importance of embolism resistance conferred by more negative P 50 <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0560" wiley:location="equation/pce15042-math-0560.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><msub><mi mathvariant="normal">P</mi><mn>50</mn></msub></mrow></mrow></math> becomes more prominent. Nevertheless, given that these conditions are likely to emerge in some locations under climate change, this point is worthy of further investigation.

Although our model adequately predicted the qualitative response of LMA to soil moisture observed in nature, it yielded contrasting responses to nature for light availability (Ellsworth & Reich, 1992; Neyret et al., 2016; Poorter et al., 2009). There are number of possible reasons for this discrepancy. First, it has been suggested that declining LMA towards lower light conditions reflects a shifting allocation of leaf biomass towards a greater deployment of leaf area so as to maximise light interception (Poorter et al., 2009). In our model, however, total leaf area is fixed to plant height, and as such, there is no benefit to light interception conferred to the plant by declining LMA. Second, and perhaps more importantly, we did not consider adaptive responses in leaf photosynthetic capacity which would cause the optimum LMA to increase with light availability, as plants invest in greater photosynthetic capacity per unit area to better utilise available light (Dong et al., 2022; Poorter et al., 2009).

4.3 Comparison of height growth- and biomass growth-based outcomes

Simulating the response of traits to the environment when optimising biomass growth, as opposed to height growth, provided new insight into the potential importance of considering processes related to tissue allocation and construction costs when modelling certain traits. For example, whereas the predicted response of K s , max <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0561" wiley:location="equation/pce15042-math-0561.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><msub><mi>K</mi><mrow><mi>s</mi><mo>,</mo><mi>max</mi></mrow></msub></mrow></mrow></math> to the environment emerges exclusively through its effect on d B d t <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0562" wiley:location="equation/pce15042-math-0562.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><mfrac><mrow><mi>d</mi><mi>B</mi></mrow><mrow><mi>d</mi><mi>t</mi></mrow></mfrac></mrow></mrow></math> (and is thus independent of allocation and construction), the emergent environmental sensitivity of optimum LMA is entirely dependent on the effect of LMA on leaf area deployment efficiency ( d A l d M a <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0563" wiley:location="equation/pce15042-math-0563.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><mfrac><mrow><mi>d</mi><msub><mi>A</mi><mi>l</mi></msub></mrow><mrow><mi>d</mi><msub><mi>M</mi><mi>a</mi></msub></mrow></mfrac></mrow></mrow></math> ). In other words, without this latter process included in the model, we predicted no sensitivity in LMA when optimising d B d t <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0564" wiley:location="equation/pce15042-math-0564.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><mfrac><mrow><mi>d</mi><mi>B</mi></mrow><mrow><mi>d</mi><mi>t</mi></mrow></mfrac></mrow></mrow></math> (Figure 4, Supporting Information S1: S1–S3). For the remaining traits, the interplay of d B d t <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0565" wiley:location="equation/pce15042-math-0565.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><mfrac><mrow><mi>d</mi><mi>B</mi></mrow><mrow><mi>d</mi><mi>t</mi></mrow></mfrac></mrow></mrow></math> and d A l d M a <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0566" wiley:location="equation/pce15042-math-0566.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><mfrac><mrow><mi>d</mi><msub><mi>A</mi><mi>l</mi></msub></mrow><mrow><mi>d</mi><msub><mi>M</mi><mi>a</mi></msub></mrow></mfrac></mrow></mrow></math> led to occasionally contrasting responses depending on which optimality criterion was used (e.g., by comparing the positive light availability response of the biomass-growth-based optima for wood density against the negative response for the height-growth-based optima (Supporting Information S1: Figure S2c), which further demonstrates the importance of considering processes related to size-growth in future trait optimality analyses (Bartlett et al., 2019; Falster et al., 2018).

4.4 Trait responses to height

Our model accurately predicted the qualitative direction of observed trait responses to ontogenetic shifts in plant height, providing a potentially important explanation for trait variation occurring within species and independently of the environment. This work builds upon recent theoretical research developing hypotheses for how traits such as LMA should respond to increasing plant height (Falster et al., 2018; Westoby et al., 2022).

One of the key insights from our analysis is our prediction that wood density increases as plants grow taller, consistent with empirical observations based on radial wood cores (Hietz et al., 2013; Rungwattana & Hietz, 2018). The most commonly held explanation for this phenomenon is that the mechanical stability conferred by denser wood becomes more beneficial as plants grow larger and are exposed to a higher risk of mortality from wind stress (Hietz et al., 2013). Our model provides an alternative explanation based on the increasing cost of turnover and maintenance of support tissues as a fraction of net biomass production as height increases. As such, our model suggests that ontogenetic shifts in wood density may be evolutionary advantageous even for trees recruiting in the understorey where the risk of wind exposure is relatively low (Moore et al., 2018).

Surprisingly, however, we predicted only limited sensitivity in the response of maximum sapwood-specific conductivity to height, somewhat at odds with the strong empirical evidence for xylem conduit widening that is observed when comparing plants of increasing height at a fixed point along the stem (Olson et al., 2020). As described in Section 3.4, the reason that this occurred is that increasing maximum sapwood-specific conductivity also cause P 50 <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0567" wiley:location="equation/pce15042-math-0567.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><msub><mi mathvariant="normal">P</mi><mn>50</mn></msub></mrow></mrow></math> to become less negative, thereby limiting the extent to which the effect of greater heights on water transport rate can be offset through variation in the former trait. We note, however, that our representation of the xylem pathway is relatively simple and does not include a number of processes which could have influenced the simulated outcomes, such as tip-to-base widening of xylem conduits (Olson et al., 2021), segmentation of vulnerability along the hydraulic pathway, and the gravimetric potential of water in the water column (Choat et al., 2005; McDowell, Phillips, et al., 2002; Sperry & Love, 2015).

It is also interesting to note that while we predicted an increase in SA:LA with increasing height, in keeping with empirical data from individuals of Douglas fir (Pseudotsuga menziesii var. menziesii) (McDowell, Phillips, et al., 2002), large-scale analyses have revealed the opposite trend when regressed against maximum height (Liu et al., 2019; Mencuccini et al., 2019). This highlights an important distinction between maximum plant stature and plant ontogeny. Indeed, while our model predicts that all plants should, in general, increase their allocation to sapwood as they grow, selection for greater maximum stature in highly productive environments (e.g., non energy-limited high rainfall environments) (Moles et al., 2009) will also favour traits which maximise leaf area deployment (i.e., low SA:LA) to over-top competitors, as supported by our analysis of SA:LA in response to soil moisture (Figures 2a and 5.)

4.5 Species turnover across soil moisture gradients and implications for dynamic global vegetation models (DGVMs)

Our exploration of species turnover across a soil moisture gradient offers a useful illustrative case for the importance of adaptation in DGVMs. Specifically, in keeping with a productivity-drought tolerance trade-off from classical ecological theory (Smith & Huston, 1989), we demonstrate how the joint optimal plant strategy conferring high maximum growth rate at the wetter end of the gradient is gradually replaced by strategies favouring drought tolerance at the drier end of the gradient (i.e., the ability to maintain positive growth rates under more negative soil water potentials). Importantly, in the absence of trait optimisation along this gradient (e.g., along the height-growth rate curve for ψ soil * = 2 <math altimg="urn:x-wiley:01407791:media:pce15042:pce15042-math-0568" wiley:location="equation/pce15042-math-0568.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><msubsup><mi>\unicode{x003C8}</mi><mi>soil</mi><mo>\unicode{x0002A}</mo></msubsup><mo>\unicode{x0003D}</mo><mo>\unicode{x02212}</mo><mn>2</mn></mrow></mrow></math> in Figure 5), we show that our growth model would underpredict the potential growth rates that could be achieved by a more optimal strategy in the wettest conditions, while simultaneously predicting nonpositive growth rates under conditions in which a more drought-tolerant species could persist. Given the link between size-growth rates and ecosystem function, height-growth simulations based on an EEO framework may be a useful tool for predicting forest growth trajectories and potential ecosystem provisioning within DGVMs, in regions where limited trait information is available (Russell et al., 2010; Senior et al., 2022; Towers & Dwyer, 2021).

4.6 Future directions and limitations

Our analysis based on height-growth rates extends upon carbon acquisition-based EEO models by directly considering the translation of acquired carbon into future ability to acquire resources and progress towards reproductive maturity. Although height growth is likely a closer approximation of plant fitness than carbon acquisition (Potkay & Feng, 2023), we note that our model omits other potentially important demographic rates which may be relevant here, including mortality risk and reproductive output. For example, taxa with greater wood density tend to have more negative lethal water potentials (Liang et al., 2021), and including this information in our model could further mediate selection towards higher wood densities in drier locations.

Perhaps the most significant opportunity for advancing the scope of the model presented here is the inclusion of a dynamic water balance and size-structured competition for water amongst individuals, akin to the light competition process that has been analysed in plant previously (Falster et al., 2017). Like many other EEO approaches (Dong et al., 2022; Trugman et al., 2019; Wang et al., 2023; Xu et al., 2021), trait optima emerged in our model for hypothetical plant individuals experiencing the environment in isolation. In reality, however, the trait optima that emerge under competition may be different due to game-theoretic interactions amongst strategies (Falster et al., 2017; Franklin et al., 2020). Importantly, including competition for water would permit coexistence amongst trait optima, thereby allowing inferences about the effect of water availability on functional diversity in the maintenance of species diversity (Harrison et al., 2021; Lindh et al., 2014).

ACKNOWLEDGEMENTS

Discussions with M. Westoby, J. Dwyer, A. Pitman, and I. Wright enhanced the scope and quality of the analysis. Isaac R. Towers was supported by a grant from Eucalypt Australia to Vesk and Falster, Andrew O'Reilly-Nugent was supported by an ARC grant to Falster & Vesk (DP200100555). Manon Sabot acknowledges support from the Australian Research Council (ARC) Centre of Excellence for Climate Extremes (CE170100023), as well as an ARC Discovery Grant (DP190101823). We thank the two reviewers of the manuscript for their insightful feedback. Open access publishing facilitated by University of New South Wales, as part of the Wiley - University of New South Wales agreement via the Council of Australian University Librarians.

    CONFLICT OF INTEREST STATEMENT

    The authors declare no conflict of interest.

    DATA AVAILABILITY STATEMENT

    The code used to conduct the analysis is available on GitHub (https://github.com/itowers1/individual_height_growth_rate). The plant package is available on GitHub (https://github.com/traitecoevo/plant/). Data are available from AusTraits (https://zenodo.org/records/3568429) and can be accessed using the AusTraits R package.

      The full text of this article hosted at iucr.org is unavailable due to technical difficulties.