Effect of ethanolic extraction, thermal vacuum concentration, ultrafiltration, and spray drying on polyphenolic compounds of tropical highland blackberry (Rubus adenotrichos Schltdl.) by-product
Ana M. Quirós
Centro Nacional de Ciencia y Tecnología de Alimentos (CITA), Universidad de Costa Rica (UCR), Ciudad Universitaria Rodrigo Facio, San José, Costa Rica
Search for more papers by this authorOscar G. Acosta
Centro Nacional de Ciencia y Tecnología de Alimentos (CITA), Universidad de Costa Rica (UCR), Ciudad Universitaria Rodrigo Facio, San José, Costa Rica
Search for more papers by this authorEduardo Thompson
Escuela de Tecnología de Alimentos, Universidad de Costa Rica, Ciudad Universitaria Rodrigo Facio, San José, Costa Rica
Search for more papers by this authorCorresponding Author
Marvin Soto
Centro Nacional de Ciencia y Tecnología de Alimentos (CITA), Universidad de Costa Rica (UCR), Ciudad Universitaria Rodrigo Facio, San José, Costa Rica
Correspondence
Marvin Soto, Centro Nacional de Ciencia y Tecnología de Alimentos (CITA), Universidad de Costa Rica (UCR), Ciudad Universitaria Rodrigo Facio, código postal 11501-2060, San José, Costa Rica.
Email: [email protected]
Search for more papers by this authorAna M. Quirós
Centro Nacional de Ciencia y Tecnología de Alimentos (CITA), Universidad de Costa Rica (UCR), Ciudad Universitaria Rodrigo Facio, San José, Costa Rica
Search for more papers by this authorOscar G. Acosta
Centro Nacional de Ciencia y Tecnología de Alimentos (CITA), Universidad de Costa Rica (UCR), Ciudad Universitaria Rodrigo Facio, San José, Costa Rica
Search for more papers by this authorEduardo Thompson
Escuela de Tecnología de Alimentos, Universidad de Costa Rica, Ciudad Universitaria Rodrigo Facio, San José, Costa Rica
Search for more papers by this authorCorresponding Author
Marvin Soto
Centro Nacional de Ciencia y Tecnología de Alimentos (CITA), Universidad de Costa Rica (UCR), Ciudad Universitaria Rodrigo Facio, San José, Costa Rica
Correspondence
Marvin Soto, Centro Nacional de Ciencia y Tecnología de Alimentos (CITA), Universidad de Costa Rica (UCR), Ciudad Universitaria Rodrigo Facio, código postal 11501-2060, San José, Costa Rica.
Email: [email protected]
Search for more papers by this authorFunding information: Vicerrectoría de Investigación, Universidad de Costa Rica, Grant/Award Number: 735-B3-102
Abstract
Tropical highland blackberry by-product (BBP) has high amounts of polyphenols including ellagitannins (ET) and anthocyanins (ATC). Information of the effect of different operations on ET is scarce. In this study, pseudo-first and first order kinetic models and response surface methodology were applied to optimize the extraction of polyphenols from BBP using ethanol, a food grade solvent. Retention of total polyphenols, ET and ATC was analyzed considering their contents before and after the application of thermal vacuum concentration, ultrafiltration, and spray drying. The optimal conditions for extraction were: a 3.4 solvent/BBP ratio, 57.1% ethanol, 60.0°C, and 120 min extraction time. Thermal vacuum concentration showed a higher retention of ET. A higher purity of ET was accomplished with ultrafiltration. These results provide the basis for further research on the development of a powder enriched with polyphenols, mainly ET, from BBP for food and pharmacological purposes.
Practical applications
Ellagitannins (ET) are a group of polyphenols found in tropical highland blackberries grown in Costa Rica, mainly in their seeds that are discarded as a by-product (BBP) during blackberry processing. The production process of an ingredient with high amounts of ET has not been widely reported. In this study, modeling and optimization of an ethanolic extraction of polyphenols from BBP, and the effects of thermal vacuum concentration, ultrafiltration and spray drying on polyphenolic compounds were analyzed. This information will lead to further experiments on the effective recovery of ET in order to produce a nutraceutical product, which is not only complementary to the diet, but may also aid in the prevention and treatment of diseases, or an ingredient to be used in the production of functional foods.
REFERENCES
- Acosta, O., Vaillant, F., Pérez, A. M., & Dornier, M. (2014). Potential of ultrafiltration for separation and purification of ellagitannins in blackberry (Rubus adenotrichus Schltdl.) juice. Separation and Purification Technology, 125, 120–125.
- Acosta-Montoya, Ó., Vaillant, F., Cozzano, S., Mertz, C., Pérez, A. M., & Castro, M. V. (2010). Phenolic content and antioxidant capacity of tropical highland blackberry (Rubus adenotrichus Schltdl.) during three edible maturity stages. Food Chemistry, 119(4), 1497–1501.
- AOAC. (2005). Official methods of analysis of the Association of Official Analytical Chemists. Washington DC: Author.
- Araujo-Diaz, S. B., Leyva-Porras, C., Aguirre-Bañuelos, P., Álvarez-Salas, C., & Saavedra-Leos, Z. (2017). Evaluation of the physical properties and conservation of the antioxidants content, employing inulin and maltodextrin in the spray drying of blueberry juice. Carbohydrate Polymers, 167, 317–325.
- Azofeifa, G., Quesada, S., Boudard, F., Morena, M., Cristol, J. P., Pérez, A. M., & Michel, A. (2013). Antioxidant and anti-inflammatory in vitro activities of phenolic compounds from tropical highland blackberry (Rubus adenotrichos). Journal of Agricultural and Food Chemistry, 61(24), 5798–5804.
- Azofeifa, G., Quesada, S., Pérez, A. M., Vaillant, F., & Michel, A. (2015). Pasteurization of blackberry juice preserves polyphenol-dependent inhibition for lipid peroxidation and intracellular radicals. Journal of Food Composition and Analysis, 42, 56–62.
- Bakowska-Barczak, A. M., & Kolodziejczyk, P. P. (2011). Black currant polyphenols: Their storage stability and microencapsulation. Industrial Crops and Products, 34(2), 1301–1309.
- Banerjee, J., Singh, R., Vijayaraghavan, R., MacFarlane, D., Patti, A. F., & Arora, A. (2017). Bioactives from fruit processing wastes: Green approaches to valuable chemicals. Food Chemistry, 225, 10–22.
- Bucić-Kojić, A., Planinić, M., Tomas, S., Bilić, M., & Velić, D. (2007). Study of solid–liquid extraction kinetics of total polyphenols from grape seeds. Journal of Food Engineering, 81(1), 236–242.
- Castañeda-Ovando, A., Pacheco-Hernández, M. d. L., Páez-Hernández, M. E., Rodríguez, J. A., & Galán-Vidal, C. A. (2009). Chemical studies of anthocyanins: A review. Food Chemistry, 113(4), 859–871.
- Cissé, M., Vaillant, F., Pallet, D., & Dornier, M. (2011). Selecting ultrafiltration and nanofiltration membranes to concentrate anthocyanins from roselle extract (Hibiscus sabdariffa L.). Food Research International, 44(9), 2607–2614.
- Conidi, C., Cassano, A., Caiazzo, F., & Drioli, E. (2017). Separation and purification of phenolic compounds from pomegranate juice by ultrafiltration and nanofiltration membranes. Journal of Food Engineering, 195, 1–13.
- Da Costa, J. P. (2017). A current look at nutraceuticals—Key concepts and future prospects. Trends in Food Science and Technology, 62, 68–78.
- Dai, J., Gupte, A., Gates, L., & Mumper, R. J. (2009). A comprehensive study of anthocyanin-containing extracts from selected blackberry cultivars: Extraction methods, stability, anticancer properties and mechanisms. Food and Chemical Toxicology, 47(4), 837–847.
- De Souza, V. B., Thomazini, M., Balieiro, J. C. D. C., & Fávaro-Trindade, C. S. (2015). Effect of spray drying on the physicochemical properties and color stability of the powdered pigment obtained from vinification byproducts of the Bordo grape (Vitis labrusca). Food and Bioproducts Processing, 93, 39–50.
- Elez Garofulić, I., Zorić, Z., Pedisić, S., & Dragović-Uzelac, V. (2017). Retention of polyphenols in encapsulated sour cherry juice in dependence of drying temperature and wall material. LWT—Food Science and Technology, 83, 110–117.
- Fernández, K., Paiva, R., & Aspé, E. (2015). Purification of grape proanthocyanidins by membrane ultrafiltration. Journal of Medical and Bioengineering, 4(3), 178–183.
10.12720/jomb.4.3.178-183 Google Scholar
- Fracassetti, D., Costa, C., Moulay, L., & Tomás-Barberán, F. A. (2013). Ellagic acid derivatives, ellagitannins, proanthocyanidins and other phenolics, vitamin C and antioxidant capacity of two powder products from camu-camu fruit (Myrciaria dubia). Food Chemistry, 139(1–4), 578–588.
- Gancel, A. L., Feneuil, A., Acosta, O., Pérez, A. M., & Vaillant, F. (2011). Impact of industrial processing and storage on major polyphenols and the antioxidant capacity of tropical highland blackberry (Rubus adenotrichus). Food Research International, 44(7), 2243–2251.
- George, S., Brat, P., Alter, P., & Amiot, M. (2005). Rapid determination of polyphenols and vitamin C in plant derived products. Journal of Agriculture and Food Chemistry, 53, 1370–1373.
- Ghafoor, K., Choi, Y. H., Jeon, J. Y., & Jo, I. H. (2009). Optimization of ultrasound-assisted extraction of phenolic compounds, antioxidants, and anthocyanins from grape (Vitis vinifera) seeds. Journal of Agricultural and Food Chemistry, 57(11), 4988–4994.
- Hager, T. J., Howard, L. R., & Prior, R. L. (2010). Processing and storage effects on the ellagitannin composition of processed blackberry products. Journal of Agricultural and Food Chemistry, 58(22), 11749–11754.
- Hoed, V. V. A. N., Clercq, N. D. E., Echim, C., Andjelkovic, M., Leber, E., & Dewettinck, K. (2008). Berry seeds: A source of specialty oils with high content of bioactives and nutritional value. Journal of Food Lipids, 16, 33–49.
10.1111/j.1745-4522.2009.01130.x Google Scholar
- Jafari, S. M., Ghalenoei, M. G., & Dehnad, D. (2017). Influence of spray drying on water solubility index, apparent density, and anthocyanin content of pomegranate juice powder. Powder Technology, 311, 59–65.
- Jiménez-Aguilar, D. M., Ortega-Regules, A. E., Lozada-Ramírez, J. D., Pérez-Pérez, M. C. I., Vernon-Carter, E. J., & Welti-Chanes, J. (2011). Color and chemical stability of spray-dried blueberry extract using mesquite gum as wall material. Journal of Food Composition and Analysis, 24(6), 889–894.
- Kaume, L., Howard, L. R., & Devareddy, L. (2012). The blackberry fruit: A review on its composition and chemistry, metabolism and bioavailability, and health benefits. Journal of Agricultural and Food Chemistry, 60, 5716–5727.
- Khan, M. K., Abert-Vian, M., Fabiano-Tixier, A. S., Dangles, O., & Chemat, F. (2010). Ultrasound-assisted extraction of polyphenols (flavanone glycosides) from orange (Citrus sinensis L.) peel. Food Chemistry, 119(2), 851–858.
- Kuck, L. S., & Noreña, C. P. Z. (2016). Microencapsulation of grape (Vitis labrusca var. Bordo) skin phenolic extract using gum Arabic, polydextrose, and partially hydrolyzed guar gum as encapsulating agents. Food Chemistry, 194, 569–576.
- Lavelli, V., Sri Harsha, P. S. C., & Spigno, G. (2016). Modelling the stability of maltodextrin-encapsulated grape skin phenolics used as a new ingredient in apple puree. Food Chemistry, 209, 323–331.
- Librán, C. M., Mayor, L., Garcia-Castello, E. M., & Vidal-Brotons, D. (2013). Polyphenol extraction from grape wastes: Solvent and pH effect. Agricultural Sciences, 4(9), 56–62.
- Machado, A. P. D. F., Pasquel-Reátegui, J. L., Barbero, G. F., & Martínez, J. (2015). Pressurized liquid extraction of bioactive compounds from blackberry (Rubus fruticosus L.) residues: A comparison with conventional methods. Food Research International, 77, 675–683.
- Mertz, C., Cheynier, V., Günata, Z., & Brat, P. (2007). Analysis of phenolic compounds in two blackberry species (Rubus glaucus and Rubus adenotrichos) by high-performance liquid chromatography with diode array detection and electrospray ion trap mass spectrometry. Journal of Agricultural and Food Chemistry, 55, 8616–8624.
- Nawaz, H., Shi, J., Mittal, G. S., & Kakuda, Y. (2006). Extraction of polyphenols from grape seeds and concentration by ultrafiltration. Separation and Purification Technology, 48(2), 176–181.
- Park, M., Cho, H., Jung, H., Lee, H., & Hwang, K. T. (2014). Antioxidant and anti-inflammatory activities of tannin fraction of the extract from black raspberry seeds compared to grape seeds. Journal of Food Biochemistry, 38(3), 259–270.
- Pinto, P. C. R., Mota, I. F., Loureiro, J. M., & Rodrigues, A. E. (2014). Membrane performance and application of ultrafiltration and nanofiltration to ethanol/water extract of Eucalyptus bark. Separation and Purification Technology, 132, 234–243.
- Roopchand, D. E., Krueger, C. G., Moskal, K., Fridlender, B., Lila, M. A., & Raskin, I. (2013). Food-compatible method for the efficient extraction and stabilization of cranberry pomace polyphenols. Food Chemistry, 141(4), 3664–3669.
- Sadilova, E., Carle, R., & Stintzing, F. C. (2007). Thermal degradation of anthocyanins and its impact on color and in vitro antioxidant capacity. Molecular Nutrition and Food Research, 51(12), 1461–1471.
- Sant'Anna, V., Brandelli, A., Marczak, L. D. F., & Tessaro, I. C. (2012). Kinetic modeling of total polyphenol extraction from grape marc and characterization of the extracts. Separation and Purification Technology, 100, 82–87.
- Soto, M., Acosta, O., Vaillant, F., & Pérez, A. (2016). Effects of mechanical and enzymatic pretreatments on extraction of polyphenols from blackberry fruits. Journal of Food Process Engineering, 39(5), 492–500.
- Tian, Y., Liimatainen, J., Alanne, A. L., Lindstedt, A., Liu, P., Sinkkonen, J., & Yang, B. (2017). Phenolic compounds extracted by acidic aqueous ethanol from berries and leaves of different berry plants. Food Chemistry, 220, 266–281.
- Tontul, I., & Topuz, A. (2017). Spray-drying of fruit and vegetable juices: Effect of drying conditions on the product yield and physical properties. Trends in Food Science and Technology, 63, 91–102.
- Tumbas Šaponjac, V., Gironés-Vilaplana, A., Djilas, S., Mena, P., Ćetković, G., Moreno, D. A., & Krunić, M. (2014). Anthocyanin profiles and biological properties of caneberry (Rubus spp.) press residues. Journal of the Science of Food and Agriculture, 94(12), 2393–2400.
- Vatai, T., Škerget, M., & Knez, Ž. (2009). Extraction of phenolic compounds from elder berry and different grape marc varieties using organic solvents and/or supercritical carbon dioxide. Journal of Food Engineering, 90(2), 246–254.
- Vieira da Silva, B., Barreira, J. C. M., & Oliveira, B. P. P. (2016). Natural phytochemicals and probiotics as bioactive ingredients for functional foods: Extraction, biochemistry and protected-delivery technologies. Trends in Food Science & Technology, 50, 144–158.
- Wolfe, K. L., Kang, X., He, X., Dong, M., Zhang, Q., & Liu, R. H. (2008). Cellular antioxidant activity of common fruits. Journal of Agricultural and Food Chemistry, 56(18), 8418–8426.
- Youssef, D., & El-Adawi, H. (2006). Study on grape seeds extraction and optimization: An approach. Journal of Applied Sciences, 6(14), 2944–2947.
- Zwietering, T. N. (1958). Suspending of solid particles in liquid agitators. Chemical Engineering Science, 4, 244–253.