Systems pharmacology-based drug discovery and active mechanism of phlorotannins for type 2 diabetes mellitus by integrating network pharmacology and experimental evaluation
Jialiang Chen
School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
Search for more papers by this authorPing Li
School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
Search for more papers by this authorShuhong Ye
School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
Search for more papers by this authorWei Li
Korean Medicine (KM) Application Center, Korea Institute of Oriental Medicine, Daegu, South Korea
Search for more papers by this authorMing Li
College of Basic Medical Science, Dalian Medical University, Dalian, China
Search for more papers by this authorCorresponding Author
Yan Ding
School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
Correspondence
Yan Ding, School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning 116034, China.
Email: [email protected]
Search for more papers by this authorJialiang Chen
School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
Search for more papers by this authorPing Li
School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
Search for more papers by this authorShuhong Ye
School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
Search for more papers by this authorWei Li
Korean Medicine (KM) Application Center, Korea Institute of Oriental Medicine, Daegu, South Korea
Search for more papers by this authorMing Li
College of Basic Medical Science, Dalian Medical University, Dalian, China
Search for more papers by this authorCorresponding Author
Yan Ding
School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
Correspondence
Yan Ding, School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning 116034, China.
Email: [email protected]
Search for more papers by this authorAbstract
Phlorotannins, polyphenolic compounds that exist only in brown algae, have an effect on T2DM. However, the structure of phlorotannins is complex and diverse, and the complex role of therapeutic targets and active compounds has not been revealed. In this study, the potential targets and pharmacological effects of phlorotannins in the treatment of T2DM were identified based on network pharmacology and enzyme activity inhibition experiment. In total, 15 phlorotannins and 53 associated targets were yielded. Among them, SRC, ESR1, AKT1, HSP90AB1, and AR were defined as core targets. 527 GO biological processes items and 101 KEGG pathways were obtained, including EGFR tyrosine kinase inhibitor resistance, thyroid hormone signaling pathway, AGE-RAGE signaling pathway in diabetic complications, and VEGF signaling pathway. Phlorotannins could enable resistance against T2DM by inflammatory, survival, gene transcription, proliferation, apoptosis, and atherosclerosis. Finally, α-glucosidase inhibition assay and molecular docking proved the effect of selected phlorotannins on T2DM.
Practical applications
Phlorotannins are a kind of polyphenol compounds that only exists in brown algae. Its structure is polymerized by aromatic precursors phloroglucinol (1,3,5-trihydroxybenzene). They have aroused great interest due to their excellent and valuable biological activities. However, the structure of phlorotannins is complex and diverse, and the complex role of therapeutic targets and active compounds has not been revealed. In this study, the potential targets and pharmacological effects of phlorotannins in the treatment of T2DM were determined basis on network pharmacology and enzyme activity inhibition experiment. In conclusion, the results showed the value of phlorotannins treating on T2DM. Moreover, this study has great significance for improving the medicinal value of phlorotannins and screening natural products for the treatment of T2DM.
CONFLICT OF INTEREST
The authors declare that they have no conflict of interest.
Open Research
DATA AVAILABILITY STATEMENT
The data that support the findings of this study are available from the corresponding author upon reasonable request.
REFERENCES
- Ahn, J., Yang, Y., Lee, K., & Choi, J. (2015). Dieckol, isolated from the edible brown algae Ecklonia cava, induces apoptosis of ovarian cancer cells and inhibits tumor xenograft growth. Journal of Cancer Research and Clinical Oncology, 141(2), 255–268. https://doi.org/10.1007/s00432-014-1819-8
- Angeli, A., Carta, F., Nocentini, A., Winum, J., Zalubovskis, R., Akdemir, A., Onnis, V., Eldehna, W. M., Capasso, C., Simone, G. D., Monti, S. M., Carradori, S., Donald, W. A., Dedhar, S., & Supuran, C. T. (2020). Carbonic anhydrase inhibitors targeting metabolism and tumor microenvironment. Metabolites, 10(10), 412–432. https://doi.org/10.3390/metabo10100412
- Araki, S., Haneda, M., Sugimoto, T., Isono, M., Isshiki, K., Kashiwagi, A., & Koya, D. (2006). Polymorphisms of the protein kinase C-beta gene (PRKCB1) accelerate kidney disease in type 2 diabetes without overt proteinuria. Diabetes Care, 29(4), 864–868. https://doi.org/10.2337/diacare.29.04.06.dc05-1723
- Barbosa, M., Lopes, G., Andrade, P. B., & Valentão, P. (2019). Bioprospecting of brown seaweeds for biotechnological applications: Phlorotannin actions in inflammation and allergy network. Trends in Food Science & Technology, 86, 153–171. https://doi.org/10.1016/j.tifs.2019.02.037
- Bardou, P., Mariette, J., Escudié, F., Djemiel, C., & Klopp, C. (2014). Jvenn: An interactive Venn diagram viewer. BMC Bioinformatics, 15(1), 293–299. https://doi.org/10.1186/1471-2105-15-293
- Bodiga, V. L., Eda, S. R., & Bodiga, S. (2014). Advanced glycation end products: Role in pathology of diabetic cardiomyopathy. Heart Failure Reviews, 19(1), 49–63. https://doi.org/10.1007/s10741-013-9374-y
- Burley, S. K., Berman, H. M., Bhikadiya, C., Bi, C., Chen, L., Di Costanzo, L., Christie, C., Dalenberg, K., Duarte, J. M., Dutta, S., Feng, Z., Ghosh, S., Goodsell, D. S., Green, R. K., Guranović, V., Guzenko, D., Hudson, B. P., Kalro, T., Liang, Y., … Zardecki, C. (2019). RCSB protein data Bank: Biological macromolecular structures enabling research and education in fundamental biology, biomedicine, biotechnology and energy. Nucleic Acids Research, 47(D1), D464–D474. https://doi.org/10.1093/nar/gky1004
- Butina, D., Segall, M. D., & Frankcombe, K. (2002). Predicting ADME properties in silico: Methods and models. Drug Discovery Today, 7(11), S83–S88. https://doi.org/10.1016/s1359-6446(02)02288-2
- Chen, G., & Guo, M. (2017). Rapid screening for α-glucosidase inhibitors from Gymnema sylvestre by affinity ultrafiltration-HPLC-MS. Frontiers in Pharmacology, 8, 228. https://doi.org/10.3389/fphar.2017.00228
- Cho, H., Doan, T., Ha, T., Kim, H., Lee, B., Pham, H., Cho, T., & Oh, W. (2019). Dereplication by high-performance liquid chromatography (HPLC) with quadrupole-time-of-flight mass spectroscopy (qTOF-MS) and antiviral activities of Phlorotannins from Ecklonia cava. Marine Drugs, 17(3), 149–166. https://doi.org/10.3390/md17030149
- Consortium, U. P. (2018). UniProt: A worldwide hub of protein knowledge. Nucleic Acids Research, 47, D506–D515. https://doi.org/10.1093/nar/gky1049
- Currie, G. M. (2018). Pharmacology, part 2: Introduction to pharmacokinetics. Journal of Nuclear Medicine Technology, 46(3), 221–230. https://doi.org/10.2967/jnmt.117.199638
- Daina, A., Michielin, O., & Zoete, V. (2019). SwissTargetPrediction: Updated data and new features for efficient prediction of protein targets of small molecules. Nucleic Acids Research, 47(W1), W357–W364. https://doi.org/10.1093/nar/gkz382
- DeFronzo, R. A., Ferrannini, E., Groop, L., Henry, R. R., Herman, W. H., Holst, J. J., Hu, F. B., Kahn, C. R., Raz, I., Shulman, G. I., Simonson, D. C., Testa, M. A., & Weiss, R. (2015). Type 2 diabetes mellitus. Nature Reviews Disease Primers, 1(41), 15019. https://doi.org/10.1038/nrdp.2015.19
- Duan, H., Khan, G. J., Shang, L., Peng, H., Hu, W., Zhang, J., Hua, J., Cassandra, A., Rashed, M. M. A., & Zhai, K. (2021). Computational pharmacology and bioinformatics to explore the potential mechanism of Schisandra against atherosclerosis. Food and Chemical Toxicology, 150, 112058. https://doi.org/10.1016/j.fct.2021.112058
- Duong, P., Tenkorang, M. A. A., Trieu, J., McCuiston, C., Rybalchenko, N., & Cunningham, R. L. (2020). Neuroprotective and neurotoxic outcomes of androgens and estrogens in an oxidative stress environment. Biology of Sex Differences, 11(1), 12–29. https://doi.org/10.1186/s13293-020-0283-1
- Eom, S., Kim, Y., & Kim, S. (2012). Antimicrobial effect of phlorotannins from marine brown algae. Food and Chemical Toxicology, 50(9), 3251–3255. https://doi.org/10.1016/j.fct.2012.06.028
- Eom, S. H., Lee, S. H., Yoon, N. Y., Jung, W. K., Jeon, Y. J., Kim, S. K., Lee, M. S., & Kim, Y. M. (2012). Alpha-glucosidase- and alpha-amylase-inhibitory activities of phlorotannins from Eisenia bicyclis. Journal of the Science of Food & Agriculture, 92(10), 2084–2090. https://doi.org/10.1002/jsfa.5585
- Erpel, F., Mateos, R., Pérez-Jiménez, J., & Pérez-Correa, J. R. (2020). Phlorotannins: From isolation and structural characterization, to the evaluation of their antidiabetic and anticancer potential. Food Research International, 137, 109589. https://doi.org/10.1016/j.foodres.2020.109589
- Gabryelska, A., Karuga, F. F., Szmyd, B., & Białasiewicz, P. (2020). HIF-1α as a mediator of insulin resistance, T2DM, and its complications: Potential links with obstructive sleep apnea. Frontiers in Physiology, 11, 1–9. https://doi.org/10.3389/fphys.2020.01035
- Glombitza, K. W., & Pauli, K. (2003). Fucols and phlorethols from the brown alga Scytothamnus australis hook. Et Harv. (Chnoosporaceae). Botanica Marina, 46(3), 315–320. https://doi.org/10.1515/BOT.2003.028
- Glombitza, K. W., & Zieprath, G. (1988). Phlorotannins from the brown alga Analipus japonicus. Planta Medica, 55(2), 171–175. https://doi.org/10.1055/s-2006-961916
10.1055/s?2006?961916 Google Scholar
- Gu, L., Lu, J., Li, Q., Wu, N., Zhang, L., Li, H., Xing, W., & Zhang, X. (2020). A network-based analysis of key pharmacological pathways of Andrographis paniculata acting on Alzheimer's disease and experimental validation. Journal of Ethnopharmacology, 251, 112488. https://doi.org/10.1016/j.jep.2019.112488
- Han, L., Fang, C., Zhu, R., Peng, Q., Li, D., & Wang, M. (2017). Inhibitory effect of phloretin on alpha-glucosidase: Kinetics, interaction mechanism and molecular docking. International Journal of Biological Macromolecules, 95, 520–527. https://doi.org/10.1016/j.ijbiomac.2016.11.089
- Harold, E. L. (1997). Alpha-glucosidase inhibitors. Endocrinology and Metabolism Clinics of North America, 26(3), 539–551. https://doi.org/10.1016/S0889-8529(05)70266-8
- Heo, S., Hwang, J., Choi, J., Han, J., Kim, H., & Jeon, Y. (2009). Diphlorethohydroxycarmalol isolated from Ishige okamurae, a brown algae, a potent α-glucosidase and α-amylase inhibitor, alleviates postprandial hyperglycemia in diabetic mice. European Journal of Pharmacology, 615(1–3), 252–256. https://doi.org/10.1016/j.ejphar.2009.05.017
- Hopkins, A. L. (2008). Network pharmacology: The next paradigm in drug discovery. Nature Chemical Biology, 4(11), 682–690. https://doi.org/10.1038/nchembio.118
- Huang, X., Liu, G., Guo, J., & Su, Z. (2018). The PI3K/AKT pathway in obesity and type 2 diabetes. International Journal of Biological Sciences, 14(11), 1483–1496. https://doi.org/10.7150/ijbs.27173
- Imran, S., Taha, M., Ismail, N. H., Kashif, S. M., Rahim, F., Jamil, W., Hariono, M., Yusuf, M., & Wahab, H. (2015). Synthesis of novel flavone hydrazones: In-vitro evaluation of alpha-glucosidase inhibition, QSAR analysis and docking studies. European Journal of Medicinal Chemistry, 105, 156–170. https://doi.org/10.1016/j.ejmech.2015.10.017
- Jeffrey, W. F., Stuart, B. S., Michael, C., George, M. T., Sean, D., & Robert, A. R. (1995). Mechanism of accelerated gastric emptying of liquids and hyperglycemia in patients with type II diabetes mellitus. Gastroenterology, 109(3), 755–765. https://doi.org/10.1016/0016-5085(95)90382-8
- Kang, C., Jin, Y. B., Lee, H., Cha, M., Sohn, E., Moon, J., Park, C., Chun, S., Jung, E., Hong, J., Kim, S. B., Kim, J., & Kim, E. (2010). Brown alga Ecklonia cava attenuates type 1 diabetes by activating AMPK and Akt signaling pathways. Food and Chemical Toxicology, 48(2), 509–516. https://doi.org/10.1016/j.fct.2009.11.004
- Kay, A. M., Simpson, C. L., & Stewart, J. A. (2016). The role of AGE/RAGE signaling in diabetes-mediated vascular calcification. Journal of Diabetes Research, 2016, 1–8. https://doi.org/10.1155/2016/6809703
- Kim, J. H., Cho, C. W., Kim, H. Y., Kim, K. T., Choi, G. S., Kim, H. H., Cho, I. S., Kwon, S. J., Choi, S. K., Yoon, J. Y., Yang, S. Y., Kang, J. S., & Kim, Y. H. (2017). Alpha-glucosidase inhibition by prenylated and lavandulyl compounds from Sophora flavescens roots and in silico analysis. International Journal of Biological Macromolecules, 102, 960–969. https://doi.org/10.1016/j.ijbiomac.2017.04.092
- Kim, J. H., Lee, S., Park, S., Park, J. S., Kim, Y. H., & Yang, S. Y. (2019). Slow-binding inhibition of tyrosinase by Ecklonia cava phlorotannins. Marine Drugs, 17(6), 359–368. https://doi.org/10.3390/md17060359
- Kim, K. C., Piao, M. J., Zheng, J., Yao, C. W., Cha, J. W., Kumara, M. H. S. R., Han, X., Kang, H. K., Lee, N. H., & Hyun, J. W. (2014). Fucodiphlorethol G purified from Ecklonia cava suppresses ultraviolet B radiation-induced oxidative stress and cellular damage. Biomolecules & Therapeutics, 22(4), 301–307. https://doi.org/10.4062/biomolther.2014.044
- Kohl, M., Wiese, S., & Warscheid, B. (2010). Cytoscape: Software for visualization and analysis of biological. Networks, 696, 291–303. https://doi.org/10.1007/978-1-60761-987-1_18
10.1007/978?1?60761?987?1_18 Google Scholar
- Koren, D., Levitt Katz, L. E., Brar, P. C., Gallagher, P. R., Berkowitz, R. I., & Brooks, L. J. (2011). Sleep architecture and glucose and insulin homeostasis in obese adolescents. Diabetes Care, 34(11), 2442–2447. https://doi.org/10.2337/dc11-1093
- Lee, S., Kang, S., Ko, S., Lee, D., & Jeon, Y. (2012). Octaphlorethol a, a novel phenolic compound isolated from a brown alga, Ishige foliacea, increases glucose transporter 4-mediated glucose uptake in skeletal muscle cells. Biochemical and Biophysical Research Communications, 420(3), 576–581. https://doi.org/10.1016/j.bbrc.2012.03.036
- Lee, S. H., Li, Y., Fatih, K., Kim, M. M., & Kim, S. K. (2009). α-Glucosidase and α-amylase inhibitory activities of phloroglucinal derivatives from edible marine brown alga, Ecklonia cava. Journal of the Science of Food & Agriculture, 89, 1552–1558. https://doi.org/10.1002/jsfa.3623
- Lee, M., Shin, T., Utsuki, T., Choi, J., Byun, D., & Kim, H. (2012). Isolation and identification of phlorotannins from Ecklonia stolonifera with antioxidant and hepatoprotective properties in tacrine-treated HepG2 cells. Journal of Agricultural and Food Chemistry, 60(21), 5340–5349. https://doi.org/10.1021/jf300157w
- Lee, S., Youn, K., Kim, D., Ahn, M., Yoon, E., Kim, O., & Jun, M. (2019). Anti-neuroinflammatory property of phlorotannins from Ecklonia cava on Aβ25-35-induced damage in PC12 cells. Marine Drugs, 17(1), 7–22. https://doi.org/10.3390/md17010007
- Li, Z., Li, Y., Overstreet, J. M., Chung, S., Niu, A., Fan, X., Wang, S., Wang, Y., Zhang, M., & Harris, R. C. (2018). Inhibition of epidermal growth factor receptor activation is associated with improved diabetic nephropathy and insulin resistance in type 2 diabetes. Diabetes, 67(9), 1847–1857. https://doi.org/10.2337/db17-1513
- Li, S., & Zhang, B. (2013). Traditional Chinese medicine network pharmacology: Theory, methodology and application. Chinese Journal of Natural Medicines, 11(2), 110–120. https://doi.org/10.1016/S1875-5364(13)60037-0
- Lin, S., Teng, J., Li, J., Sun, F., Yuan, D., & Chang, J. (2016). Association of chemerin and vascular endothelial growth factor (VEGF) with diabetic nephropathy. Medical Science Monitor, 22, 3209–3214. https://doi.org/10.12659/MSM.896781
- Lindner, V., Kim, S. K., Karas, R. H., Kuiper, G. G. J. M., Gustafsson, J., & Mendelsohn, M. E. (1998). Increased expression of estrogen receptor-beta mRNA in male blood vessels after vascular injury. Circulation Research, 83(2), 224–229. https://doi.org/10.1161/01.RES.83.2.224
- Liu, H., & Gu, L. (2012). Phlorotannins from brown algae (Fucus vesiculosus) inhibited the formation of advanced glycation endproducts by scavenging reactive carbonyls. Journal of Agricultural and Food Chemistry, 60(5), 1326–1334. https://doi.org/10.1021/jf204112f
- Ma, Z. A., Zhao, Z., & Turk, J. (2012). Mitochondrial dysfunction and β-cell failure in type 2 diabetes mellitus. Experimental Diabetes Research, 2012, 1–11. https://doi.org/10.1155/2012/703538
10.1155/2012/703538 Google Scholar
- McRobb, L. S., McGrath, K. C. Y., Tsatralis, T., Liong, E. C., Tan, J. T. M., Hughes, G., Handelsman, D. J., & Heather, A. K. (2017). Estrogen receptor control of atherosclerotic calcification and smooth muscle cell osteogenic differentiation. Arteriosclerosis, Thrombosis, and Vascular Biology, 37(6), 1127–1137. https://doi.org/10.1161/ATVBAHA.117.309054
- Meng, X. Y., Zhang, H. X., Mihaly, M., & Cui, M. (2011). Molecular docking: A powerful approach for structure-based drug discovery. Current Computer-Aided Drug Design, 7(2), 146–157. https://doi.org/10.2174/157340911795677602
- Moon, H. E., Islam, N., Ahn, B. R., Chowdhury, S. S., Sohn, H. S., Jung, H. A., & Choi, J. S. (2011). Protein tyrosine phosphatase 1B and alpha-glucosidase inhibitory phlorotannins from edible brown algae, Ecklonia stolonifera and Eisenia bicyclis. Bioscience Biotechnology and Biochemistry, 75(8), 1472–1480. https://doi.org/10.1271/bbb.110137
- Morris, G. M., Huey, R., Lindstrom, W., Sanner, M. F., Belew, R. K., Goodsell, D. S., & Olson, A. J. (2009). AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. Journal of Computational Chemistry, 30(16), 2785–2791. https://doi.org/10.1002/jcc.21256
- Mosca, E., Barcella, M., Alfieri, R., Bevilacqua, A., Canti, G., & Milanesi, L. (2012). Systems biology of the metabolic network regulated by the Akt pathway. Biotechnology Advances, 30(1), 131–141. https://doi.org/10.1016/j.biotechadv.2011.08.004
- Odenlund, M., Ekblad, E., & Nilsson, B. (2008). Stimulation of oestrogen receptor-expressing endothelial cells with oestrogen reduces proliferation of cocultured vascular smooth muscle cells. Clinical and Experimental Pharmacology and Physiology, 35(3), 245–248. https://doi.org/10.1111/j.1440-1681.2007.04870.x
- Park, S. R., Kim, J. H., Jang, H. D., Yang, S. Y., & Kim, Y. H. (2018). Inhibitory activity of minor phlorotannins from Ecklonia cava on alpha-glucosidase. Food Chemistry, 257, 128–134. https://doi.org/10.1016/j.foodchem.2018.03.013
- Park, J. Y., Kim, J. H., Kwon, J. M., Kwon, H. J., Jeong, H. J., Kim, Y. M., Kim, D., Lee, W. S., & Ryu, Y. B. (2013). Dieckol, a SARS-CoV 3CL(pro) inhibitor, isolated from the edible brown algae Ecklonia cava. Bioorganic Medicinal Chemistry, 21(13), 3730–3737. https://doi.org/10.1016/j.bmc.2013.04.026
- Parys, S., Kehraus, S., Krick, A., Glombitza, K., Carmeli, S., Klimo, K., Gerhäuser, C., & König, G. M. (2010). In vitro chemopreventive potential of fucophlorethols from the brown alga Fucus vesiculosus L. by anti-oxidant activity and inhibition of selected cytochrome P450 enzymes. Phytochemistry, 71(2–3), 221–229. https://doi.org/10.1016/j.phytochem.2009.10.020
- Patel, D. K., Kumar, R., Laloo, D., & Hemalatha, S. (2012). Diabetes mellitus: An overview on its pharmacological aspects and reported medicinal plants having antidiabetic activity. Asian Pacific Journal of Tropical Biomedicine, 2(5), 411–420. https://doi.org/10.1016/S2221-1691(12)60067-7
- Petersmann, A., Müller-Wieland, D., Müller, U. A., Landgraf, R., Nauck, M., Freckmann, G., Heinemann, L., & Schleicher, E. (2019). Definition, classification and diagnosis of diabetes mellitus. Experimental and Clinical Endocrinology & Diabetes, 127(S01), S1–S7. https://doi.org/10.1055/a-1018-9078
- Potunuru, U. R., Priya, K. V., Varsha, M. K. N. S., Mehta, N., Chandel, S., Manoj, N., Raman, T., Ramar, M., Gromiha, M. M., & Dixit, M. (2019). Amarogentin, a secoiridoid glycoside, activates AMP- activated protein kinase (AMPK) to exert beneficial vasculo-metabolic effects. Biochimica et Biophysica Acta (BBA) - General Subjects, 1863(8), 1270–1282. https://doi.org/10.1016/j.bbagen.2019.05.008
- Risso, G., Blaustein, M., Pozzi, B., Mammi, P., & Srebrow, A. (2015). Akt/PKB: One kinase, many modifications. Biochemical Journal, 468(2), 203–214. https://doi.org/10.1042/BJ20150041
- Ronald, C. W. M., Claudia, H. T. T., Wang, Y., Andrea, O. L., Hu, C., Yang, X., Vincent, L., Alfred, W. H. C., Janice, S. K. H., Chow, C. C., Peter, C. Y. T., Jia, W., Maggie, C. Y. N., So, W. Y., & Juliana, C. N. C. (2010). Genetic variants of the protein kinase C-beta 1 gene and development of end-stage renal disease in patients with type 2 diabetes. JAMA: The Journal of the American Medical Association, 304(8), 881–889. https://doi.org/10.1001/jama.2010.1191
- Ru, J., Li, P., Wang, J., Zhou, W., Li, B., Huang, C., Li, P., Guo, Z., Tao, W., Yang, Y., Xu, X., Li, Y., Wang, Y., & Yang, L. (2014). TCMSP: A database of systems pharmacology for drug discovery from herbal medicines. Journal of Cheminformatics, 6(1), 1–6. https://doi.org/10.1186/1758-2946-6-13
- Safran, M., Dalah, I., Alexander, J., Rosen, N., Iny Stein, T., Shmoish, M., Nativ, N., Bahir, I., Doniger, T., Krug, H., Sirota-Madi, A., Olender, T., Golan, Y., Stelzer, G., Harel, A., & Lancet, D. (2010). GeneCards version 3: The human gene integrator. Database, 2010, baq020. https://doi.org/10.1093/database/baq020
- Sailler, B., & Glombitza, K. W. (1999). Phlorethols and fucophlorethols from the brown alga Cystophora retroflexa. Phytochemistry, 50(5), 869–881. https://doi.org/10.1016/S0031-9422(98)00643-8
- Salar, U., Taha, M., Khan, K. M., Ismail, N. H., Imran, S., Perveen, S., Gul, S., & Wadood, A. (2016). Syntheses of new 3-thiazolyl coumarin derivatives, in vitro α-glucosidase inhibitory activity, and molecular modeling studies. European Journal of Medicinal Chemistry, 122, 196–204. https://doi.org/10.1016/j.ejmech.2016.06.037
- Schram, M. T., Sep, S. J. S., van der Kallen, C. J., Dagnelie, P. C., Koster, A., Schaper, N., Henry, R. M. A., & Stehouwer, C. D. A. (2014). The Maastricht study: An extensive phenotyping study on determinants of type 2 diabetes, its complications and its comorbidities. European Journal of Epidemiology, 29(6), 439–451. https://doi.org/10.1007/s10654-014-9889-0
- Shen, H., Cook, K., Gee, H. E., & Hau, E. (2020). Hypoxia, metabolism, and the circadian clock: New links to overcome radiation resistance in high-grade gliomas. Journal of Experimental & Clinical Cancer Research, 39(1), 129–142. https://doi.org/10.1186/s13046-020-01639-2
- Shrestha, S., Zhang, W., & Smid, S. D. (2021). Phlorotannins: A review on biosynthesis, chemistry and bioactivity. Food Bioscience, 39, 100832. https://doi.org/10.1016/j.fbio.2020.100832
- Suh, Y. J., Kim, S., Kim, S. H., Park, J., Lim, H. A., Park, H. J., Choi, H., Ng, D., Lee, M. K., & Nam, M. (2013). Combined genome-wide linkage and association analyses of fasting glucose level in healthy twins and families of Korea. Journal of Korean Medical Science, 28(3), 415–423. https://doi.org/10.3346/jkms.2013.28.3.415
- Szklarczyk, D., Gable, A. L., Lyon, D., Junge, A., Wyder, S., Huerta-Cepas, J., Simonovic, M., Doncheva, N. T., Morris, J. H., Bork, P., Jensen, L. J., & Mering, C. V. (2019). STRING v11: Protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Research, 47(D1), D607–D613. https://doi.org/10.1093/nar/gky1131
- Tao, W., Xu, X., Wang, X., Li, B., Wang, Y., Li, Y., & Yang, L. (2013). Network pharmacology-based prediction of the active ingredients and potential targets of Chinese herbal Radix Curcumae formula for application to cardiovascular disease. Journal of Ethnopharmacology, 145(1), 1–10. https://doi.org/10.1016/j.jep.2012.09.051
- Trinh, B., Staerk, D., & Jager, A. K. (2016). Screening for potential alpha-glucosidase and alpha-amylase inhibitory constituents from selected Vietnamese plants used to treat type 2 diabetes. Journal of Ethnopharmacology, 186, 189–195. https://doi.org/10.1016/j.jep.2016.03.060
- Walters, W. P., & Murcko, M. A. (2002). Prediction of ‘drug-likeness’. Advanced Drug Delivery Reviews, 54(3), 255–271. https://doi.org/10.1016/s0169-409x(02)00003-0
- Wang, H., Tan, H., Zhan, W., Song, L., Zhang, D., Chen, X., Lin, Z., Wang, W., Yang, Y., Wang, L., Bei, W., & Guo, J. (2021). Molecular mechanism of Fufang Zhenzhu Tiaozhi capsule in the treatment of type 2 diabetes mellitus with nonalcoholic fatty liver disease based on network pharmacology and validation in minipigs. Journal of Ethnopharmacology, 274, 114056. https://doi.org/10.1016/j.jep.2021.114056
- Wang, Z. Z., Yang, J., Sun, X. D., Ma, C. Y., Gao, Q. B., Ding, L., & Liu, H. M. (2019). Probing the binding mechanism of substituted pyridine derivatives as effective and selective lysine-specific demethylase 1 inhibitors using 3D-QSAR, molecular docking and molecular dynamics simulations. Journal of Biomolecular Structure & Dynamics, 37(13), 3482–3495. https://doi.org/10.1080/07391102.2018.1518158
- Wishart, D. S., Feunang, Y. D., Guo, A. C., Lo, E. J., Marcu, A., Grant, J. R., Sajed, T., Johnson, D., Li, C., Sayeeda, Z., Assempour, N., Iynkkaran, I., Liu, Y., Maciejewski, A., Gale, N., Wilson, A., Chin, L., Cummings, R., Le, D., … Wilson, M. (2018). DrugBank 5.0: A major update to the DrugBank database for 2018. Nucleic Acids Research, 46(D1), D1074–D1082. https://doi.org/10.1093/nar/gkx1037
- Xie, X., Chen, C., & Fu, X. (2021). Screening α-glucosidase inhibitors from four edible brown seaweed extracts by ultra-filtration and molecular docking. LWT- Food Science and Technology, 138(2), 110654. https://doi.org/10.1016/j.lwt.2020.110654
- Xu, X., Zhang, W., Huang, C., Li, Y., Yu, H., Wang, Y., Duan, J., & Ling, Y. (2012). A novel chemometric method for the prediction of human oral bioavailability. International Journal of Molecular Sciences, 13(6), 6964–6982. https://doi.org/10.3390/ijms13066964
- Yoon, N. Y., Eom, T., Kim, M., & Kim, S. (2009). Inhibitory effect of phlorotannins isolated from Ecklonia cava on mushroom tyrosinase activity and melanin formation in mouse B16F10 melanoma cells. Journal of Agricultural and Food Chemistry, 57(10), 4124–4129. https://doi.org/10.1021/jf900006f
- Yuan, Y., Zhang, J., Fan, J., James, C., Shen, P., Lia, Y., & Zhang, C. (2018). Microwave assisted extraction of phenolic compounds from four economic brown macroalgae species and evaluation of their antioxidant activities and inhibitory effects on α-amylase, α-glucosidase, pancreatic lipase and tyrosinase. Food Research International, 113, 288–297. https://doi.org/10.1016/j.foodres.2018.07.021
- Yukiko, O., Saki, T., Satomi, K., Kenji, T., Gen, Y., Ryohei, Y., Tohru, K., Norihisa, T., Tomomi, S., Hajime, M., Anke, L., Charles, R. T., Yoshinao, K., Taisen, I., & Shinichi, M. (2018). Functional distinctions associated with the diversity ofsex steroid hormone receptors ESR and AR. Journal of Steroid Biochemistry & Molecular Biology, 184, 38–46. https://doi.org/10.1016/j.jsbmb.2018.06.002
- Zhao, C., Yang, C., Liu, B., Lin, L., Sarker, S. D., Nahar, L., Yu, H., Cao, H., & Xiao, J. (2018). Bioactive compounds from marine macroalgae and their hypoglycemic benefits. Trends in Food Science & Technology, 72, 1–12. https://doi.org/10.1016/j.tifs.2017.12.001
- Zhou, Y., Zhou, B., Pache, L., Chang, M., Khodabakhshi, A. H., Tanaseichuk, O., Benner, C., & Chanda, S. K. (2019). Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nature Communications, 10(1), 1523. https://doi.org/10.1038/s41467-019-09234-6