Amazonian fruits with potential effects on COVID-19 by inflammaging modulation: A narrative review
Corresponding Author
Maria F. Manica-Cattani
Open University Foundation for the Third Age (FUnATI), Manaus, Amazonas, Brazil
FSG University Center (FSG), Nutrition School, Caxias do Sul, Rio Grande do Sul, Brazil
Correspondence
Maria F. Manica-Cattani, Third Age Open University (UnATI), 1048 Jose Aloysio Brugger Av – Jardim America, Caxias do Sul, RS, Brazil.
Email: [email protected]
Ivana B. M. da Cruz, Post-Graduate Program in Pharmacology, Department of Physiology and Pharmacology, Federal University of Santa Maria (UFSM), Santa Maria, RS, Brazil.
Email: [email protected]
Search for more papers by this authorAna L. Hoefel
FSG University Center (FSG), Nutrition School, Caxias do Sul, Rio Grande do Sul, Brazil
Search for more papers by this authorVerônica F. Azzolin
Open University Foundation for the Third Age (FUnATI), Manaus, Amazonas, Brazil
Search for more papers by this authorMarco A. Echart Montano
Open University Foundation for the Third Age (FUnATI), Manaus, Amazonas, Brazil
Search for more papers by this authorIvo E. da Cruz Jung
Open University Foundation for the Third Age (FUnATI), Manaus, Amazonas, Brazil
Search for more papers by this authorEuler E. Ribeiro
Open University Foundation for the Third Age (FUnATI), Manaus, Amazonas, Brazil
Search for more papers by this authorVitória F. Azzolin
Open University Foundation for the Third Age (FUnATI), Manaus, Amazonas, Brazil
Search for more papers by this authorCorresponding Author
Ivana B. M. da Cruz
Post-Graduate Program in Pharmacology, Department of Physiology and Pharmacology, Federal University of Santa Maria (UFSM), Santa Maria, Rio Grande do Sul, Brazil
Post-Graduate Program in Gerontology, Federal University of Santa Maria (UFSM), Santa Maria, Rio Grande do Sul, Brazil
Correspondence
Maria F. Manica-Cattani, Third Age Open University (UnATI), 1048 Jose Aloysio Brugger Av – Jardim America, Caxias do Sul, RS, Brazil.
Email: [email protected]
Ivana B. M. da Cruz, Post-Graduate Program in Pharmacology, Department of Physiology and Pharmacology, Federal University of Santa Maria (UFSM), Santa Maria, RS, Brazil.
Email: [email protected]
Search for more papers by this authorCorresponding Author
Maria F. Manica-Cattani
Open University Foundation for the Third Age (FUnATI), Manaus, Amazonas, Brazil
FSG University Center (FSG), Nutrition School, Caxias do Sul, Rio Grande do Sul, Brazil
Correspondence
Maria F. Manica-Cattani, Third Age Open University (UnATI), 1048 Jose Aloysio Brugger Av – Jardim America, Caxias do Sul, RS, Brazil.
Email: [email protected]
Ivana B. M. da Cruz, Post-Graduate Program in Pharmacology, Department of Physiology and Pharmacology, Federal University of Santa Maria (UFSM), Santa Maria, RS, Brazil.
Email: [email protected]
Search for more papers by this authorAna L. Hoefel
FSG University Center (FSG), Nutrition School, Caxias do Sul, Rio Grande do Sul, Brazil
Search for more papers by this authorVerônica F. Azzolin
Open University Foundation for the Third Age (FUnATI), Manaus, Amazonas, Brazil
Search for more papers by this authorMarco A. Echart Montano
Open University Foundation for the Third Age (FUnATI), Manaus, Amazonas, Brazil
Search for more papers by this authorIvo E. da Cruz Jung
Open University Foundation for the Third Age (FUnATI), Manaus, Amazonas, Brazil
Search for more papers by this authorEuler E. Ribeiro
Open University Foundation for the Third Age (FUnATI), Manaus, Amazonas, Brazil
Search for more papers by this authorVitória F. Azzolin
Open University Foundation for the Third Age (FUnATI), Manaus, Amazonas, Brazil
Search for more papers by this authorCorresponding Author
Ivana B. M. da Cruz
Post-Graduate Program in Pharmacology, Department of Physiology and Pharmacology, Federal University of Santa Maria (UFSM), Santa Maria, Rio Grande do Sul, Brazil
Post-Graduate Program in Gerontology, Federal University of Santa Maria (UFSM), Santa Maria, Rio Grande do Sul, Brazil
Correspondence
Maria F. Manica-Cattani, Third Age Open University (UnATI), 1048 Jose Aloysio Brugger Av – Jardim America, Caxias do Sul, RS, Brazil.
Email: [email protected]
Ivana B. M. da Cruz, Post-Graduate Program in Pharmacology, Department of Physiology and Pharmacology, Federal University of Santa Maria (UFSM), Santa Maria, RS, Brazil.
Email: [email protected]
Search for more papers by this authorAbstract
The COVID-19 pandemic had a great impact on the mortality of older adults and, chronic non- transmissible diseases (CNTDs) patients, likely previous inflammaging condition that is common in these subjects. It is possible that functional foods could attenuate viral infection conditions such as SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2), the causal agent of COVID-19 pandemic. Previous evidence suggested that some fruits consumed by Amazonian Diet from Pre-Colombian times could present relevant proprieties to decrease of COVID-19 complications such as oxidative-cytokine storm. In this narrative review we identified five potential Amazonian fruits: açai berry (Euterpe oleracea), camu-camu (Myrciaria dubia), cocoa (Theobroma cacao), Brazil nuts (Bertholletia excelsa), and guaraná (Paullinia cupana). Data showed that these Amazonian fruits present antioxidant, anti-inflammatory and other immunomodulatory activities that could attenuate the impact of inflammaging states that potentially decrease the evolution of COVID-19 complications. The evidence compiled here supports the complementary experimental and clinical studies exploring these fruits as nutritional supplement during COVID-19 infection.
Practical applications
These fruits, in their natural form, are often limited to their region, or exported to other places in the form of frozen pulp or powder. But there are already some companies producing food supplements in the form of capsules, in the form of oils and even functional foods enriched with these fruits. This practice is common in Brazil and tends to expand to the international market.
CONFLICT OF INTEREST
The authors declare they have no conflict of interest.
Open Research
DATA AVAILABILITY STATEMENT
The data that support the findings of this study are openly available in PubMed at https://pubmed.ncbi.nlm.nih.gov/.
REFERENCES
- Abou-Ismail, M. Y., Diamond, A., Kapoor, S., Arafah, Y., & Nayak, L. (2020). The hypercoagulable state in COVID-19: Incidence, pathophysiology, and management. Thrombosis Research, 194, 101–115.
- Afonso Da Costa, P., Ballus, C. A., Teixeira Filho, J., & Teixeira Godoy, H. (2011). Fatty acids profile of pulp and nuts of brazilian fruits Perfil de ácidos graxos de polpa e castanhas de frutas brasileiras. Food Science and Technology, 31, 950–954.
- Annweiler, C., Hanotte, B., Grandin De l'Eprevier, C., Sabatier, J. M., Lafaie, L., & Célarier, T. (2020). Vitamin D and survival in COVID-19 patients: A quasi-experimental study. Journal of Steroid Biochemistry and Molecular Biology, 204, 105771. https://doi.org/10.1016/j.jsbmb.2020.105771
- Arantes, L. P., Machado, M. L., Zamberlan, D. C., Da Silveira, T. L., Da Silva, T. C., da Cruz, I. B. M., Ribeiro, E. E., Aschner, M., & Soares, F. A. A. (2018). Mechanisms involved in anti-aging effects of guarana (Paullinia cupana) in Caenorhabditis elegans. Brazilian Journal of Medical and Biological Research, 51, e7552.
- Assmann, C. E., Weis, G. C. C., da Rosa, J. R., Bonadiman, B. D. S. R., De Oliveira Alves, A., Schetinger, M. R. C., Ribeiro, E. E., Morsch, V. M. M., & Da Cruz, I. B. M. (2021). Amazon-derived nutraceuticals: Promises to mitigate chronic inflammatory states and neuroinflammation. Neurochemistry International, 148, 105085.
- Azevêdo, J. C. S., Borges, K. C., Genovese, M. I., Correia, R. T. P., & Vattem, D. A. (2015). Neuroprotective effects of dried camu-camu (Myrciaria dubia HBK McVaugh) residue in C. elegans. Food Research International, 73, 135–141.
- Bahadoran, Z., Mirmiran, P., & Azizi, F. (2013). Dietary polyphenols as potential nutraceuticals in management of diabetes: A review. Journal of Diabetes & Metabolic Disorders, 12(1), 1–9.
- Barrera-Reyes, P. K., de Lara, J. C.-F., González-Soto, M., & Tejero, M. E. (2020). Effects of cocoa-derived polyphenols on cognitive function in humans. Systematic review and analysis of methodological aspects. Plant Foods for Human Nutrition, 75(1), 1–11.
- Bataglion, G. A., da Silva, F. M. A., Eberlin, M. N., & Koolen, H. H. F. (2015). Determination of the phenolic composition from Brazilian tropical fruits by UHPLC–MS/MS. Food Chemistry, 180, 280–287. https://doi.org/10.1016/j.foodchem.2015.02.059
- Beckett, S. T. (Ed.). (2008). Industrial Chocolate Manufacture and Use. Blackwell Publishing Ltd. https://doi.org/10.1002/9781444301588
10.1002/9781444301588 Google Scholar
- Biazotto, K. R., de Souza Mesquita, L. M., Neves, B. V., Braga, A. R. C., Tangerina, M. M. P., Vilegas, W., Mercadante, A. Z., & De Rosso, V. V. (2019). Brazilian biodiversity fruits: Discovering bioactive compounds from underexplored sources. Journal of Agricultural and Food Chemistry, 67(7), 1860–1876. https://doi.org/10.1021/acs.jafc.8b05815
- Borges, P. R. S., Edelenbos, M., Larsen, E., Hernandes, T., Nunes, E. E., de Barros Vilas Boas, E. V., & Pires, C. R. F. (2022). The bioactive constituents and antioxidant activities of ten selected Brazilian Cerrado fruits. Food Chemistry: X, 14, 100268. https://doi.org/10.1016/j.fochx.2022.100268
- Calder, P. C., Carr, A. C., Gombart, A. F., & Eggersdorfer, M. (2020). Optimal nutritional status for a well-functioning immune system is an important factor to protect against viral infections. Nutrients, 12(4), 1181.
- Cardoso, B. R., Duarte, G. B. S., Reis, B. Z., & Cozzolino, S. M. F. (2017). Brazil nuts: Nutritional composition, health benefits and safety aspects. Food Research International, 100, 9–18. https://doi.org/10.1016/j.foodres.2017.08.036
- Casalino, L., Gaieb, Z., Goldsmith, J. A., Hjorth, C. K., Dommer, A. C., Harbison, A. M., Fogarty, C. A., Barros, E. P., Taylor, B. C., Mclellan, J. S., Fadda, E., & Amaro, R. E. (2020). Beyond shielding: The roles of glycans in the SARS-CoV-2 spike protein. ACS Central Science, 6(10), 1722–1734. https://doi.org/10.1021/acscentsci.0c01056
- Castro, J. C., Maddox, J. D., & Imán, S. A. (2018). Camu-camu— Myrciaria dubia (Kunth) McVaugh. In Exotic fruits (pp. 97–105). Elsevier. https://doi.org/10.1016/b978-0-12-803138-4.00014-9
10.1016/B978-0-12-803138-4.00014-9 Google Scholar
- Chaari, A., Bendriss, G., Zakaria, D., & McVeigh, C. (2020). Importance of dietary changes during the coronavirus pandemic: How to upgrade your immune response. Frontiers in Public Health, 8, 476.
- Chang, S. K., Alasalvar, C., & Shahidi, F. (2019). Superfruits: Phytochemicals, antioxidant efficacies, and health effects–A comprehensive review. Critical Reviews in Food Science and Nutrition, 59(10), 1580–1604.
- Channappanavar, R., & Perlman, S. (2017). Pathogenic human coronavirus infections: Causes and consequences of cytokine storm and immunopathology. Seminars in Immunopathology, 39(5), 529–539. https://doi.org/10.1007/s00281-017-0629-x
- Chen, J., Kelley, W. J., & Goldstein, D. R. (2020). Role of aging and the immune response to respiratory viral infections: Potential implications for COVID-19. The Journal of Immunology, 205(2), 313–320. https://doi.org/10.4049/jimmunol.2000380
- Chen, L., Hu, C., Hood, M., Zhang, X., Zhang, L., Kan, J., & Du, J. (2020). A novel combination of vitamin c, curcumin and glycyrrhizic acid potentially regulates immune and inflammatory response associated with coronavirus infections: A perspective from system biology analysis. Nutrients, 12(4), 1193. https://doi.org/10.3390/nu12041193
- Chen, Y., Klein, S. L., Garibaldi, B. T., Li, H., Wu, C., Osevala, N. M., Li, T., Margolick, J. B., Pawelec, G., & Leng, S. X. (2021). Aging in COVID-19: Vulnerability, immunity and intervention. Ageing Research Reviews, 65, 101205. https://doi.org/10.1016/j.arr.2020.101205
- Chernyak, B. V., Popova, E. N., Prikhodko, A. S., Grebenchikov, O. A., Zinovkina, L. A., & Zinovkin, R. A. (2020). COVID-19 and oxidative stress. Biochemistry (Moscow), 85(12–13), 1543–1553. https://doi.org/10.1134/S0006297920120068
- Cobre, A. F., Surek, M., Vilhena, R. O., Böger, B., Fachi, M. M., Momade, D. R., Tonin, F. S., Sarti, F. M., & Pontarolo, R. (2021). Influence of foods and nutrients on COVID-19 recovery: A multivariate analysis of data from 170 countries using a generalized linear model. Clinical Nutrition, S0261-5614(21), 00157–6. https://doi.org/10.1016/j.clnu.2021.03.018
10.1016/j.clnu.2021.03.018 Google Scholar
- Conceição, N., Albuquerque, B. R., Pereira, C., Corrêa, R. C. G., Lopes, C. B., Calhelha, R. C., Alves, M. J., Barros, L., & Ferreira, I. C. F. R. (2019). By-Products of Camu-Camu [Myrciaria dubia (Kunth) McVaugh] as Promising Sources of Bioactive High Added-Value Food Ingredients: Functionalization of Yogurts. Molecules, 25(1), 70. https://doi.org/10.3390/molecules25010070
- Cândido, T. L. N., Silva, M. R., & Agostini-Costa, T. S. (2015). Bioactive compounds and antioxidant capacity of Buriti (Mauritia flexuosa Lf) from the Cerrado and Amazon biomes. Food Chemistry, 177, 313–319.
- da Costa Krewer, C., Ribeiro, E. E., Ribeiro, E. A. M., Moresco, R. N., de Ugalde Marques da Rocha, M. I., dos Santos Montagner, G. F. F., Machado, M. M., Viegas, K., Brito, E., & da Cruz, I. B. M. (2011). Habitual intake of guaraná and metabolic morbidities: An epidemiological study of an elderly Amazonian population. Phytotherapy Research, 25(9), 1367–1374.
- da Costa Krewer, C., Suleiman, L., Duarte, M. M. M. F., Ribeiro, E. E., Mostardeiro, C. P., Montano, M. A. E., Ugalde Marques da Rocha, M. I. D., Algarve, T. D., Bresciani, G., & da Cruz, I. B. M. (2014). Guaraná, a supplement rich in caffeine and catechin, modulates cytokines: Evidence from human in vitro and in vivo protocols. European Food Research and Technology, 239(1), 49–57.
- da Silva, F. C., Arruda, A., Ledel, A., Dauth, C., Romão, N. F., Viana, R. N., De Barros Falcão Ferraz, A., Picada, J. N., & Pereira, P. (2012). Antigenotoxic effect of acute, subacute and chronic treatments with Amazonian camu-camu (Myrciaria dubia) juice on mice blood cells. Food and Chemical Toxicology, 50(7), 2275–2281. https://doi.org/10.1016/j.fct.2012.04.021
- de Brito, E. S., García, N. H. P., Gallão, M. I., Cortelazzo, A. L., Fevereiro, P. S., & Braga, M. R. (2001). Structural and chemical changes in cocoa (Theobroma cacao L) during fermentation, drying and roasting. Journal of the Science of Food and Agriculture, 81(2), 281–288.
- De Faria Coelho-Ravagnani, C., Corgosinho, F. C., Sanches, F. L. F. Z., Prado, C. M. M., Laviano, A., & Mota, J. F. (2021). Dietary recommendations during the COVID-19 pandemic. Nutrition Reviews, 79(4), 382–393. https://doi.org/10.1093/nutrit/nuaa067
- de Liz, S., Cardoso, A. L., Copetti, C. L. K., de Fragas Hinnig, P., Vieira, F. G. K., da Silva, E. L., Schulz, M., Fett, R., Micke, G. A., & Di Pietro, P. F. (2020). Açaí (Euterpe oleracea Mart.) and juçara (Euterpe edulis Mart.) juices improved HDL-c levels and antioxidant defense of healthy adults in a 4-week randomized cross-over study. Clinical Nutrition, 39(12), 3629–3636.
- De Moura, R. S., Pires, K. M. P., Ferreira, T. S., Lopes, A. A., Nesi, R. T., Resende, A. C., Sousa, P. J. C., da Silva, A. J. R., Porto, L. C., & Valenca, S. S. (2011). Addition of açaí (Euterpe oleracea) to cigarettes has a protective effect against emphysema in mice. Food and Chemical Toxicology, 49(4), 855–863. https://doi.org/10.1016/j.fct.2010.12.007
- Do, N. Q., Zheng, S., Park, B., Nguyen, Q. T. N., Choi, B. R., Fang, M., Kim, M., Jeong, J., Choi, J., Yang, S. J., & Yi, T. H. (2021). Camu-camu fruit extract inhibits oxidative stress and inflammatory responses by regulating NFAT and Nrf2 signaling pathways in high glucose-induced human keratinocytes. Molecules, 26(11), 3174. https://doi.org/10.3390/molecules26113174
- Donders, I., & Barriocanal, C. (2020). The influence of markets on the nutrition transition of hunter-gatherers: Lessons from the Western Amazon. International Journal of Environmental Research and Public Health, 17(17), 6307. https://doi.org/10.3390/ijerph17176307
- Earling, M., Beadle, T., & Niemeyer, E. D. (2019). Açai berry (Euterpe oleracea) dietary supplements: Variations in anthocyanin and flavonoid concentrations, phenolic contents, and antioxidant properties. Plant Foods for Human Nutrition, 74(3), 421–429. https://doi.org/10.1007/s11130-019-00755-5
- Efraim, P., Alves, A. B., & Jardim, D. C. P. (2011). Revisão: Polifenóis em cacau e derivados: Teores, fatores de variação e efeitos na saúde. Brazilian Journal of Food Technology, 14(3), 181–201. https://doi.org/10.4260/bjft2011140300023
- Flammer, A. J., Hermann, F., Sudano, I., Spieker, L., Hermann, M., Cooper, K. A., Serafini, M., Lüscher, T. F., Ruschitzka, F., Noll, G., & Corti, R. (2007). Dark chocolate improves coronary vasomotion and reduces platelet reactivity. Circulation, 116(21), 2376–2382. https://doi.org/10.1161/CIRCULATIONAHA.107.713867
- Forcados, G. E., Muhammad, A., Oladipo, O. O., Makama, S., & Meseko, C. A. (2021). Metabolic implications of oxidative stress and inflammatory process in SARS-CoV-2 pathogenesis: Therapeutic potential of natural antioxidants. Frontiers in Cellular and Infection Microbiology, 11, 654813. https://doi.org/10.3389/fcimb.2021.654813
- Franceschi, C., Garagnani, P., Morsiani, C., Conte, M., Santoro, A., Grignolio, A., Monti, D., Capri, M., & Salvioli, S. (2018). The continuum of aging and age-related diseases: Common mechanisms but different rates. Frontiers in Medicine, 5, 61. https://doi.org/10.3389/fmed.2018.00061
- Galmés, S., Serra, F., & Palou, A. (2020). Current state of evidence: Influence of nutritional and nutrigenetic factors on immunity in the COVID-19 pandemic framework. Nutrients, 12(9), 1–33. https://doi.org/10.3390/nu12092738
- García, L. F. (2020). Immune response, inflammation, and the clinical spectrum of COVID-19. Frontiers in Immunology, 11, 1441. https://doi.org/10.3389/fimmu.2020.01441
- Garg, M. L., Leitch, J., Blake, R. J., & Garg, R. (2006). Long-chain n− 3 polyunsaturated fatty acid incorporation into human atrium following fish oil supplementation. Lipids, 41(12), 1127–1132.
- Geraets, L., Moonen, H. J. J., Wouters, E. F. M., Bast, A., & Hageman, G. J. (2006). Caffeine metabolites are inhibitors of the nuclear enzyme poly (ADP-ribose) polymerase-1 at physiological concentrations. Biochemical Pharmacology, 72(7), 902–910.
- Guo, Y. R., Cao, Q. D., Hong, Z. S., Tan, Y. Y., Chen, S. D., Jin, H. J., Tan, K., Sen Wang, D. Y., & Yan, Y. (2020). The origin, transmission and clinical therapies on coronavirus disease 2019 (COVID-19) outbreak- a n update on the status. Military Medical Research, 7(1), 11. https://doi.org/10.1186/s40779-020-00240-0
- Halliwell, B. (1999). Vitamin C: Poison, prophylactic or panacea? Trends in Biochemical Sciences, 24(7), 255–259.
- Hathaway, D., Pandav, K., Patel, M., Riva-Moscoso, A., Singh, B. M., Patel, A., Min, Z. C., Singh-Makkar, S., Sana, M. K., Sanchez-Dopazo, R., Desir, R., Fahem, M. M. M., Manella, S., Rodriguez, I., Alvarez, A., & Abreu, R. (2020). Omega 3 fatty acids and COVID-19: A comprehensive review. Infection and chemotherapy, 52(4), 478–495. https://doi.org/10.3947/IC.2020.52.4.478
- Heptinstall, S., May, J., Fox, S., Kwik-Uribe, C., & Zhao, L. (2006). Cocoa flavanols and platelet and leukocyte function: Recent in vitro and ex vivo studies in healthy adults. Journal of Cardiovascular Pharmacology, 47, S197–S205.
- Hoang, X., Shaw, G., Fang, W., & Han, B. (2020). Possible application of high-dose vitamin C in the prevention and therapy of coronavirus infection. Journal of Global Antimicrobial Resistance, 23, 256–262. https://doi.org/10.1016/j.jgar.2020.09.025
- Idrees, M., Khan, S., Memon, N. H., & Zhang, Z. (2020). Effect of the phytochemical agents against the SARS-CoV and some of them selected for application to COVID-19: A mini-review. Current Pharmaceutical Biotechnology, 22(4), 444–450. https://doi.org/10.2174/1389201021666200703201458
- Infante, J., Rosalen, P. L., Lazarini, J. G., Franchin, M., & de Alencar, S. M. (2016). Antioxidant and anti-inflammatory activities of unexplored Brazilian native fruits. PLoS One, 11(4), e0152974. https://doi.org/10.1371/journal.pone.0152974
- Inoue, T., Komoda, H., Uchida, T., & Node, K. (2008). Tropical fruit camu-camu (Myrciaria dubia) has anti-oxidative and anti-inflammatory properties. Journal of Cardiology, 52(2), 127–132.
- Jin, Z., Du, X., Xu, Y., Deng, Y., Liu, M., Zhao, Y., Zhang, B., Li, X., Zhang, L., Peng, C., Duan, Y., Yu, J., Wang, L., Yang, K., Liu, F., Jiang, R., Yang, X., You, T., Liu, X., … Yang, H. (2020). Structure of Mpro from SARS-CoV-2 and discovery of its inhibitors. Nature, 582(7811), 289–293. https://doi.org/10.1038/s41586-020-2223-y
- John, J. A., & Shahidi, F. (2010). Phenolic compounds and antioxidant activity of Brazil nut (Bertholletia excelsa). Journal of Functional Foods, 2(3), 196–209. https://doi.org/10.1016/J.JFF.2010.04.008
- John, N. A., John, J., Kamblec, P., Singhal, A., Daulatabad, V., & Vamshidhar, I. S. (2021). Patients with sticky platelet syndrome, sickle cell disease and Glanzmann syndrome may promulgate severe thrombosis if infected with Covid-19. Maedica, 16(2), 268–273. https://doi.org/10.26574/maedica.2021.16.2.268
- Karin, M., & Greten, F. R. (2005). NF-κB: Linking inflammation and immunity to cancer development and progression. Nature Reviews Immunology, 5(10), 749–759.
- Katz, D. L., Doughty, K., & Ali, A. (2011). Cocoa and chocolate in human health and disease. Antioxidants and Redox Signaling, 15(10), 2779–2811. https://doi.org/10.1089/ars.2010.3697
- Kim, H., Simbo, S. Y., Fang, C., McAlister, L., Roque, A., Banerjee, N., Talcott, S. T., Zhao, H., Kreider, R. B., & Mertens-Talcott, S. U. (2018). Acai (Euterpe oleracea Mart.) beverage consumption improves biomarkers for inflammation but not glucose-or lipid-metabolism in individuals with metabolic syndrome in a randomized, double-blinded, placebo-controlled clinical trial. Food & Function, 9(6), 3097–3103.
- Kim, J., Lee, K. W., & Lee, H. J. (2011). Cocoa (Theobroma cacao) seeds and phytochemicals in human health. In Nuts and seeds in health and disease prevention (pp. 351–360). Elsevier.
10.1016/B978-0-12-375688-6.10042-8 Google Scholar
- Kuhnlein, H. V. (2015). Food system sustainability for health and well-being of indigenous peoples. Public Health Nutrition, 18(13), 2415–2424. https://doi.org/10.1017/S1368980014002961
- Langley, P. C., Pergolizzi, J. V., Taylor, R., & Ridgway, C. (2015). Antioxidant and associated capacities of camu camu (Myrciaria dubia): A systematic review. Journal of Alternative and Complementary Medicine, 21(1), 8–14. https://doi.org/10.1089/acm.2014.0130
- Laudisi, F., Sambucci, M., & Pioli, C. (2011). Poly (ADP-ribose) polymerase-1 (PARP-1) as immune regulator. Endocrine, Metabolic & Immune Disorders-Drug Targets, 11(4), 326–333.
- Li, G., Fan, Y., Lai, Y., Han, T., Li, Z., Zhou, P., Pan, P., Wang, W., Hu, D., & Liu, X. (2020). Coronavirus infections and immune responses. Journal of Medical Virology, 92(4), 424–432.
- Lima, N. D. S., Teixeira, L., Gambero, A., & Ribeiro, M. L. (2018). Guarana (Paullinia cupana) stimulates mitochondrial biogenesis in mice fed high-fat diet. Nutrients, 10(2), 165. https://doi.org/10.3390/nu10020165
- López-Lluch, G., Hernández-Camacho, J. D., Fernández-Ayala, D. J. M., & Navas, P. (2018). Mitochondrial dysfunction in metabolism and ageing: Shared mechanisms and outcomes? Biogerontology, 19(6), 461–480. https://doi.org/10.1007/s10522-018-9768-2
- Machado, K. N., de Paula Barbosa, A., de Freitas, A. A., Alvarenga, L. F., de Pádua, R. M., Gomes Faraco, A. A., Braga, F. C., Vianna-Soares, C. D., & Castilho, R. O. (2021). TNF-α inhibition, antioxidant effects and chemical analysis of extracts and fraction from Brazilian guaraná seed powder. Food Chemistry, 355, 129563. https://doi.org/10.1016/j.foodchem.2021.129563
- Maia Ribeiro, E. A., Ribeiro, E. E., Viegas, K., Teixeira, F., dos Santos Montagner, G. F. F., Mota, K. M., Barbisan, F., da Cruz, I. B. M., & de Paz, J. A. (2013). Functional, balance and health determinants of falls in a free living community Amazon riparian elderly. Archives of Gerontology and Geriatrics, 56(2), 350–357. https://doi.org/10.1016/j.archger.2012.08.015
- Maldaner, D. R., Pellenz, N. L., Barbisan, F., Azzolin, V. F., Mastella, M. H., Teixeira, C. F., Duarte, T., Maia-Ribeiro, E. A., da Cruz, I. B. M., & Duarte, M. M. M. F. (2020). Interaction between low-level laser therapy and guarana (Paullinia cupana) extract induces antioxidant, anti-inflammatory, and anti-apoptotic effects and promotes proliferation in dermal fibroblasts. Journal of Cosmetic Dermatology, 19(3), 629–637.
- Martin, M. A., Goya, L., & Ramos, S. (2017). Protective effects of tea, red wine and cocoa in diabetes. Evidences from human studies. Food and Chemical Toxicology, 109, 302–314.
- Martínez-Pinilla, E., Oñatibia-Astibia, A., & Franco, R. (2015). The relevance of theobromine for the beneficial effects of cocoa consumption. Frontiers in Pharmacology, 6, 30. https://doi.org/10.3389/fphar.2015.00030
- Mendes, T. M. N., Murayama, Y., Yamaguchi, N., Sampaio, G. R., Fontes, L. C. B., da Silva Torres, E. A. F., Tamura, H., & Yonekura, L. (2019). Guaraná (Paullinia cupana) catechins and procyanidins: Gastrointestinal/colonic bioaccessibility, Caco-2 cell permeability and the impact of macronutrients. Journal of Functional Foods, 55, 352–361.
- Milani, G. P., Macchi, M., & Guz-Mark, A. (2021). Vitamin C in the treatment of COVID-19. Nutrients, 13(4), 1172. https://doi.org/10.3390/nu13041172
- Moreno Fernández-Ayala, D. J., Navas, P., & López-Lluch, G. (2020). Age-related mitochondrial dysfunction as a key factor in COVID-19 disease. Experimental Gerontology, 142, 111147. https://doi.org/10.1016/j.exger.2020.111147
- Motamayor, J. C., Lachenaud, P., Da Silva, E., Mota, J. W., Loor, R., Kuhn, D. N., Brown, J. S., & Schnell, R. J. (2008). Geographic and genetic population differentiation of the Amazonian chocolate tree (Theobroma cacao L). PLoS One, 3(10), e3311.
- Müller, L., & Di Benedetto, S. (2021). How immunosenescence and inflammaging may contribute to hyperinflammatory syndrome in covid-19. International Journal of Molecular Sciences, 22(22), 12539. https://doi.org/10.3390/ijms222212539
- Nabavi, S., Sureda, A., Daglia, M., Rezaei, P., & Nabavi, S. (2015). Anti-Oxidative Polyphenolic Compounds of Cocoa. Current Pharmaceutical Biotechnology, 16(10), 891–901. https://doi.org/10.2174/1389201016666150610160652
- Ngwa, W., Kumar, R., Thompson, D., Lyerly, W., Moore, R., Reid, T. E., Lowe, H., & Toyang, N. (2020). Potential of flavonoid-inspired phytomedicines against COVID-19. Molecules, 25(11), 2707. https://doi.org/10.3390/molecules25112707
- Olagnier, D., Farahani, E., Thyrsted, J., Blay-Cadanet, J., Herengt, A., Idorn, M., Hait, A., Hernaez, B., Knudsen, A., & Iversen, M. B. (2020). SARS-CoV2-mediated suppression of NRF2-signaling reveals potent antiviral and anti-inflammatory activity of 4-octyl-itaconate and dimethyl fumarate. Nature Communications, 11(1), 1–12.
- Oñatibia-Astibia, A., Franco, R., & Martínez-Pinilla, E. (2017). Health benefits of methylxanthines in neurodegenerative diseases. Molecular Nutrition & Food Research, 61(6), 1600670.
- Padayatty, S. J., Katz, A., Wang, Y., Eck, P., Kwon, O., Lee, J.-H., Chen, S., Corpe, C., Dutta, A., & Dutta, S. K. (2003). Vitamin C as an antioxidant: Evaluation of its role in disease prevention. Journal of the American College of Nutrition, 22(1), 18–35.
- Pagliarussi, R. S., Freitas, L. A. P., & Bastos, J. K. (2002). A quantitative method for the analysis of xanthine alkaloids in Paullinia cupana (guarana) by capillary column gas chromatography. Journal of Separation Science, 25(5–6), 371–374.
- Pala, D., Barbosa, P. O., Silva, C. T., de Souza, M. O., Freitas, F. R., Volp, A. C. P., Maranhão, R. C., & de Freitas, R. N. (2018). Açai (Euterpe oleracea Mart.) dietary intake affects plasma lipids, apolipoproteins, cholesteryl ester transfer to high-density lipoprotein and redox metabolism: A prospective study in women. Clinical Nutrition, 37(2), 618–623.
- Ramirez-Sanchez, I., Maya, L., Ceballos, G., & Villarreal, F. (2010). Fluorescent detection of (−)-epicatechin in microsamples from cacao seeds and cocoa products: Comparison with Folin–Ciocalteu method. Journal of Food Composition and Analysis, 23(8), 790–793.
- Ramiro-Puig, E., & Castell, M. (2009). Cocoa: antioxidant and immunomodulator. British Journal of Nutrition, 101(7), 931–940. https://doi.org/10.1017/s0007114508169896
- Ramos, S., Martín, M. A., & Goya, L. (2017). Effects of cocoa antioxidants in type 2 diabetes mellitus. Antioxidants, 6(4), 84.
- Roggia, I., Dalcin, A. J. F., de Souza, D., Machado, A. K., de Souza, D. V., da Cruz, I. B. M., Ribeiro, E. E., Ourique, A. F., & Gomes, P. (2020). Guarana: Stability-indicating RP-HPLC method and safety profile using microglial cells. Journal of Food Composition and Analysis, 94, 103629.
- Ruan, Q., Yang, K., Wang, W., Jiang, L., & Song, J. (2020). Clinical predictors of mortality due to COVID-19 based on an analysis of data of 150 patients from Wuhan, China. Intensive Care Medicine, 46, 846–848. https://doi.org/10.1007/s00134-020-05991-x
- Rufino, M. S. M., Alves, R. E., Fernandes, F. A. N., & Brito, E. S. (2011). Free radical scavenging behavior of ten exotic tropical fruits extracts. Food Research International, 44(7), 2072–2075.
- Santana, A. L., & Macedo, G. A. (2018). Health and technological aspects of methylxanthines and polyphenols from guarana: A review. Journal of Functional Foods, 47, 457–468.
- Schott, K. L., Assmann, C. E., Teixeira, C. F., Boligon, A. A., Waechter, S. R., Duarte, F. A., Ribeiro, E. E., & da Cruz, I. B. M. (2018). Brazil nut improves the oxidative metabolism of superoxide-hydrogen peroxide chemically-imbalanced human fibroblasts in a nutrigenomic manner. Food and Chemical Toxicology, 121, 519–526. https://doi.org/10.1016/j.fct.2018.09.038
- Serra, J. L., da Cruz Rodrigues, A. M., de Freitas, R. A., de Almeida Meirelles, A. J., Darnet, S. H., & da Silva, L. H. M. (2019). Alternative sources of oils and fats from Amazonian plants: Fatty acids, methyl tocols, total carotenoids and chemical composition. Food Research International, 116, 12–19. https://doi.org/10.1016/j.foodres.2018.12.028
- Silva Junior, E. C., Wadt, L. H. O., Silva, K. E., Lima, R. M. B., Batista, K. D., Guedes, M. C., Carvalho, G. S., Carvalho, T. S., Reis, A. R., Lopes, G., & Guilherme, L. R. G. (2017). Natural variation of selenium in Brazil nuts and soils from the Amazon region. Chemosphere, 188, 650–658. https://doi.org/10.1016/j.chemosphere.2017.08.158
- Smit, H. J., Gaffan, E. A., & Rogers, P. J. (2004). Methylxanthines are the psycho-pharmacologically active constituents of chocolate. Psychopharmacology, 176(3), 412–419.
- Souza, F. das C. do A., Silva, E. P., & Aguiar, J. P. L. (2020). Vitamin characterization and volatile composition of camu-camu (Myrciaria dubia (HBK) McVaugh, Myrtaceae) at different maturation stages. Food Science and Technology, 41(4), 961–966. https://doi.org/10.1590/fst.27120
- Steinberg, F. M., Bearden, M. M., & Keen, C. L. (2003). Cocoa and chocolate flavonoids: Implications for cardiovascular health. Journal of the American Dietetic Association, 103(2), 215–223.
- Stockler-Pinto, M. B., Mafra, D., Farage, N. E., Boaventura, G. T., & Cozzolino, S. M. F. (2010). Effect of Brazil nut supplementation on the blood levels of selenium and glutathione peroxidase in hemodialysis patients. Nutrition, 26(11–12), 1065–1069. https://doi.org/10.1016/j.nut.2009.08.006
- Stockler-Pinto, M. B., Mafra, D., Moraes, C., Lobo, J., Boaventura, G. T., Farage, N. E., Silva, W. S., Cozzolino, S. F., & Malm, O. (2014). Brazil Nut (Bertholletia excelsa, H.B.K.) Improves Oxidative Stress and Inflammation Biomarkers in Hemodialysis Patients. Biological Trace Element Research, 158(1), 105–112. https://doi.org/10.1007/s12011-014-9904-z
- Thomson, C. D., Chisholm, A., McLachlan, S. K., & Campbell, J. M. (2008). Brazil nuts: An effective way to improve selenium status. The American Journal of Clinical Nutrition, 87(2), 379–384.
- Traber, M. G., & Stevens, J. F. (2011). Vitamins C and E: Beneficial effects from a mechanistic perspective. Free Radical Biology and Medicine, 51(5), 1000–1013.
- Veloso, C. F., Machado, A. K., Cadoná, F. C., Azzolin, V. F., Cruz, I. B. M., & Silveira, A. F. (2018). Neuroprotective effects of guarana (Paullinia cupana Mart.) against vincristine in vitro exposure. The Journal of Prevention of Alzheimer's Disease, 5(1), 65–70.
- Wu, D., Lewis, E. D., Pae, M., & Meydani, S. N. (2019). Nutritional modulation of immune function: Analysis of evidence, mechanisms, and clinical relevance. Frontiers in Immunology, 9, 3160. https://doi.org/10.3389/fimmu.2018.03160
- Xu, K., Wei, Y., Giunta, S., Zhou, M., & Xia, S. (2021). Do inflammaging and coagul-aging play a role as conditions contributing to the co-occurrence of the severe hyper-inflammatory state and deadly coagulopathy during COVID-19 in older people? Experimental Gerontology, 151, 111423. https://doi.org/10.1016/j.exger.2021.111423
- Yamaguchi, K. K. D. L., Pereira, L. F. R., Lamarão, C. V., Lima, E. S., & Da Veiga-Junior, V. F. (2015). Amazon acai: Chemistry and biological activities: A review. Food Chemistry, 179, 137–151. https://doi.org/10.1016/j.foodchem.2015.01.055
- Yang, J. (2009). Brazil nuts and associated health benefits: A review. LWT-Food Science and Technology, 42(10), 1573–1580. https://doi.org/10.1016/j.lwt.2009.05.019
- Yazawa, K., Suga, K., Honma, A., Shirosaki, M., & Koyama, T. (2011). Anti-inflammatory effects of seeds of the tropical fruit camu-camu (Myrciaria dubia). Journal of Nutritional Science and Vitaminology, 57(1), 104–107.
- Yañez, O., Osorio, M. I., Areche, C., Vasquez-Espinal, A., Bravo, J., Sandoval-Aldana, A., Pérez-Donoso, J. M., González-Nilo, F., Matos, M. J., Osorio, E., García-Beltrán, O., & Tiznado, W. (2021). Theobroma cacao L. compounds: Theoretical study and molecular modeling as inhibitors of main SARS-CoV-2 protease. Biomedicine and Pharmacotherapy, 140, 111764. https://doi.org/10.1016/j.biopha.2021.111764
- Ye, Q., Wang, B., & Mao, J. (2020). The pathogenesis and treatment of the ‘cytokine storm’ in COVID-19. Journal of Infection, 80(6), 607–613. https://doi.org/10.1016/j.jinf.2020.03.037
- Yonekura, L., Martins, C. A., Sampaio, G. R., Monteiro, M. P., César, L. A. M. H., Mioto, B. M., Mori, C. S., Mendes, T. M. N., Ribeiro, M. L., Arçari, D. P., & Da Silva Torres, E. A. F. (2016). Bioavailability of catechins from guaraná (Paullinia cupana) and its effect on antioxidant enzymes and other oxidative stress markers in healthy human subjects. Food and Function, 7(7), 2970–2978. https://doi.org/10.1039/c6fo00513f
- Yunis-Aguinaga, J., Fernandes, D. C., Eto, S. F., Claudiano, G. S., Marcusso, P. F., Marinho-Neto, F. A., Fernandes, J. B. K., de Moraes, F. R., & de Moraes, J. R. E. (2016). Dietary camu camu, Myrciaria dubia, enhances immunological response in Nile tilapia. Fish & Shellfish Immunology, 58, 284–291.
- Yuyama, K., Aguiar, J. P. L., & Yuyama, L. K. O. (2002). Camu-camu: um fruto fantástico como fonte de vitamina C1. Acta Amazonica, 32(1), 169–174. https://doi.org/10.1590/1809-43922002321174
- Zabetakis, I., Lordan, R., Norton, C., & Tsoupras, A. (2020). COVID-19: The inflammation link and the role of nutrition in potential mitigation. Nutrients, 12(5), 1466. https://doi.org/10.3390/nu12051466
- Zanatta, C. F., & Mercadante, A. Z. (2007). Carotenoid composition from the Brazilian tropical fruit camu–camu (Myrciaria dubia). Food Chemistry, 101(4), 1526–1532.
- Zheng, Y., Liu, X., Le, W., Xie, L., Li, H., Wen, W., Wang, S., Ma, S., Huang, Z., Ye, J., Shi, W., Ye, Y., Liu, Z., Song, M., Zhang, W., Han, J. D. J., Belmonte, J. C. I., Xiao, C., Qu, J., … Su, W. (2020). A human circulating immune cell landscape in aging and COVID-19. Protein and Cell, 11(10), 740–770. https://doi.org/10.1007/s13238-020-00762-2
- Zhou, P., Yang, X. L., Wang, X. G., Hu, B., Zhang, L., Zhang, W., Si, H. R., Zhu, Y., Li, B., Huang, C. L., Chen, H. D., Chen, J., Luo, Y., Guo, H., Jiang, R.-D., Liu, M. Q., Chen, Y., Shen, X. R., Wang, X., … Shi, Z. L. (2020). A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature, 579(7798), 270–273. https://doi.org/10.1038/s41586-020-2012-7
- Zhou, Y., Schneider, D. J., & Blackburn, M. R. (2009). Adenosine signaling and the regulation of chronic lung disease. Pharmacology and Therapeutics, 123(1), 105–116. https://doi.org/10.1016/j.pharmthera.2009.04.003
- Zhu, Y., & Xie, D. Y. (2020). Docking characterization and in vitro inhibitory activity of Flavan-3-ols and dimeric Proanthocyanidins against the Main protease activity of SARS-Cov-2. Frontiers in Plant Science, 11, 601316. https://doi.org/10.3389/fpls.2020.601316