A comprehensive review on modulation of SIRT1 signaling pathways in the immune system of COVID-19 patients by phytotherapeutic melatonin and epigallocatechin-3-gallate
Corresponding Author
Vineeta Chattree
Department of Biochemistry, Deshbandhu College, Delhi University, New Delhi, India
Correspondence
Vineeta Chattree, Department of Biochemistry, Deshbandhu College, Delhi University, Kalkaji, New Delhi 110019, India.
Email: [email protected]
Search for more papers by this authorKamana Singh
Department of Biochemistry, Deshbandhu College, Delhi University, New Delhi, India
Search for more papers by this authorKanishk Singh
Department of Biochemistry, Deshbandhu College, Delhi University, New Delhi, India
Search for more papers by this authorAayush Goel
Department of Biochemistry, Deshbandhu College, Delhi University, New Delhi, India
Search for more papers by this authorAmritaparna Maity
Department of Biochemistry, Deshbandhu College, Delhi University, New Delhi, India
Search for more papers by this authorAsif Lone
Department of Biochemistry, Deshbandhu College, Delhi University, New Delhi, India
Search for more papers by this authorCorresponding Author
Vineeta Chattree
Department of Biochemistry, Deshbandhu College, Delhi University, New Delhi, India
Correspondence
Vineeta Chattree, Department of Biochemistry, Deshbandhu College, Delhi University, Kalkaji, New Delhi 110019, India.
Email: [email protected]
Search for more papers by this authorKamana Singh
Department of Biochemistry, Deshbandhu College, Delhi University, New Delhi, India
Search for more papers by this authorKanishk Singh
Department of Biochemistry, Deshbandhu College, Delhi University, New Delhi, India
Search for more papers by this authorAayush Goel
Department of Biochemistry, Deshbandhu College, Delhi University, New Delhi, India
Search for more papers by this authorAmritaparna Maity
Department of Biochemistry, Deshbandhu College, Delhi University, New Delhi, India
Search for more papers by this authorAsif Lone
Department of Biochemistry, Deshbandhu College, Delhi University, New Delhi, India
Search for more papers by this authorAbstract
SARS-CoV-2 infection has now become the world's most significant health hazard, with the World Health Organization declaring a pandemic on March 11, 2020. COVID-19 enters the lungs through angiotensin-converting enzyme 2 (ACE2) receptors, alters various signaling pathways, and causes immune cells to overproduce cytokines, resulting in mucosal inflammation, lung damage, and multiple organ failure in COVID-19 patients. Although several antiviral medications have been effective in managing the virus, they have not been effective in lowering the inflammation and symptoms of the illness. Several studies have found that epigallocatechin-3-gallate and melatonin upregulate sirtuins proteins, which leads to downregulation of pro-inflammatory gene transcription and NF-κB, protecting organisms from oxidative stress in autoimmune, respiratory, and cardiovascular illnesses. As a result, the purpose of this research is to understand more about the molecular pathways through which these phytochemicals affect COVID-19 patients' impaired immune systems, perhaps reducing hyperinflammation and symptom severity.
Practical applications
Polyphenols are natural secondary metabolites that are found to be present in plants. EGCG a polyphenol belonging to the flavonoid family in tea has potent anti-inflammatory and antioxidative properties that helps to counter the inflammation and oxidative stress associated with many neurodegenerative diseases. Melatonin, another strong antioxidant in plants, has been shown to possess antiviral function and alleviate oxidative stress in many inflammatory diseases. In this review, we propose an alternative therapy for COVID-19 patients by supplementing their diet with these nutraceuticals that perhaps by modulating sirtuin signaling pathways counteract cytokine storm and oxidative stress, the root causes of severe inflammation and symptoms in these patients.
CONFLICT OF INTEREST
The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
Open Research
DATA AVAILABILITY STATEMENT
Data sharing not applicable to this article as no datasets were generated or analysed during the current study.
REFERENCES
- Almatroodi, S. A., Almatroudi, A., Alsahli, M. A., Aljasir, M. A., Syed, M. A., & Rahmani, A. H. (2020). Epigallocatechin-3-gallate (EGCG), an active compound of green tea attenuates acute lung injury regulating macrophage polarization and Krüpple-like-factor 4 (KLF4) expression. Molecules, 25(12), 2853. https://doi.org/10.3390/molecules25122853
- Amat, R., Planavila, A., Chen, S. L., Iglesias, R., Giralt, M., & Villarroya, F. (2009). SIRT1 controls the transcription of the peroxisome proliferator-activated receptor-γ co-activator-1α(PGC-1α) gene in skeletal muscle through the PGC-1α autoregulatory loop and interaction with MyoD. Journal of Biological Chemistry, 284(33), 21872–21880. https://doi.org/10.1074/jbc.M109.022749
- Anderson, G., & Reiter, R. J. (2020). Melatonin: Roles in influenza, Covid-19, and other viral infections. Reviews in Medical Virology, 30(3), e2109. https://doi.org/10.1002/rmv.2109
- Angelopoulou, A., Alexandris, N., Konstantinou, E., Mesiakaris, K., Zanidis, C., Farsalinos, K., & Poulas, K. (2020). Imiquimod—A toll like receptor 7 agonist—Is an ideal option for management of COVID 19. Environmental Research, 188. https://doi.org/10.1016/j.envres.2020.109858
- Anrather, J., Racchumi, G., & Iadecola, C. (2006). NF-κB regulates phagocytic NADPH oxidase by inducing the expression of gp91phox. Journal of Biological Chemistry, 281(9), 5657–5667. https://doi.org/10.1074/jbc.M506172200
- Bahrampour Juybari, K., Pourhanifeh, M. H., Hosseinzadeh, A., Hemati, K., & Mehrzadi, S. (2020). Melatonin potentials against viral infections including COVID-19: Current evidence and new findings. Virus Research, 287, 198108. https://doi.org/10.1016/j.virusres.2020.198108
- Bansal, A., Singh, A. D., Jain, V., Aggarwal, M., Gupta, S., Padappayil, R. P., Nadeem, M., Joshi, S., Mian, A., Greathouse, T., Wells, D., Gupta, M., & Khan, M. Z. (2021). The association of D-dimers with mortality, intensive care unit admission or acute respiratory distress syndrome in patients hospitalized with coronavirus disease 2019 (COVID-19): A systematic review and meta-analysis. Heart and Lung, 50(1), 9–12. https://doi.org/10.1016/j.hrtlng.2020.08.024
- Battagello, D. S., Dragunas, G., Klein, M. O., Ayub, A. L. P., Velloso, F. J., & Correa, R. G. (2020). Unpuzzling COVID-19: Tissue-related signaling pathways associated with SARS-CoV-2 infection and transmission. Clinical Science, 134(16), 2137–2160. https://doi.org/10.1042/CS20200904
- Beneke, S. (2012). Regulation of chromatin structure by poly(ADP-ribosyl)ation. Frontiers in Genetics, 3, 169. https://doi.org/10.3389/fgene.2012.00169
- Bettuzzi, S., Gabba, L., & Cataldo, S. (2021). Efficacy of a polyphenolic, standardized green tea extract for the treatment of COVID-19 syndrome: A proof-of-principle study. COVID, 1(1), 2–12. https://doi.org/10.3390/covid1010002
- Boga, J. A., Coto-Montes, A., Rosales-Corral, S. A., Tan, D.-X., & Reiter, R. J. (2012). Beneficial actions of melatonin in the management of viral infections: A new use for this “molecular handyman”? Reviews in Medical Virology, 22(5), 323–338. https://doi.org/10.1002/rmv.1714
- Bonaldi, T. (2003). Monocytic cells hyperacetylate chromatin protein HMGB1 to redirect it towards secretion. The EMBO Journal, 22(20), 5551–5560. https://doi.org/10.1093/emboj/cdg516
- Bordoni, V., Tartaglia, E., Sacchi, A., Fimia, G. M., Cimini, E., Casetti, R., Notari, S., Grassi, G., Marchioni, L., Bibas, M., Capobianchi, M. R., Locatelli, F., Maeurer, M., Zumla, A., Antinori, A., Nicastri, E., Ippolito, G., & Agrati, C. (2021). The unbalanced p53/SIRT1 axis may impact lymphocyte homeostasis in COVID-19 patients. International Journal of Infectious Diseases, 105, 49–53. https://doi.org/10.1016/j.ijid.2021.02.019
- Brunet, A. (2004). Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase. Science, 303(5666), 2011–2015. https://doi.org/10.1126/science.1094637
- Calland, N., Albecka, A., Belouzard, S., Wychowski, C., Duverlie, G., Descamps, V., Hober, D., Dubuisson, J., Rouillé, Y., & Séron, K. (2012). (−)-Epigallocatechin-3-gallate is a new inhibitor of hepatitis C virus entry. Hepatology, 55(3), 720–729. https://doi.org/10.1002/hep.24803
- Campos, L. A., Cipolla-Neto, J., Amaral, F. G., Michelini, L. C., Bader, M., & Baltatu, O. C. (2013). The angiotensin-melatonin axis. International Journal of Hypertension, 2013, 521783. https://doi.org/10.1155/2013/521783
- Cardinali, D. P. (2020). High doses of melatonin as a potential therapeutic tool for the neurologic sequels of covid-19 infection. Melatonin Research, 3(3), 311–317. https://doi.org/10.32794/mr11250064
10.32794/mr11250064 Google Scholar
- Chang, H.-C., & Guarente, L. (2013). SIRT1 mediates central circadian control in the SCN by a mechanism that decays with aging. Cell, 153(7), 1448–1460. https://doi.org/10.1016/j.cell.2013.05.027
- Chowdhury, P., & Barooah, A. K. (2020). Tea bioactive modulate innate immunity: In perception to COVID-19 pandemic. Frontiers in Immunology, 11, 590716. https://doi.org/10.3389/fimmu.2020.590716
- Crackower, M. A., Sarao, R., Oudit, G. Y., Yagil, C., Kozieradzki, I., Scanga, S. E., Oliveira-dos-Santos, A. J., da Costa, J., Zhang, L., Pei, Y., Scholey, J., Ferrario, C. M., Manoukian, A. S., Chappell, M. C., Backx, P. H., Yagil, Y., & Penninger, J. M. (2002). Angiotensin-converting enzyme 2 is an essential regulator of heart function. Nature, 417(6891), 822–828. https://doi.org/10.1038/nature00786
- Cuadrado, A., Pajares, M., Benito, C., Jiménez-Villegas, J., Escoll, M., Fernández-Ginés, R., Garcia Yagüe, A. J., Lastra, D., Manda, G., Rojo, A. I., & Dinkova-Kostova, A. T. (2020). Can activation of NRF2 be a strategy against COVID-19? Trends in Pharmacological Sciences, 41(9), 598–610. https://doi.org/10.1016/j.tips.2020.07.003
- de Biasi, S., Meschiari, M., Gibellini, L., Bellinazzi, C., Borella, R., Fidanza, L., Gozzi, L., Iannone, A., lo Tartaro, D., Mattioli, M., Paolini, A., Menozzi, M., Milić, J., Franceschi, G., Fantini, R., Tonelli, R., Sita, M., Sarti, M., Trenti, T., … Cossarizza, A. (2020). Marked T cell activation, senescence, exhaustion and skewing towards TH17 in patients with COVID-19 pneumonia. Nature Communications, 11(1), 3434. https://doi.org/10.1038/s41467-020-17292-4
- Diaz-Ruiz, C., Rodriguez-Perez, A. I., Beiroa, D., Rodriguez-Pallares, J., & Labandeira-Garcia, J. L. (2015). Reciprocal regulation between sirtuin-1 and angiotensin-II in the substantia nigra: Implications for aging and neurodegeneration. Oncotarget, 6(29), 26675–26689. https://doi.org/10.18632/oncotarget.5596
- Ding, Y. W., Zhao, G. J., Li, X. L., Hong, G. L., Li, M. F., Qiu, Q. M., Wu, B., & Lu, Z. Q. (2016). SIRT1 exerts protective effects against paraquat-inducedinjury in mouse type II alveolar epithelial cellsby deacetylating NRF2 in vitro. International Journal of Molecular Medicine, 37(4), 1049–1058. https://doi.org/10.3892/ijmm.2016.2503
- Dinicolantonio, J. J., McCarty, M., & Barroso-Aranda, J. (2021). Melatonin may decrease risk for and aid treatment of COVID-19 and other RNA viral infections. Open Heart, 8(1), e001568. https://doi.org/10.1136/openhrt-2020-001568
- Dong, R., Wang, D., Wang, X., Zhang, K., Chen, P., Yang, C. S., & Zhang, J. (2016). Epigallocatechin-3-gallate enhances key enzymatic activities of hepatic thioredoxin and glutathione systems in selenium-optimal mice but activates hepatic Nrf2 responses in selenium-deficient mice. Redox Biology, 10, 221–232. https://doi.org/10.1016/j.redox.2016.10.009
- Donoghue, M., Hsieh, F., Baronas, E., Godbout, K., Gosselin, M., Stagliano, N., Donovan, M., Woolf, B., Robison, K., Jeyaseelan, R., Breitbart, R. E., & Acton, S. (2000). A novel angiotensin-converting enzyme–related carboxypeptidase (ACE2) converts angiotensin I to angiotensin 1-9. Circulation Research, 87(5), E1-9. https://doi.org/10.1161/01.RES.87.5.e1
- Du, A., Zheng, R., Disoma, C., Li, S., Chen, Z., Li, S., Liu, P., Zhou, Y., Shen, Y., Liu, S., Zhang, Y., Dong, Z., Yang, Q., Alsaadawe, M., Razzaq, A., Peng, Y., Chen, X., Hu, L., Peng, J., … Xia, Z. (2021). Epigallocatechin-3-gallate, an active ingredient of traditional Chinese medicines, inhibits the 3CLpro activity of SARS-CoV-2. International Journal of Biological Macromolecules, 176, 1–12. https://doi.org/10.1016/j.ijbiomac.2021.02.012
- Engel, R. H. (2006). Oxidative stress and apoptosis: A new treatment paradigm in cancer. Frontiers in Bioscience, 11(1), 300–312. https://doi.org/10.2741/1798
- Favalli, E. G., Biggioggero, M., Maioli, G., & Caporali, R. (2020). Baricitinib for COVID-19: A suitable treatment? The Lancet Infectious Diseases, 20(9), 1012–1013. https://doi.org/10.1016/S1473-3099(20)30262-0
- Feldmann, M., Maini, R. N., Woody, J. N., Holgate, S. T., Winter, G., Rowland, M., Richards, D., & Hussell, T. (2020). Trials of anti-tumour necrosis factor therapy for COVID-19 are urgently needed. The Lancet, 395(10234), 1407–1409. https://doi.org/10.1016/S0140-6736(20)30858-8
- Feng, Q., Torii, Y., Uchida, K., Nakamura, Y., Hara, Y., & Osawa, T. (2002). Black tea polyphenols, theaflavins, prevent cellular DNA damage by inhibiting oxidative stress and suppressing cytochrome P450 1A1 in cell cultures. Journal of Agricultural and Food Chemistry, 50(1), 213–220. https://doi.org/10.1021/jf010875c
- Forcados, G. E., Muhammad, A., Oladipo, O. O., Makama, S., & Meseko, C. A. (2021). Metabolic implications of oxidative stress and inflammatory process in SARS-CoV-2 pathogenesis: Therapeutic potential of natural antioxidants. Frontiers in Cellular and Infection Microbiology, 11, 654813. https://doi.org/10.3389/fcimb.2021.654813
- Frei, B., & Higdon, J. V. (2003). Antioxidant activity of tea polyphenols in vivo: Evidence from animal studies. The Journal of Nutrition, 133(10), 3275S–3284S. https://doi.org/10.1093/jn/133.10.3275S
- Frye, R. A. (2000). Phylogenetic classification of prokaryotic and eukaryotic Sir2-like proteins. Biochemical and Biophysical Research Communications, 273(2), 793–798. https://doi.org/10.1006/bbrc.2000.3000
- Ge, M., Xiao, Y., Chen, H., Luo, F., Du, G., & Zeng, F. (2018). Multiple antiviral approaches of (−)-epigallocatechin-3-gallate (EGCG) against porcine reproductive and respiratory syndrome virus infection in vitro. Antiviral Research, 158, 52–62. https://doi.org/10.1016/j.antiviral.2018.07.012
- Ghasemitarei, M., Privat-Maldonado, A., Yusupov, M., Rahnama, S., Bogaerts, A., & Ejtehadi, M. R. (2022). Effect of cysteine oxidation in SARS-CoV-2 receptor-binding domain on its interaction with two cell receptors: Insights from atomistic simulations. Journal of Chemical Information and Modeling, 62(1), 129–141. https://doi.org/10.1021/acs.jcim.1c00853
- Guo, P., Pi, H., Xu, S., Zhang, L., Li, Y., Li, M., Cao, Z., Tian, L., Xie, J., Li, R., He, M., Lu, Y., Liu, C., Duan, W., Yu, Z., & Zhou, Z. (2014). Melatonin improves mitochondrial function by promoting mt1/sirt1/pgc-1 alpha-dependent mitochondrial biogenesis in cadmium-induced hepatotoxicity in vitro. Toxicological Sciences, 142(1), 182–195. https://doi.org/10.1093/toxsci/kfu164
- Hadjadj, J., Yatim, N., Barnabei, L., Corneau, A., Boussier, J., Smith, N., Péré, H., Charbit, B., Bondet, V., Chenevier-Gobeaux, C., Breillat, P., Carlier, N., Gauzit, R., Morbieu, C., Pène, F., Marin, N., Roche, N., Szwebel, T.-A., Merkling, S. H., … Terrier, B. (2020). Impaired type I interferon activity and inflammatory responses in severe COVID-19 patients. Science, 369(6504), 718–724. https://doi.org/10.1126/science.abc6027
- Hanff, T. C., Harhay, M. O., Brown, T. S., Cohen, J. B., & Mohareb, A. M. (2020). Is there an association between COVID-19 mortality and the renin-angiotensin system? A call for epidemiologic investigations. Clinical Infectious Diseases, 71(15), 870–874. https://doi.org/10.1093/cid/ciaa329
- Harapan, H., Itoh, N., Yufika, A., Winardi, W., Keam, S., Te, H., Megawati, D., Hayati, Z., Wagner, A. L., & Mudatsir, M. (2020). Coronavirus disease 2019 (COVID-19): A literature review. Journal of Infection and Public Health, 13(5), 667–673. https://doi.org/10.1016/j.jiph.2020.03.019
- Hardeland, R., & Poeggeler, B. (2003). Non-vertebrate melatonin. Journal of Pineal Research, 34(4), 233–241. https://doi.org/10.1034/j.1600-079X.2003.00040.x
- Hati, S., & Bhattacharyya, S. (2020). Impact of thiol–disulfide balance on the binding of Covid-19 spike protein with angiotensin-converting enzyme 2 receptor. ACS Omega, 5(26), 16292–16298. https://doi.org/10.1021/acsomega.0c02125
- Hayakawa, S., Oishi, Y., Tanabe, H., Isemura, M., & Suzuki, Y. (2019). Tea, coffee and health benefits. In J. M. Mérillon & K. Ramawat (Eds.), Bioactive molecules in good. Reference Series in Phytochemistry. (pp. 991–1047). Springer. https://doi.org/10.1007/978-3-319-78030-6_14
10.1007/978-3-319-78030-6_14 Google Scholar
- Hoffmann, M., Kleine-Weber, H., Schroeder, S., Krüger, N., Herrler, T., Erichsen, S., Schiergens, T. S., Herrler, G., Wu, N.-H., Nitsche, A., Müller, M. A., Drosten, C., & Pöhlmann, S. (2020). SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell, 181(2), 271–280.e8. https://doi.org/10.1016/j.cell.2020.02.052
- Hosakote, Y. M., Jantzi, P. D., Esham, D. L., Spratt, H., Kurosky, A., Casola, A., & Garofalo, R. P. (2011). Viral-mediated inhibition of antioxidant enzymes contributes to the pathogenesis of severe respiratory syncytial virus bronchiolitis. American Journal of Respiratory and Critical Care Medicine, 183(11), 1550–1560. https://doi.org/10.1164/rccm.201010-1755OC
- Hu, J., Webster, D., Cao, J., & Shao, A. (2018). The safety of green tea and green tea extract consumption in adults—Results of a systematic review. Regulatory Toxicology and Pharmacology, 95, 412–433. https://doi.org/10.1016/j.yrtph.2018.03.019
- Huang, S. H., Cao, X. J., Liu, W., Shi, X. Y., & Wei, W. (2010). Inhibitory effect of melatonin on lung oxidative stress induced by respiratory syncytial virus infection in mice. Journal of Pineal Research, 48(2), 109–116. https://doi.org/10.1111/j.1600-079X.2009.00733.x
- Huang, W., Berube, J., McNamara, M., Saksena, S., Hartman, M., Arshad, T., Bornheimer, S. J., & O'Gorman, M. (2020). Lymphocyte subset counts in COVID-19 patients: A meta-analysis. Cytometry Part A, 97(8), 772–776. https://doi.org/10.1002/cyto.a.24172
- Jang, M., Park, R., Park, Y. I., Cha, Y. E., Yamamoto, A., Lee, J. I., & Park, J. (2021). EGCG, a green tea polyphenol, inhibits human coronavirus replication in vitro. Biochemical and Biophysical Research Communications, 547, 23–28. https://doi.org/10.1016/j.bbrc.2021.02.016
- Jang, M., Park, Y. I., Cha, Y. E., Park, R., Namkoong, S., Lee, J. I., & Park, J. (2020). Tea polyphenols EGCG and theaflavin inhibit the activity of SARS-CoV-2 3CL-protease in vitro. Evidence-Based Complementary and Alternative Medicine, 2020, 5630838. https://doi.org/10.1155/2020/5630838
- Jeong, J., Juhn, K., Lee, H., Kim, S.-H., Min, B.-H., Lee, K.-M., Cho, M.-H., Park, G.-H., & Lee, K.-H. (2007). SIRT1 promotes DNA repair activity and deacetylation of Ku70. Experimental & Molecular Medicine, 39(1), 8–13. https://doi.org/10.1038/emm.2007.2
- Juybari, K. B., Hosseinzadeh, A., Ghaznavi, H., Kamali, M., Sedaghat, A., Mehrzadi, S., & Naseripour, M. (2019). Melatonin as a modulator of degenerative and regenerative signaling pathways in injured retinal ganglion cells. Current Pharmaceutical Design, 25(28), 3057–3073. https://doi.org/10.2174/1381612825666190829151314
- Kaihatsu, K., Yamabe, M., & Ebara, Y. (2018). Antiviral mechanism of action of epigallocatechin-3-O-gallate and its fatty acid esters. Molecules, 23(10), 2475. https://doi.org/10.3390/molecules23102475
- Khan, N., Afaq, F., Saleem, M., Ahmad, N., & Mukhtar, H. (2006). Targeting multiple signaling pathways by green tea polyphenol (−)-epigallocatechin-3-gallate. Cancer Research, 66(5), 2500–2505. https://doi.org/10.1158/0008-5472.CAN-05-3636
- Kitada, M., Ogura, Y., Monno, I., & Koya, D. (2019). Sirtuins and type 2 diabetes: Role in inflammation, oxidative stress, and mitochondrial function. Frontiers in Endocrinology, 10, 187. https://doi.org/10.3389/fendo.2019.00187
- Kuba, K., Imai, Y., Rao, S., Gao, H., Guo, F., Guan, B., Huan, Y., Yang, P., Zhang, Y., Deng, W., Bao, L., Zhang, B., Liu, G., Wang, Z., Chappell, M., Liu, Y., Zheng, D., Leibbrandt, A., Wada, T., … Penninger, J. M. (2005). A crucial role of angiotensin converting enzyme 2 (ACE2) in SARS coronavirus-induced lung injury. Nature Medicine, 11(8), 875–879. https://doi.org/10.1038/nm1267
- Kucera, O., Mezera, V., Moravcova, A., Endlicher, R., Lotkova, H., Drahota, Z., & Cervinkova, Z. (2015). In vitro toxicity of epigallocatechin gallate in rat liver mitochondria and hepatocytes. Oxidative Medicine and Cellular Longevity, 2015, 476180. https://doi.org/10.1155/2015/476180
- Kuriakose, J., Montezano, A. C., & Touyz, R. M. (2021). ACE2/Ang-(1-7)/Mas1 axis and the vascular system: Vasoprotection to COVID-19-associated vascular disease. Clinical Science, 135(2), 387–407. https://doi.org/10.1042/CS20200480
- Laforge, M., Elbim, C., Frère, C., Hémadi, M., Massaad, C., Nuss, P., Benoliel, J.-J., & Becker, C. (2020). Tissue damage from neutrophil-induced oxidative stress in COVID-19. Nature Reviews Immunology, 20(9), 515–516. https://doi.org/10.1038/s41577-020-0407-1
- Land, W. G. (2015). The role of damage-associated molecular patterns (DAMPs) in human diseases: Part II: DAMPs as diagnostics, prognostics and therapeutics in clinical medicine. Sultan Qaboos University Medical Journal, 15(2), e157–e170 http://www.ncbi.nlm.nih.gov/pubmed/26052447
- Li, X., Geng, M., Peng, Y., Meng, L., & Lu, S. (2020). Molecular immune pathogenesis and diagnosis of COVID-19. Journal of Pharmaceutical Analysis, 10(2), 102–108. https://doi.org/10.1016/j.jpha.2020.03.001
- Li, Y., & Wu, S. (2018). Epigallocatechin gallate suppresses hepatic cholesterol synthesis by targeting SREBP-2 through SIRT1/FOXO1 signaling pathway. Molecular and Cellular Biochemistry, 448(1–2), 175–185. https://doi.org/10.1007/s11010-018-3324-x
- Lim, J. H., Lee, Y. M., Chun, Y. S., Chen, J., Kim, J. E., & Park, J. W. (2010). Sirtuin 1 modulates cellular responses to hypoxia by deacetylating hypoxia-inducible factor 1α. Molecular Cell, 38(6), 864–878. https://doi.org/10.1016/j.molcel.2010.05.023
- Liu, Y., Yang, Y., Zhang, C., Huang, F., Wang, F., Yuan, J., Wang, Z., Li, J., Li, J., Feng, C., Zhang, Z., Wang, L., Peng, L., Chen, L., Qin, Y., Zhao, D., Tan, S., Yin, L., Xu, J., … Liu, L. (2020). Clinical and biochemical indexes from 2019-nCoV infected patients linked to viral loads and lung injury. Science China Life Sciences, 63(3), 364–374. https://doi.org/10.1007/s11427-020-1643-8
- Lu, R., Zhao, X., Li, J., Niu, P., Yang, B., Wu, H., Wang, W., Song, H., Huang, B., Zhu, N., Bi, Y., Ma, X., Zhan, F., Wang, L., Hu, T., Zhou, H., Hu, Z., Zhou, W., Zhao, L., … Tan, W. (2020). Genomic characterisation and epidemiology of 2019 novel coronavirus: Implications for virus origins and receptor binding. The Lancet, 395(10224), 565–574. https://doi.org/10.1016/S0140-6736(20)30251-8
- Luo, W., Li, Y. X., Jiang, L. J., Chen, Q., Wang, T., & Ye, D. W. (2020). Targeting JAK-STAT signaling to control cytokine release syndrome in COVID-19. Trends in Pharmacological Sciences, 41(8), 531–543. https://doi.org/10.1016/j.tips.2020.06.007
- Magro, G. (2020). SARS-CoV-2 and COVID-19: Is interleukin-6 (IL-6) the ‘culprit lesion’ of ARDS onset? What is there besides Tocilizumab? SGP130Fc. Cytokine: X, 2(2), 100029. https://doi.org/10.1016/j.cytox.2020.100029
- Manea, A., Manea, S. A., Gafencu, A. V., & Raicu, M. (2007). Regulation of NADPH oxidase subunit p22phox by NF-kB in human aortic smooth muscle cells. Archives of Physiology and Biochemistry, 113(4–5), 163–172. https://doi.org/10.1080/13813450701531235
- Martin Gimenez, V. M., Prado, N., Diez, E., Manucha, W., & Reiter, R. J. (2020). New proposal involving nanoformulated melatonin targeted to the mitochondria as a potential COVID-19 treatment. Nanomedicine, 15(29), 2819–2821. https://doi.org/10.2217/nnm-2020-0371
- McCord, J. M., Hybertson, B. M., Cota-Gomez, A., Geraci, K. P., & Gao, B. (2020). Nrf2 activator PB125® as a potential therapeutic agent against COVID-19. Antioxidants, 9(6), 518. https://doi.org/10.3390/antiox9060518
- Mehta, P., McAuley, D. F., Brown, M., Sanchez, E., Tattersall, R. S., & Manson, J. J. (2020). COVID-19: Consider cytokine storm syndromes and immunosuppression. The Lancet, 395(10229), 1033–1034. https://doi.org/10.1016/S0140-6736(20)30628-0
- Menegazzi, M., Campagnari, R., Bertoldi, M., Crupi, R., di Paola, R., & Cuzzocrea, S. (2020). Protective effect of epigallocatechin-3-gallate (EGCG) in diseases with uncontrolled immune activation: Could such a scenario be helpful to counteract COVID-19? International Journal of Molecular Sciences, 21(14), 5171. https://doi.org/10.3390/ijms21145171
- Mhatre, S., Srivastava, T., Naik, S., & Patravale, V. (2021). Antiviral activity of green tea and black tea polyphenols in prophylaxis and treatment of COVID-19: A review. Phytomedicine, 85, 153286. https://doi.org/10.1016/j.phymed.2020.153286
- Miller, S. C., Pandi, P. S. R., Esquifino, A. I., Cardinali, D. P., & Maestroni, G. J. M. (2006). The role of melatonin in immuno-enhancement: Potential application in cancer. International Journal of Experimental Pathology, 87(2), 81–87. https://doi.org/10.1111/j.0959-9673.2006.00474.x
- Morchang, A., Malakar, S., Poonudom, K., Noisakran, S., Yenchitsomanus, P. T., & Limjindaporn, T. (2021). Melatonin inhibits dengue virus infection via the sirtuin 1-mediated interferon pathway. Viruses, 13(4), 659. https://doi.org/10.3390/v13040659
- Munin, A., & Edwards-Lévy, F. (2011). Encapsulation of natural polyphenolic compounds; a review. Pharmaceutics, 3(4), 793–829. https://doi.org/10.3390/pharmaceutics3040793
- Na, H.-K., Kim, E.-H., Jung, J.-H., Lee, H.-H., Hyun, J.-W., & Surh, Y.-J. (2008). (−)-Epigallocatechin gallate induces Nrf2-mediated antioxidant enzyme expression via activation of PI3K and ERK in human mammary epithelial cells. Archives of Biochemistry and Biophysics, 476(2), 171–177. https://doi.org/10.1016/j.abb.2008.04.003
- Nakagawa, T., & Guarente, L. (2011). Sirtuins at a glance. Journal of Cell Science, 124(6), 833–838. https://doi.org/10.1242/jcs.081067
- Niu, Y., Na, L., Feng, R., Gong, L., Zhao, Y., Li, Q., Li, Y., & Sun, C. (2013). The phytochemical, EGCG, extends lifespan by reducing liver and kidney function damage and improving age-associated inflammation and oxidative stress in healthy rats. Aging Cell, 12(6), 1041–1049. https://doi.org/10.1111/acel.12133
- Niu, Z., & Li, R. (2020). Clinical study of novel coronavirus pneumonia prevention by melatonin. Reproductive BioMedicine Online, 41(6), 1156. https://doi.org/10.1016/j.rbmo.2020.09.003
- Ohishi, T., Goto, S., Monira, P., Isemura, M., & Nakamura, Y. (2016). Anti-inflammatory action of green tea. Anti-Inflammatory & Anti-Allergy Agents in Medicinal Chemistry, 15(2), 74–90. https://doi.org/10.2174/1871523015666160915154443
- Olagnier, D., Farahani, E., Thyrsted, J., Blay-Cadanet, J., Herengt, A., Idorn, M., Hait, A., Hernaez, B., Knudsen, A., Iversen, M. B., Schilling, M., Jørgensen, S. E., Thomsen, M., Reinert, L. S., Lappe, M., Hoang, H.-D., Gilchrist, V. H., Hansen, A. L., Ottosen, R., … Holm, C. K. (2020). SARS-CoV2-mediated suppression of NRF2-signaling reveals potent antiviral and anti-inflammatory activity of 4-octyl-itaconate and dimethyl fumarate. Nature Communications, 11(1), 4938. https://doi.org/10.1038/s41467-020-18764-3
- Öztürk, G., Akbulut, K. G., & Güney, Ş. (2020). Melatonin, aging, and COVID-19: Could melatonin be beneficial for COVID-19 treatment in the elderly? Turkish Journal of Medical Sciences, 50(6), 1504–1512. https://doi.org/10.3906/sag-2005-356
- Palmer, R. M. J., Ferrige, A. G., & Moncada, S. (1987). Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature, 327(6122), 524–526. https://doi.org/10.1038/327524a0
- Pandey, K. B., & Rizvi, S. I. (2009). Plant polyphenols as dietary antioxidants in human health and disease. Oxidative Medicine and Cellular Longevity, 2(5), 270–278. https://doi.org/10.4161/oxim.2.5.9498
- Poeggeler, B., Saarela, S., Reiter, R. J., Tan, D.-X., Chen, L.-D., Manchester, L. C., & Barlow-Walden, L. R. (2006). Melatonin-A highly potent endogenous radical scavenger and electron donor: New aspects of the oxidation chemistry of this indole accessed in vitroa. Annals of the New York Academy of Sciences, 738(1), 419–420. https://doi.org/10.1111/j.1749-6632.1994.tb21831.x
10.1111/j.1749?6632.1994.tb21831.x Google Scholar
- Poulose, N., & Raju, R. (2015). Sirtuin regulation in aging and injury. Biochimica et Biophysica Acta (BBA)—Molecular Basis of Disease, 1852(11), 2442–2455. https://doi.org/10.1016/j.bbadis.2015.08.017
- Prokunina-Olsson, L., Alphonse, N., Dickenson, R. E., Durbin, J. E., Glenn, J. S., Hartmann, R., Kotenko, S. V., Lazear, H. M., O'Brien, T. R., Odendall, C., Onabajo, O. O., Piontkivska, H., Santer, D. M., Reich, N. C., Wack, A., & Zanoni, I. (2020). COVID-19 and emerging viral infections: The case for interferon lambda. Journal of Experimental Medicine, 217(5), e20200653. https://doi.org/10.1084/jem.20200653
- Raekiansyah, M., Buerano, C. C., Luz, M. A. D., & Morita, K. (2018). Inhibitory effect of the green tea molecule EGCG against dengue virus infection. Archives of Virology, 163(6), 1649–1655. https://doi.org/10.1007/s00705-018-3769-y
- Ragab, D., Salah Eldin, H., Taeimah, M., Khattab, R., & Salem, R. (2020). The COVID-19 cytokine storm; what we know so far. Frontiers in Immunology, 11, 1446. https://doi.org/10.3389/fimmu.2020.01446
- Rajamohan, S. B., Pillai, V. B., Gupta, M., Sundaresan, N. R., Birukov, K. G., Samant, S., Hottiger, M. O., & Gupta, M. P. (2009). SIRT1 promotes cell survival under stress by deacetylation-dependent deactivation of poly(ADP-ribose) polymerase 1. Molecular and Cellular Biology, 29(15), 4116–4129. https://doi.org/10.1128/mcb.00121-09
- Rajendrasozhan, S., Yang, S. R., Kinnula, V. L., & Rahman, I. (2008). SIRT1, an antiinflammatory and antiaging protein, is decreased in lungs of patients with chronic obstructive pulmonary disease. American Journal of Respiratory and Critical Care Medicine, 177(8), 861–870. https://doi.org/10.1164/rccm.200708-1269OC
- Reiter, R., Tang, L., Garcia, J. J., & Muñoz-Hoyos, A. (1997). Pharmacological actions of melatonin in oxygen radical pathophysiology. Life Sciences, 60(25), 2255–2271. https://doi.org/10.1016/S0024-3205(97)00030-1
- Reppert, S. M., Chez, R. A., Anderson, A., & Klein, D. C. (1979). Maternal-fetal transfer of melatonin in the non-human primate. Pediatric Research, 13(6), 788–791. https://doi.org/10.1203/00006450-197906000-00015
- Reygaert, W. C. (2018). Green tea catechins: Their use in treating and preventing infectious diseases. BioMed Research International, 2018, 9105261. https://doi.org/10.1155/2018/9105261
- Rogers, M. C., Williams, J., & v. (2018). Quis Custodiet Ipsos Custodes? Regulation of cell-mediated immune responses following viral lung infections. Annual Review of Virology, 5(1), 363–383. https://doi.org/10.1146/annurev-virology-092917-043515
- Ropero, S., & Esteller, M. (2007). The role of histone deacetylases (HDACs) in human cancer. Molecular Oncology, 1(1), 19–25. https://doi.org/10.1016/j.molonc.2007.01.001
- Saleh, J., Peyssonnaux, C., Singh, K. K., & Edeas, M. (2020). Mitochondria and microbiota dysfunction in COVID-19 pathogenesis. Mitochondrion, 54, 1–7. https://doi.org/10.1016/j.mito.2020.06.008
- Schofield, J. H., & Schafer, Z. T. (2021). Mitochondrial reactive oxygen species and mitophagy: A complex and nuanced relationship. Antioxidants and Redox Signaling, 34(7), 517–530. https://doi.org/10.1089/ars.2020.8058
- Sellers, R. S., Radi, Z. A., & Khan, N. K. (2010). Pathophysiology of cyclooxygenases in cardiovascular homeostasis. Veterinary Pathology, 47(4), 601–613. https://doi.org/10.1177/0300985810364389
- Shah, S. A., Khan, M., Jo, M. H., Jo, M. G., Amin, F. U., & Kim, M. O. (2017). Melatonin stimulates the SIRT1/Nrf2 signaling pathway counteracting lipopolysaccharide (LPS)-induced oxidative stress to rescue postnatal rat brain. CNS Neuroscience and Therapeutics, 23(1), 33–44. https://doi.org/10.1111/cns.12588
- Shi, C. S., Nabar, N. R., Huang, N. N., & Kehrl, J. H. (2019). SARS-Coronavirus Open Reading Frame-8b triggers intracellular stress pathways and activates NLRP3 inflammasomes. Cell Death Discovery, 5(1), 101. https://doi.org/10.1038/s41420-019-0181-7
- Shi, X., Ye, J., Leonard, S., Ding, M., Vallyathan, V., Castranova, V., Rojanasakul, Y., & Dong, Z. (2000). Antioxidant properties of (−)-epicatechin-3-gallate and its inhibition of Cr(VI)-induced DNA damage and Cr(IV)- or TPA-stimulated NF-κB activation. Molecular and Cellular Biochemistry, 206(1/2), 125–132. https://doi.org/10.1023/A:1007012403691
- Shibutani, S., Takeshita, M., & Grollman, A. P. (1991). Insertion of specific bases during DNA synthesis past the oxidation-damaged base 8-oxodG. Nature, 349(6308), 431–434. https://doi.org/10.1038/349431a0
- Silva, S. O., Rodrigues, M. R., Ximenes, V. F., Bueno-Da-Silva, A. E. B., Amarante-Mendes, G. P., & Campa, A. (2004). Neutrophils as a specific target for melatonin and kynuramines: Effects on cytokine release. Journal of Neuroimmunology, 156(1–2), 146–152. https://doi.org/10.1016/j.jneuroim.2004.07.015
- Singh, R., Akhtar, N., & Haqqi, T. M. (2010). Green tea polyphenol epigallocatechi3-gallate: Inflammation and arthritis. Life Sciences, 86(25–26), 907–918. https://doi.org/10.1016/j.lfs.2010.04.013
- Sodagari, H. R., Bahramsoltani, R., Farzaei, M. H., Abdolghaffari, A. H., Rezaei, N., & Taylor-Robinson, A. W. (2016). Tea polyphenols as natural products for potential future management of HIV infection—An overview. Journal of Natural Remedies, 16(2), 60. https://doi.org/10.18311/jnr/2016/4782
10.18311/jnr/2016/4782 Google Scholar
- Steinmann, J., Buer, J., Pietschmann, T., & Steinmann, E. (2013). Anti-infective properties of epigallocatechin-3-gallate (EGCG), a component of green tea. British Journal of Pharmacology, 168(5), 1059–1073. https://doi.org/10.1111/bph.12009
- Sun, W., Liu, X., Zhang, H., Song, Y., Li, T., Liu, X., Liu, Y., Guo, L., Wang, F., Yang, T., Guo, W., Wu, J., Jin, H., & Wu, H. (2017). Epigallocatechin gallate upregulates NRF2 to prevent diabetic nephropathy via disabling KEAP1. Free Radical Biology and Medicine, 108, 840–857. https://doi.org/10.1016/j.freeradbiomed.2017.04.365
- Sun, X., Wang, T., Cai, D., Hu, Z., Chen, J., Liao, H., Zhi, L., Wei, H., Zhang, Z., Qiu, Y., Wang, J., & Wang, A. (2020). Cytokine storm intervention in the early stages of COVID-19 pneumonia. Cytokine and Growth Factor Reviews, 53, 38–42. https://doi.org/10.1016/j.cytogfr.2020.04.002
- Tan, D. X., Manchester, L. C., Terron, M. P., Flores, L. J., & Reiter, R. J. (2007). One molecule, many derivatives: A never-ending interaction of melatonin with reactive oxygen and nitrogen species? Journal of Pineal Research, 42(1), 28–42. https://doi.org/10.1111/j.1600-079X.2006.00407.x
- Umeda, D., Yano, S., Yamada, K., & Tachibana, H. (2008). Green tea polyphenol epigallocatechin-3-gallate signaling pathway through 67-kDa laminin receptor. Journal of Biological Chemistry, 283(6), 3050–3058. https://doi.org/10.1074/jbc.M707892200
- Xiao, N., Mei, F., Sun, Y., Pan, G., Liu, B., & Liu, K. (2014). Quercetin, luteolin, and epigallocatechin gallate promote glucose disposal in adipocytes with regulation of AMP-activated kinase and/or sirtuin 1 activity. Planta Medica, 80(12), 993–1000. https://doi.org/10.1055/s-0034-1382864
- Xie, Q. W., Kashiwabara, Y., & Nathan, C. (1994). Role of transcription factor NF-κB/Rel in induction of nitric oxide synthase. Journal of Biological Chemistry, 269(7), 4705–4708. https://doi.org/10.1016/s0021-9258(17)37600-7
- Xu, D. X., Wang, H., Ning, H., Zhao, L., & Chen, Y. H. (2007). Maternally administered melatonin differentially regulates lipopolysaccharide-induced proinflammatory and anti-inflammatory cytokines in maternal serum, amniotic fluid, fetal liver, and fetal brain. Journal of Pineal Research, 43(1), 74–79. https://doi.org/10.1111/j.1600-079X.2007.00445.x
- Xu, J., Xu, Z., & Zheng, W. (2017). A review of the antiviral role of green tea catechins. Molecules, 22(8), 1337. https://doi.org/10.3390/molecules22081337
- Yamada, H., Takuma, N., Daimon, T., & Hara, Y. (2006). Gargling with tea catechin extracts for the prevention of influenza infection in elderly nursing home residents: A prospective clinical study. The Journal of Alternative and Complementary Medicine, 12(7), 669–672. https://doi.org/10.1089/acm.2006.12.669
- Yang, C. S., Ho, C.-T., Zhang, J., Wan, X., Zhang, K., & Lim, J. (2018). Antioxidants: Differing meanings in food science and health science. Journal of Agricultural and Food Chemistry, 66(12), 3063–3068. https://doi.org/10.1021/acs.jafc.7b05830
- Yang, C. S., Lee, M. J., & Chen, L. (1999). Human salivary tea catechin levels and catechin esterase activities: Implication in human cancer prevention studies. Cancer Epidemiology, Biomarkers & Prevention, 8(1), 83–89.
- Yang, M. (2020). Cell Pyroptosis, a potential pathogenic mechanism of 2019-nCoV infection. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.3527420
10.2139/ssrn.3527420 Google Scholar
- Yeung, F., Hoberg, J. E., Ramsey, C. S., Keller, M. D., Jones, D. R., Frye, R. A., & Mayo, M. W. (2004). Modulation of NF-κB-dependent transcription and cell survival by the SIRT1 deacetylase. EMBO Journal, 23(12), 2369–2380. https://doi.org/10.1038/sj.emboj.7600244
- Yoon, J. Y., Kwon, H. H., Min, S. U., Thiboutot, D. M., & Suh, D. H. (2013). Epigallocatechin-3-gallate improves acne in humans by modulating intracellular molecular targets and inhibiting P. acnes. Journal of Investigative Dermatology, 133(2), 429–440. https://doi.org/10.1038/jid.2012.292
- Yoshizaki, T., Schenk, S., Imamura, T., Babendure, J. L., Sonoda, N., Ju Bae, E., Young Oh, D., Lu, M., Milne, J. C., Westphal, C., Bandyopadhyay, G., & Olefsky, J. M. (2010). SIRT1 inhibits inflammatory pathways in macrophages and modulates insulin sensitivity. American Journal of Physiology. Endocrinology and Metabolism, 298(8), 419–428. https://doi.org/10.1152/ajpendo.00417.2009.-Chronic
10.1152/ajpendo.00417.2009.?Chronic Google Scholar
- Yu, G. M., Kubota, H., Okita, M., & Maeda, T. (2017). The anti-inflammatory and antioxidant effects of melatonin on LPS-stimulated bovine mammary epithelial cells. PLoS One, 12(5), e0178525. https://doi.org/10.1371/journal.pone.0178525
- Zainal, N., Chang, C. P., Cheng, Y. L., Wu, Y. W., Anderson, R., Wan, S. W., Chen, C. L., Ho, T. S., Abubakar, S., & Lin, Y. S. (2017). Resveratrol treatment reveals a novel role for HMGB1 in regulation of the type 1 interferon response in dengue virus infection. Scientific Reports, 7, 42998. https://doi.org/10.1038/srep42998
- Zaveri, N. T. (2006). Green tea and its polyphenolic catechins: Medicinal uses in cancer and noncancer applications. Life Sciences, 78(18), 2073–2080. https://doi.org/10.1016/j.lfs.2005.12.006
- Zhang, C., Wu, Z., Li, J. W., Zhao, H., & Wang, G. Q. (2020). Cytokine release syndrome in severe COVID-19: Interleukin-6 receptor antagonist tocilizumab may be the key to reduce mortality. International Journal of Antimicrobial Agents, 55(5), 105954. https://doi.org/10.1016/j.ijantimicag.2020.105954
- Zhang, R., Wang, X., Ni, L., Di, X., Ma, B., Niu, S., Liu, C., & Reiter, R. J. (2020). COVID-19: Melatonin as a potential adjuvant treatment. Life Sciences, 250, 117583. https://doi.org/10.1016/j.lfs.2020.117583
- Zhang, R., Chen, H. Z., Liu, J. J., Jia, Y. Y., Zhang, Z. Q., Yang, R. F., Zhang, Y., Xu, J., Wei, Y. S., Liu, D. P., & Liang, C. C. (2010). SIRT1 suppresses activator protein-1 transcriptional activity and cyclooxygenase-2 expression in macrophages. Journal of Biological Chemistry, 285(10), 7097–7110. https://doi.org/10.1074/jbc.M109.038604
- Zhang, Y., Li, X., Grailer, J. J., Wang, N., Wang, M., Yao, J., Zhong, R., Gao, G. F., Ward, P. A., Tan, D. X., & Li, X. (2016). Melatonin alleviates acute lung injury through inhibiting the NLRP3 inflammasome. Journal of Pineal Research, 60(4), 405–414. https://doi.org/10.1111/jpi.12322
- Zhang, Z., Zhang, X., Bi, K., He, Y., Yan, W., Yang, C. S., & Zhang, J. (2021). Potential protective mechanisms of green tea polyphenol EGCG against COVID-19. Trends in Food Science & Technology, 114, 11–24. https://doi.org/10.1016/j.tifs.2021.05.023
- Zhao, S., Ghosh, A., Lo, C.-S., Chenier, I., Scholey, J. W., Filep, J. G., Ingelfinger, J. R., Zhang, S.-L., & Chan, J. S. D. (2018). Nrf2 deficiency upregulates intrarenal angiotensin-converting Enzyme-2 and angiotensin 1-7 receptor expression and attenuates hypertension and nephropathy in diabetic mice. Endocrinology, 159(2), 836–852. https://doi.org/10.1210/en.2017-00752
- Zhong, Y., & Shahidi, F. (2011). Lipophilized epigallocatechin gallate (EGCG) derivatives as novel antioxidants. Journal of Agricultural and Food Chemistry, 59(12), 6526–6533. https://doi.org/10.1021/jf201050j