Glycyrrhiza glabra alcoholic root extract ameliorates hyperglycemia, hyperlipidemia, and glycation-induced free iron-mediated oxidative reactions
Corresponding Author
Subhrojit Sen
Department of Biophysics, Molecular Biology & Bioinformatics, University College of Science, University of Calcutta, Kolkata, India
Correspondence
Subhrojit Sen, Department of Biophysics, Molecular Biology & Bioinformatics, University College of Science, University of Calcutta, 92, Acharyya Prafulla Chandra Road, Kolkata, West Bengal 700009, India.
Email: [email protected] and [email protected]
Contribution: Conceptualization, Data curation, Formal analysis, Investigation, Methodology, Project administration, Resources, Software, Supervision, Visualization, Writing - original draft, Writing - review & editing
Search for more papers by this authorRahul Singh
Corporate Quality Assurance & R&D—Analytical (Healthcare and Food), Emami Ltd., Kolkata, India
Contribution: Validation
Search for more papers by this authorCorresponding Author
Subhrojit Sen
Department of Biophysics, Molecular Biology & Bioinformatics, University College of Science, University of Calcutta, Kolkata, India
Correspondence
Subhrojit Sen, Department of Biophysics, Molecular Biology & Bioinformatics, University College of Science, University of Calcutta, 92, Acharyya Prafulla Chandra Road, Kolkata, West Bengal 700009, India.
Email: [email protected] and [email protected]
Contribution: Conceptualization, Data curation, Formal analysis, Investigation, Methodology, Project administration, Resources, Software, Supervision, Visualization, Writing - original draft, Writing - review & editing
Search for more papers by this authorRahul Singh
Corporate Quality Assurance & R&D—Analytical (Healthcare and Food), Emami Ltd., Kolkata, India
Contribution: Validation
Search for more papers by this authorFunding information
This work was supported by the Council of Scientific and Industrial Research, New Delhi [Grant no. 38(1129)/03/EMRII]. S.S. received a Senior research fellowship from the Indian Council of Medical Research, New Delhi
Abstract
Hyperglycemia-associated oxidative stress leads to various pathophysiological complications in diabetes mellitus. Here, the effects of Glycyrrhiza glabra (G. glabra) root extract of streptozotocin (STZ)-induced diabetic changes and the associated free iron-mediated oxidative reactions were investigated. The animals were divided into five group, Group 1: Control (NC received buffer); Group 2: STZ-induced (DC); Group 3: Control treated with G. glabra root extract (NT, 60 mg/Kg b.w daily for 1 month); Group 4: Diabetic treated with the extract (60 mg/Kg b.w daily for 1 month); Group 5: Diabetic treated with glibenclamide (DTG, 8.6 mg/Kg b.w for 1 month). STZ (i) induced hyperglycemia, abnormal intraperitoneal glucose tolerance test (IPGTT), increased HbA1c and decreased plasma insulin levels (ii) hyperlipidemia (iii) lowered antioxidant enzyme activities (iv) diminished RBC membrane fluidity (v) enhanced hemoglobin glycation-induced iron release and associated free radical reactions. Treatment with the extract resulted in significant reversal of hyperglycemia (DC: 205.0 ± 7.0 mg/dl vs. DT: 87.5 ± 4.5 mg/dl, p < .05); HbA1c (DC: 11.5 ± 2.0 vs. DT: 7.5 ± 0.8 vs. DT: 7.5 ± 0.8, p < .05); insulin (DC: 0.3 ± 0.06 vs. DT: 1.25 ± 0.15 μgm/L, p < .05); free iron (DC: 150.4 ± 7.07 vs. DT: 98.8 ± 7.7 μgm/gm of Hb, p < .05); TBARS (DC + H2O2: 24.62 ± 11.30 vs. DC + H2O2: 9.82 ± 2.56 mmoles/h, p < .05); carbonyl (DC: 40.40 ± 1.57 vs. DT: 25.50 ± 1.12 mmoles/g of Hb, p < .05) levels and β-cell count/pancreatic islet (DC: 85 ± 15 vs. DT: 125 ± 20, p < .05). Thus, G. glabra extract is quite effective against hyperglycemia and the associated free iron-mediated oxidative stress.
Practical applications
Chronic use of oral hypoglycemic synthetic drugs may produce side effects and drug resistance. Recently, various plant extracts are being researched to explore their antihyperglycemic potential. Here, the effects of this alcoholic powdered root extract on STZ-induced diabetic changes and associated oxidative stress, including hemoglobin-induced free iron-mediated oxidative reactions were examined. The STZ-induced diabetic changes and hemoglobin-glycation-induced free iron-mediated oxidative reactions were alleviated in the Wistar rats after 1-month of treatment with the extract. We have also reported previously that glycyrrhizin, a bioactive constituent of Glycyrrhiza glabra root inhibits peroxidase, esterase activities of hemoglobin and hemoglobin-mediated oxidative damage without affecting oxygen-binding capacity of the protein. This preclinical work further substantiates the potential therapeutic use of the G. glabra whole root extract in the treatment of diabetes mellitus.
CONFLICT OF INTEREST
The author declares that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research reported.
Open Research
DATA AVAILABILITY STATEMENT
Research data are not shared.
Supporting Information
Filename | Description |
---|---|
jfbc13970-sup-0001-Supinfo.docxWord 2007 document , 70.4 KB | Supplementary Material |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
REFERENCES
- Abtahi-Evari, S., Shokoohi, M., Abbasi, A., Rajabzade, A., Shoorei, H., & Kalarestaghi, H. (2017). Protective effect of Galega officinalis extract on streptozotocin-induced kidney damage and biochemical factor in diabetic rats. Crescent Journal of Medical and Biological Sciences, 4, 108–114. eISSN 2148–9696.
- Aebi, H. (1984). Catalase in vivo. In Methods Enzymology, 105, 121–126. https://doi.org/10.1016/s0076-6879(84)05016-3
- Ao, Y., Chen, J., Yue, J., & Peng, R. X. (2008). Effects of 18 alpha-glycyrrhizin on the pharmacodynamics and pharmacokinetics of glibenclamidein in alloxan induced diabetic rats. European Journal of Pharmacology, 587, 330–335. https://doi.org/10.1016/j.ejphar.2008.03.043
- Arulselvan, P., Senthilkumar, G. P., Sathish, K. D., & Subramanian, S. (2006). Antidiabetic effect of Murraya koenigii leaves on streptozotocin induced diabetic rats. Die Pharmazie, S1, 874–877. PMID: 17069429.
- Bahmani, M., Sarrafchi, A., Shirzad, H., Shahinfard, N., Rafieian- Kopaei, M., Shahsavari, S., Baharvand-Ahmadi, B., Taherikalani, M., & Ghafourian, S. (2015). Pharmaceutical, phytochemical, and economical potentials of Glycyrrhiza glabra L: A review. Journal of Chemical and Pharmaceutical Sciences, 8, 683‒692. ISSN: 0975-7384
- Batiha, G. E., Beshbishy, A. M., El-Mleeh, A., Abdel-Daim, M. M., & Devkota, H. P. (2020). Traditional uses, bioactive chemical constituents, and pharmacological and toxicological activities of Glycyrrhiza glabra L. (Fabaceae). Biomolecules, 10, 352. https://doi.org/10.3390/biom10030352
- Bhattacharya, J., Bhattacharya, M., Chakraborti, A. S., Chaudhuri, U., & Poddar, R. K. (1998). Structural organization of hemoglobin and myoglobin influence their binding with phenothiazines. International Journal of Biological Macromolecules, 23, 11–18. https://doi.org/10.1016/s0141-8130(98)00006-3
- Brownlee, M. (2001). Biochemistry and molecular cell biology of diabetic complications. Nature, 414, 813–820. https://doi.org/10.1038/414813a
- Buko, V. U., Artsukevich, A., Zavodnik, I., Maltsev, A., Sushko, L., Zimmermann, T., & Dianzani, M. U. (1996). Interaction of malondialdehyde and 4-hydroxynonenal with rat liver plasma membranes and their effect of binding of prostaglandin E2 by specific receptors. Free Radical Research, 25, 415–420. https://doi.org/10.3109/10715769609149064
- Cai, L., Chen, S., Evans, T., Deng, D. X., Mukherjee, K., & Chakrabarti, S. (2000). Apoptotic germ-cell death and testicular damage in experimental diabetes: Prevention by endothelin antagonism. Urological Research, 28, 342–347. https://doi.org/10.1007/s002400000134
- Cao, S. S., & Kaufman, R. J. (2014). Endoplasmic reticulum stress and oxidative stress in cell fate decision and human disease. Antioxidants & Redox Signaling, 21, 396–413. https://doi.org/10.1089/ars.2014.5851
- Cheng, D., Liang, B., & Li, Y. (2013). Antihyperglycemic effect of Ginkgo biloba in streptozotocin-induced diabetes in rats. BioMed Research International, 2013, 162724. https://doi.org/10.1155/2013/162724
- Cussimanio, B. L., Booth, A. A., Todd, P., Hudson, B. G., & Khalifah, R. G. (2003). Unusual susceptibility of heme proteins to damage by glucose during non-enzymatic glycation. Biophysical Chemistry, 105, 743–755. https://doi.org/10.1016/s0301-4622(03)00100-5
- Davies, K. J. (1986). Intracellular proteolytic systems may function as secondary antioxidant defenses: A hypothesis. Journal of Free Radical Biology and Medicine, 2, 155–173. PMID: 3553299.
- Delkhosh, A., Delashoub, M., Tehrani, A. A., Bahrami, A. M., Niazi, V., Shoorei, H., Banimohammad, M., Kalareshtaghi, H., Shokoohi, M., Agabalazadeh, A., & Mohaqiq, M. (2019). Upregulation of FSHR and PCNA by administration of coenzyme Q10 on cyclophosphamide-induced premature ovarian failure in a mouse model. Journal of Biochemical and Molecular Toxicology, 33(11), e22398. https://doi.org/10.1002/jbt.22398
- Dixon, W. J., Hayes, J. J., Levin, J. R., Weidner, M. F., Drombdorski, B. A., & Tullius, T. D. (1991). Hydroxyl radical foot printing. In Methods Enzymology, 208, 485–502. https://doi.org/10.1016/0076-6879(91)08021-9
- Doux, S. P., Woodley, S. E., Palton, N. J., & Wilson, G. L. (1986). Mechanism of nitrosourea-induced cell damage. Alteration in DNA. Diabetes, 3, 5866–5872. https://doi.org/10.2337/diab.35.8.866
- El-Asrar, A. A. A., Mohammad, G., Nawaz, M. I., & Siddiquei, M. M. (2015). High-mobility group box-1 modulates the expression of inflammatory and angiogenic signaling pathways in diabetic retina. Current Eye Research, 40, 1141–1152. https://doi.org/10.3109/02713683.2014.982829
- Godin, V. D., Woheib, S. A., Garnett, E. M., & Goumeniouk, D. A. (1988). Antioxidant enzyme alterations in experimental and clinical diabetes. Molecular and Cellular Biochemistry, 84, 223–231. https://doi.org/10.1007/bf00421057
- Grankvist, K., Murklund, S. L., & Taljedal, I. B. (1981). Cu-Zn superoxide dismutase, Mn-superoxide dismutase, catalase and glutathione peroxidase in pancreatic islets and other tissues in the mouse. Biochemical Journal, 199, 393–398. https://doi.org/10.1042/bj1990393
- Gutteridge, J. M. C. (1986). Iron promoters of the Fenton reaction and lipid peroxidation can be released from hemoglobin by peroxides. FEBS Letters, 201, 291–295. https://doi.org/10.1016/0014-5793(86)80626-3
- Hasnain, S. Z., Borg, D. J., Harcourt, B. E., Tong, H., Sheng, Y. H., Ng, C. P., Das, I., Wang, R., Chen, A. C., Loudovaris, T., & Kay, T. W. (2014). Glycemic control in diabetes is restored by therapeutic manipulation of cytokines that regulate beta cell stress. Nature Medicine, 20, 1417–1426. https://doi.org/10.1038/nm.3705
- Hedge, M., Lotz, S., Drinkgem, J., & Lenzen, S. (1997). Relation between antioxidant enzyme gene expression and antioxidative defense status of insulin producing cell. Diabetes, 46, 1733–1742. https://doi.org/10.2337/diab.46.11.1733
- Hotta, M., Tashiro, F., Ikegami, H., Niwa, H., Ogihara, T., Yodoi, J., & Miazaki, J. (1998). Pancreatic beta cell-specific expression of thioredoxin, an antioxidative and antiapoptotic protein, prevents autoimmune and streptozotocin-induced diabetes. Journal of Experimental Medicine, 188, 1445–1451. https://doi.org/10.1084/jem.188.8.1445
- Hough, S., Avioli, L. V., Tietelbaum, S. L., & Fallon, F. D. (1981). Alkaline phosphatase activity in chronic streptozotocin-induced diabetic rats. Metabolism, 30, 1190–1194. https://doi.org/10.1016/0026-0495(81)90040-8
- Kalaiarasi, P., Kaviarasan, K., & Pugalendi, K. V. (2009). Hypolipidemic activity of 18 beta-glycyrrhetinic acid on streptozotocin-induced diabetic rats. European Journal of Pharmacology, 612, 93–97. https://doi.org/10.1016/j.ejphar.2009.04.003
- Kalaiarasi, P., & Pugalendi, K. V. (2009). Antihyperglycemic effect of 18 beta-glycyrrhetinic acid, aglycone glycyrrhizin, on streptozotocin-diabetic rats. European Journal of Pharmacology, 606, 269–273. https://doi.org/10.1016/j.ejphar.2008.12.057
- Kar, M., & Chakrabarti, A. S. (1999). Release of iron from haemoglobin-A possible source of free radicals in diabetes mellitus. Indian Journal of Experimental Biology, 37, 190–192. PMID: 10641144.
- Kwada, J., Okita, M., Nishida, M., Yashimaura, Y., Toyooka, K., & Kubota, S. (1987). Protective effect of 4,6-O-ethylidene glucose against the cytotoxicity of streptozotocin in pancreatic beta cells in vivo: Indirect evidence for the presence of a glucose transporter in beta cells. Journal of Endocrinology, 112, 375–378. https://doi.org/10.1677/joe.0.1120375
- Levine, R. L., Garland, D., Oliver, C. N., Amici, I., Lenz, A., Aim, B., Shalteil, E. R., & Stadtman, E. R. (1990). Determination of carbonyl content in oxidatively modified proteins. In Methods Enzymology, 186, 464–478. https://doi.org/10.1016/0076-6879(90)86141-h
- Lowry, O. H., Rosenbrough, N. J., Farr, A. L., & Farr, R. J. (1951). Protein measurement with the folin phenol reagent. Journal of Biological Chemistry, 193, 265–276. PMID:14907713. https://doi.org/10.1016/S0021-9258(19)52451-6
- Luna, L. G. (1986). Mannual of histologic staining methods of the Armed Forces Institute of Pathology ( 3rd ed.). Mc-Graw Hill Book Company.
- Mae, T., Kishida, H., Nishiyama, T., Tsukagawa, M., Konishi, E., Kuroda, M., Mimaki, Y., Sashida, Y., Takahashi, K., Kawada, T., Nakagawa, K., & Kitahara, M. (2003). A licorice ethanolic extract with peroxisome proliferator-activated receptor-γ ligand binding activity affects diabetes in KK-Ay Mice, abdominal obesity in diet-induced obese C57BL mice and hypertension in spontaneously hypertensive rats. Journal of Nutrition, 133, 3369–3377. https://doi.org/10.1093/jn/133.11.3369
- Montilla, P., Barcos, M., Munoz, C. M., Bujalance, R., Munoz-Castaneda, J., & Tunez, I. (2005). Red wine prevents brain oxidative stress and nephropathy in streptozotocin induced diabetic rats. Journal of Biochemistry and Molecular Biology, 38, 539–544. PMID: 16202232. https://doi.org/10.5483/BMBRep.2005.38.5.539
- Mori, D. M., Baviera, A. M., Ramalho, L. T. O., Vendramini, R. C., Iguatemy, L., Brunetti, I. L., & Pepato, M. T. (2003). Temporal response pattern of biochemical analytes in experimental diabetes. Biotechnology and Applied Biochemistry, 38, 183–191. https://doi.org/10.1042/BA20030034
- Murklund, S., & Murklund, G. (1974). Involvement of the superoxide anion radical in the autooxidation of pyrogallol and a convenient assay for superoxide dismutase. European Journal of Biochemistry, 47, 469–474. https://doi.org/10.1111/j.1432-1033.1974.tb03714.x
- Nagasawa, T., Tabata, N., Ito, Y., Aiba, Y., Nishizawa, N., & Kitts, D. D. (2003). Dietary G-rutin suppresses glycation in tissue proteins of streptozotocin-induced diabetic rats. Molecular and Cellular Biochemistry, 252, 142–147. https://doi.org/10.1023/a:1025563519088
- Nakagawa, K., Kishida, H., Arai, N., Nishiyama, T., & Mae, T. (2004). Licorice flavonoids suppress abdominal fat accumulation and increase in blood glucose level in obese diabetic KK-Ay mice. Biological and Pharmaceutical Bulletin, 27, 1775–1778. https://doi.org/10.1248/bpb.27.1775
- Nankivell, B. J., Tay, R. A., Boadle, R. A., & Harris, D. C. (1994). Lysosomal iron accumulation in diabetic nephropathy. Renal Failure, 16, 367–381. https://doi.org/10.3109/08860229409044877
- Pandit, S., Ponnusankar, S., Ponnusankar, S., Bandyopadhyay, A., Sarada, O., & Mukherjee, P. K. (2011). Exploring the possible metabolism mediated interaction of Glycyrrhiza glabra extract with CYP3A4 and CYP2D6. Phytotherapy Research, 25, 1429–1434. https://doi.org/10.1002/ptr.3426
- Panter, S. S. (1994). Release of iron from hemoglobin. In Methods Enzymology, 231, 502–514. https://doi.org/10.1016/0076-6879(94)31034-3
- Pari, L., & Latha, M. (2004). Protective role of Scoparia dulcis plant extract on brain antioxidant status and lipid peroxidation in STZ diabetic male Wistar rats. BMC Complementary and Alternative Medicine, 2, 1–8. https://doi.org/10.1186/1472-6882-4-16
- Pischetsrieder, M., Seidel, W., Münch, G., & Schinzel, R. (2008). N2-(1-Carboxyethyl)deoxyguanosine, a nonenzymatic glycation adduct of DNA, induces single-strand breaks and increases mutation frequencies. Biochemical and Biophysical Research Communications, 264, 544–549. https://doi.org/10.1006/bbrc.1999.1528
- Preece, A. (1972). A manual for histological techninicians ( 3rd ed.). Brown and Co.
- Schachter, D., & Shinitzky, M. (1977). Fluorescence polarisation of rat intestinal microvillus cells. Journal of Clinical Investigation, 95, 536–548. https://doi.org/10.1248/cpb.35.302
- Schiller, P. C., D’Ippolito, G., Brambilla, R., Roos, B. A., & Howard, G. A. (2001). Inhibition of gap-junctional communication induces the trans-differentiation of osteoblasts to an adipocytic phenotype in vitro. Journal of Biological Chemistry, 276, 14133–14138. https://doi.org/10.1074/jbc.M011055200
- Sehrijvers, B. F., Vreise, A. S. D., Voorde, J. V. D., Rasch, R., Lameire, N. H., & Flyvvjerg, A. (2004). Long term renal changes in the Goto-Kakizaki rat, a model of lean type 2 diabetes. Nephrology Dialysis Transplantion, 19, 1092–1097. https://doi.org/10.1093/ndt/gfh107
- Sen, S., Kar, M., Roy, A., & Chakraborti, A. S. (2005). Effect of nonenzymatic glycation on functional and structural properties of hemoglobin. Biophysical Chemistry, 113, 289–298. https://doi.org/10.1016/j.bpc.2004.05.005
- Sen, S., Roy, M., & Chakraborti, A. S. (2011). Ameliorative effects of glycyrrhizin on streptozotocin-induced diabetes in rats. Journal of Pharmacy and Pharmacology, 63, 287–296. https://doi.org/10.1111/j.2042-7158.2010.01217.x
- Sharma, S. K., Jain, S., Bahl, P., Potturi, P., Rathi, M., Naidu, S., Sachdeva, N., Dhir, V., & Jain, S. (2020). Ovarian dysfunction with moderate-dose intravenous cyclophosphamide (modified NIH regimen) and mycophenolate mofetil in young adults with severe lupus: A prospective cohort study. Arthritis Research Therapy, 22, 189. https://doi.org/10.1186/s13075-020-02292-y
- Shokoohi, M., Shoorei, M., Khaki, A., Khaki, A. A., Moghimian, M., & Abtahi-Eivary, S. H. (2019). Hesperidin attenuated apoptotic related genes in testicle of a male rat model of varicocoele. Andrology, 8(1), 249–258. https://doi.org/10.1111/andr.12681
- Shokri, F., Shokoohi, M., Niazkar, H. R., Adabi, A. R. R., Kalareshtaghi, H., & Ahin, H. (2019). Investigation the spermatogenesis and testis structure in diabetic rats after treatment with Galega officinalis extract. Crescent Journal of Medical and Biological Sciences, 6, 31–36. eISSN 2148-9696.
- Shoorei, H., Khaki, A., Khaki, A. A., Hemmati, A. A., Moghimian, M., & Shokoohi, M. (2019). The ameliorative effect of carvacrol on oxidative stress and germ cell apoptosis in testicular tissue of adult diabetic rats. Biomedicine and Pharmacotherapy, 111, 568–578. https://doi.org/10.1016/j.biopha.2018.12.054
- Sil, R., & Chakraborti, A. S. (2016). Oxidative inactivation of liver mitochondria in high fructose diet-induced metabolic syndrome in rats: Effect of glycyrrhizin treatment. Phytotherapy Research, 30, 1503–1512. https://doi.org/10.1002/ptr.5654
- Sil, R., Sen, S., & Chakraborti, A. S. (2015). Interaction of glycyrrhizin with human haemoglobin. Current Science, 108, 364–371.
- Sozmen, E. Y., Sozmen, B., Delen, Y., & Onat, T. (2001). Catalase/superoxide dismutase (SOD) and catalase/paraoxonase (PON) ratios may implicate poor glycemic control. Archives of Medical Research, 32, 283–287. PMID: 11440784. https://doi.org/10.1016/S0188-4409(01)00285-5
- Stadtman, E. R., Hayashi, E., Niki, M., Kondo, T., & Yoshikawa, T., eds (1987). Medical, biochemical and chemical aspects of free radicals (Vol. 157, pp. 11–25). Elsevier.
- Szkudelski, T. (2001). The mechanism of alloxan and streptozotocin action in beta-cells of the rat pancreas. Physiology Research, 50, 536–546. PMID: 11829314.
- Thambidorai, D., & Bachawat, B. K. (1977). Purification and properties of brain alkaline phosphatase. Journal of Neurochemistry, 29, 503–512. https://doi.org/10.1111/j.1471-4159.1977.tb10699.x
- Thornalley, P. J. (2008). Protein and nucleotide damage by glyoxal and methylglyoxal in physiological systems–role in ageing and disease. Drug metabolism and drug. Interaction, 23, 125–150. https://doi.org/10.1515/dmdi.2008.23.1-2.125
- Trachtman, H., Futterweit, S., Maesaka, J., Ma, C., Valderrama, E., Fuchs, A., Tarectecan, A. A., Rao, P. S., Sturman, J. A., & Boles, T. H. (1995). Taurine ameliorates chronic streptozotocin-induced diabetic nephropathy in rats. American Journal of Physiology, 269, F429-438. https://doi.org/10.1152/ajprenal.1995.269.3.F429
- Tung, N. H., Shoyama, Y., Wada, M., & Tanaka, H. (2015). Two activators of in vitro fertilization in mice from licorice. Biochemical and Biophysical Research Communications, 467, 447–450. https://doi.org/10.1016/j.bbrc.2015.09.088
- Vasquez, N. A., Zamudio, P., Ceron, E., Vanda, B., Zenteno, E., & Sandoval-Carvajal, G. (2003). Effect of glycine in streptozotocin-induced diabetic rats. Comparative Biochemistry and Physiology, 134, 521–527. PMID: 12727302.
- Vessal, M., Hemmati, M., & Vasei, M. (2003). Antidiabetic effects of quercetin in streptozotocin-induced diabetic rats. Comparative Biochemistry and Physiology, 135, 357–364. PMID: 12927910.
- Visyavadiya, P. N., & Narasimhacharya, V. R. L. (2006). Hypocholesterolaemic and antioxidant effects of Glycyrrhiza glabra (Linn) in rats. Molecular Nutrition Food and Research, 50, 1080–1086. https://doi.org/10.1002/mnfr.200600063
- Walter, P., & Ron, D. (2011). The unfolded protein response: From stress pathway to homeostatic regulation. Science, 334, 1081–1086. https://doi.org/10.1126/science.1209038
- Weidner, C., Groot, J. C., Prasad, A., Freiwald, A., Quedenau, C., Magdalena, K., Witzke, A., Kodelja, V., Han, C., Giegold, S., Baumann, M., Klebl, B., Siems, K., Müller-Kuhrt, L., Schürmann, A., Schüler, R., Pfeiffer, A. F. H., Schroeder, F. C., Büssow, K., & Sauer, S. (2012). Amorfrutins are potent antidiabetic dietary natural products. Proceedings of National Academy of Sciences, 109, 7257–7262. https://doi.org/10.1073/pnas.1116971109
- Willsky, G. R., Chi, L. H., Liang, Y., Gaile, D. P., Hu, Z., & Crans, D. C. (2006). Diabetes-altered gene expression in rat skeletal muscle corrected to oral administration of vanadyl sulfate. Physiological Genomics, 26, 192–201. https://doi.org/10.1152/physiolgenomics.00196.2005
- Winocour, P. D., Watala, C., Perry, D. W., & Kinlough-Rathbone, R. L. (1992). Decreased platelet membrane fluidity due to glycation or acetylation of membrane proteins. Journal of Thrombosis and Haemostasis, 68, 577–582. PMID: 1455404. https://doi.org/10.1055/s-0038-1646320
- Yan, H., & Harding, J. J. (1997). Glycation-induced inactivation and loss of antigenicity of catalase and superoxide dismutase. Biochemical Journal, 328, 599–605. https://doi.org/10.1042/bj3280599
- Zhang, H., Zhang, R., Chen, J., Shi, M., Li, W., & Zhang, X. (2017). High mobility group box 1 inhibitor glycyrrhizic acid attenutes kidney injury in streptozotocin-induced diabetic rats. Kidney and Blood Pressure Research, 42, 894–904. https://doi.org/10.1159/000485045