The interaction effect between tea polyphenols and intestinal microbiota: Role in ameliorating neurological diseases
Mengyu Hong
Department of Food Science and Engineering, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, P.R. China
Contribution: Writing - original draft
Search for more papers by this authorCorresponding Author
Ruilin Zhang
Department of Food Science and Engineering, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, P.R. China
Correspondence
Ruilin Zhang, Department of Food Science and Engineering, College of Food and Pharmaceutical Sciences, Ningbo University, 818 Fenghua Road, Ningbo 315211, China.
Email: [email protected]
Contribution: Project administration
Search for more papers by this authorYanan Liu
Department of Food Science and Engineering, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, P.R. China
Contribution: Writing - review & editing
Search for more papers by this authorZufang Wu
Department of Food Science and Engineering, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, P.R. China
Contribution: Validation
Search for more papers by this authorPeifang Weng
Department of Food Science and Engineering, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, P.R. China
Contribution: Validation
Search for more papers by this authorMengyu Hong
Department of Food Science and Engineering, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, P.R. China
Contribution: Writing - original draft
Search for more papers by this authorCorresponding Author
Ruilin Zhang
Department of Food Science and Engineering, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, P.R. China
Correspondence
Ruilin Zhang, Department of Food Science and Engineering, College of Food and Pharmaceutical Sciences, Ningbo University, 818 Fenghua Road, Ningbo 315211, China.
Email: [email protected]
Contribution: Project administration
Search for more papers by this authorYanan Liu
Department of Food Science and Engineering, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, P.R. China
Contribution: Writing - review & editing
Search for more papers by this authorZufang Wu
Department of Food Science and Engineering, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, P.R. China
Contribution: Validation
Search for more papers by this authorPeifang Weng
Department of Food Science and Engineering, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, P.R. China
Contribution: Validation
Search for more papers by this authorAbstract
Tea polyphenols (TP) are one of the most functional and bioactive substances in tea. The interactions between TP and intestinal microbiota suggest that probiotics intervention is a useful method to ameliorate neurological diseases. Now, numerous researches have suggested that TP plays a significant role in modulating intestinal bacteria, especially in the area of sustaining a stable state of intestinal microbial function and abundance. Furthermore, homeostatic intestinal bacteria can enhance the immunity of the host. The close reciprocity between intestinal microbiota and the central nervous system provides a new chance for TP to modulate neural-related diseases depending on intestinal microbiota. Therefore, based on the bidirectional relationship between the brain and the intestines, this review provides a new clue to solve insomnia symptoms and related neurological diseases that will enable us to better study the bidirectional effects of TP and intestinal microbiota on the improvement of host health.
Practical applications
This review provides a new clue to solve insomnia symptoms and related neurological diseases that will enable us to better study bidirectional effects of TP and intestinal microbiota on the improvement of host health.
Open Research
DATA AVAILABILITY STATEMENT
All data generated or analyzed during this study are included in this article.
REFERENCES
- Abraham, B. P., & Quigley, E. (2017). Probiotics in inflammatory bowel disease. Gastroenterology Clinics of North America, 46(4), 769–782. https://doi.org/10.1016/j.gtc.2017.08.003
- Andermann, M. L., & Lowell, B. B. (2017). Toward a wiring diagram understanding of appetite control. Neuron, 95(4), 757–778. https://doi.org/10.1016/j.neuron.2017.06.014
- Bhatt, S., Nagappa, A. N., & Patil, C. R. (2020). Role of oxidative stress in depression. Drug Discovery Today, 25(7), 1270–1276. https://doi.org/10.1016/j.drudis.2020.05.001
- Bhuiyan, P., Chen, Y., Karim, M., Dong, H., & Qian, Y. (2021). Bidirectional communication between mast cells and the gut-brain axis in neurodegenerative diseases: Avenues for therapeutic intervention. Brain Research Bulletin, 172, 61–78. https://doi.org/10.1016/j.brainresbull.2021.04.010
- Bonaz, B., Sinniger, V., & Pellissier, S. (2017). Vagus nerve stimulation: A new promising therapeutic tool in inflammatory bowel disease. Journal of Internal Medicine, 282(1), 46–63. https://doi.org/10.1111/joim.12611
- Boonlert, W., Benya-Aphikul, H., Umka Welbat, J., & Rodsiri, R. (2017). Ginseng extract G115 attenuates ethanol-induced depression in mice by increasing brain BDNF levels. Nutrients, 9(9), 931. https://doi.org/10.3390/nu9090931
- Bus, B. A., Molendijk, M. L., Tendolkar, I., Penninx, B. W., Prickaerts, J., Elzinga, B. M., & Voshaar, R. C. (2015). Chronic depression is associated with a pronounced decrease in serum brain-derived neurotrophic factor over time. Molecular Psychiatry, 20(5), 602–608. https://doi.org/10.1038/mp.2014.83
- Chakrawarti, L., Agrawal, R., Dang, S., Gupta, S., & Gabrani, R. (2016). Therapeutic effects of EGCG: A patent review. Expert Opinion on Therapeutic Patents, 26(8), 907–916. https://doi.org/10.1080/13543776.2016.1203419
- Chen, T., & Yang, C. S. (2020). Biological fates of tea polyphenols and their interactions with microbiota in the gastrointestinal tract: Implications on health effects. Critical Reviews in Food Science and Nutrition, 60(16), 2691–2709. https://doi.org/10.1080/10408398.2019.1654430
- Cheng, M., Zhang, X., Miao, Y., Cao, J., Wu, Z., & Weng, P. (2017). The modulatory effect of (-)-epigallocatechin 3-O-(3-O-methyl) gallate (EGCG3″Me) on intestinal microbiota of high fat diet-induced obesity mice model. Food Research International, 92, 9–16. https://doi.org/10.1016/j.foodres.2016.12.008
- Cheng, M., Zhang, X., Zhu, J., Cheng, L., Cao, J., Wu, Z., Weng, P., & Zheng, X. (2018). A metagenomics approach to the intestinal microbiome structure and function in high fat diet-induced obesity mice fed with oolong tea polyphenols. Food & Function, 9(2), 1079–1087. https://doi.org/10.1039/c7fo01570d
- Chiu, H. F., Venkatakrishnan, K., & Wang, C. K. (2020). The role of nutraceuticals as a complementary therapy against various neurodegenerative diseases: A mini-review. Journal of Traditional and Complementary Medicine, 10(5), 434–439. https://doi.org/10.1016/j.jtcme.2020.03.008
- Dash, S., Clarke, G., Berk, M., & Jacka, F. N. (2015). The gut microbiome and diet in psychiatry: Focus on depression. Current Opinion in Psychiatry, 28(1), 1–6. https://doi.org/10.1097/YCO.0000000000000117
- Desmet, P. M., & Schifferstein, H. N. (2008). Sources of positive and negative emotions in food experience. Appetite, 50(2–3), 290–301. https://doi.org/10.1016/j.appet.2007.08.003
- Dong, X., Yang, C., Cao, S., Gan, Y., Sun, H., Gong, Y., Yang, H., Yin, X., & Lu, Z. (2015). Tea consumption and the risk of depression: A meta-analysis of observational studies. The Australian and New Zealand Journal of Psychiatry, 49(4), 334–345. https://doi.org/10.1177/0004867414567759
- Duda-Chodak, A., Tarko, T., Satora, P., & Sroka, P. (2015). Interaction of dietary compounds, especially polyphenols, with the intestinal microbiota: A review. European Journal of Nutrition, 54(3), 325–341. https://doi.org/10.1007/s00394-015-0852-y
- Einöther, S. J., & Martens, V. E. (2013). Acute effects of tea consumption on attention and mood. The American Journal of Clinical Nutrition, 98(6 Suppl.), 1700S–1708S. https://doi.org/10.3945/ajcn.113.058248
- Elson, C. O., & Cong, Y. (2012). Host-microbiota interactions in inflammatory bowel disease. Gut Microbes, 3(4), 332–344. https://doi.org/10.4161/gmic.20228
- Eng, Q. Y., Thanikachalam, P. V., & Ramamurthy, S. (2018). Molecular understanding of Epigallocatechin gallate (EGCG) in cardiovascular and metabolic diseases. Journal of Ethnopharmacology, 210, 296–310. https://doi.org/10.1016/j.jep.2017.08.035
- Fassarella, M., Blaak, E. E., Penders, J., Nauta, A., Smidt, H., & Zoetendal, E. G. (2021). Gut microbiome stability and resilience: Elucidating the response to perturbations in order to modulate gut health. Gut, 70(3), 595–605. https://doi.org/10.1136/gutjnl-2020-321747
- Feng, Q., Chen, W. D., & Wang, Y. D. (2018). Gut Microbiota: An integral moderator in health and disease. Frontiers in Microbiology, 9, 151. https://doi.org/10.3389/fmicb.2018.00151
- Foster, J. A., Rinaman, L., & Cryan, J. F. (2017). Stress & the gut-brain axis: Regulation by the microbiome. Neurobiology of Stress, 7, 124–136. https://doi.org/10.1016/j.ynstr.2017.03.001
- Giles, G. E., Mahoney, C. R., Brunyé, T. T., Taylor, H. A., & Kanarek, R. B. (2017). Caffeine and theanine exert opposite effects on attention under emotional arousal. Canadian Journal of Physiology and Pharmacology, 95(1), 93–100. https://doi.org/10.1139/cjpp-2016-0498
- Gold, A. K., & Kinrys, G. (2019). Treating circadian rhythm disruption in bipolar disorder. Current Psychiatry Reports, 21(3), 14. https://doi.org/10.1007/s11920-019-1001-8
- Gowd, V., Bao, T., Wang, L., Huang, Y., Chen, S., Zheng, X., Cui, S., & Chen, W. (2018). Antioxidant and antidiabetic activity of blackberry after gastrointestinal digestion and human gut microbiota fermentation. Food Chemistry, 269, 618–627. https://doi.org/10.1016/j.foodchem.2018.07.020
- Guo, T., Ho, C. T., Zhang, X., Cao, J., Wang, H., Shao, X., Pan, D., & Wu, Z. (2019). Oolong tea polyphenols ameliorate circadian rhythm of intestinal microbiome and liver clock genes in mouse model. Journal of Agricultural and Food Chemistry, 67(43), 11969–11976. https://doi.org/10.1021/acs.jafc.9b04869
- Guo, T., Song, D., Ho, C. T., Zhang, X., Zhang, C., Cao, J., & Wu, Z. (2019). Omics analyses of gut microbiota in a circadian rhythm disorder mouse model fed with oolong tea polyphenols. Journal of Agricultural and Food Chemistry, 67(32), 8847–8854. https://doi.org/10.1021/acs.jafc.9b03000
- Huang, Y., Wang, Y. U., Wang, H., Liu, Z., Yu, X., Yan, J., Yu, Y., Kou, C., Xu, X., Lu, J., Wang, Z., He, S., Xu, Y., He, Y., Li, T., Guo, W., Tian, H., Xu, G., Xu, X., … Wu, Y. (2019). Prevalence of mental disorders in China: A cross-sectional epidemiological study. The Lancet. Psychiatry, 6(3), 211–224. https://doi.org/10.1016/S2215-0366(18)30511-X
- Ivanova, N., Nenchovska, Z., Atanasova, M., Laudon, M., Mitreva, R., & Tchekalarova, J. (2021). Chronic piromelatine treatment alleviates anxiety, depressive responses and abnormal hypothalamic-pituitary-adrenal axis activity in prenatally stressed male and female rats. Cellular and Molecular Neurobiology. https://doi.org/10.1007/s10571-021-01100-8
- Jang, H. M., Lee, K. E., & Kim, D. H. (2019). The preventive and curative effects of Lactobacillus reuteri NK33 and Bifidobacterium adolescentis NK98 on immobilization stress-induced anxiety/depression and colitis in mice. Nutrients, 11(4), 819. https://doi.org/10.3390/nu11040819
- Jašarević, E., Howerton, C. L., Howard, C. D., & Bale, T. L. (2015). Alterations in the vaginal microbiome by maternal stress are associated with metabolic reprogramming of the offspring gut and brain. Endocrinology, 156(9), 3265–3276. https://doi.org/10.1210/en.2015-1177
- Khan, N., & Mukhtar, H. (2018). Tea polyphenols in promotion of human health. Nutrients, 11(1), 39. https://doi.org/10.3390/nu11010039
- Kuang, Z., Wang, Y., Li, Y., Ye, C., Ruhn, K. A., Behrendt, C. L., Olson, E. N., & Hooper, L. V. (2019). The intestinal microbiota programs diurnal rhythms in host metabolism through histone deacetylase 3. Science, 365(6460), 1428–1434. https://doi.org/10.1126/science.aaw3134
- Kumar Jha, P., Challet, E., & Kalsbeek, A. (2015). Circadian rhythms in glucose and lipid metabolism in nocturnal and diurnal mammals. Molecular and Cellular Endocrinology, 418(Pt 1), 74–88. https://doi.org/10.1016/j.mce.2015.01.024
- Li, Y., Rahman, S. U., Huang, Y., Zhang, Y., Ming, P., Zhu, L., Chu, X., Li, J., Feng, S., Wang, X., & Wu, J. (2020). Green tea polyphenols decrease weight gain, ameliorate alteration of gut microbiota, and mitigate intestinal inflammation in canines with high-fat-diet-induced obesity. The Journal of Nutritional Biochemistry, 78, 108324. https://doi.org/10.1016/j.jnutbio.2019.108324
- Liu, F., Zhang, X., Zhao, B., Tan, X., Wang, L., & Liu, X. (2019). Role of food phytochemicals in the modulation of circadian clocks. Journal of Agricultural and Food Chemistry, 67(32), 8735–8739. https://doi.org/10.1021/acs.jafc.9b02263
- Liu, J. Y., He, D., Xing, Y. F., Zeng, W., Ren, K., Zhang, C., Lu, Y., Yang, S., Ou, S. J., Wang, Y., & Xing, X. H. (2021). Effects of bioactive components of Pu-erh tea on gut microbiomes and health: A review. Food Chemistry, 353, 129439. https://doi.org/10.1016/j.foodchem.2021.129439
- Lubomski, M., Davis, R. L., & Sue, C. M. (2019). The gut microbiota: A novel therapeutic target in Parkinson's disease? Parkinsonism & Related Disorders, 66, 265–266. https://doi.org/10.1016/j.parkreldis.2019.08.010
- Makki, K., Deehan, E. C., Walter, J., & Bäckhed, F. (2018). The impact of dietary fiber on gut microbiota in host health and disease. Cell Host & Microbe, 23(6), 705–715. https://doi.org/10.1016/j.chom.2018.05.012
- Matsuyama, Y., Jürges, H., Dewey, M., & Listl, S. (2021). Causal effect of tooth loss on depression: Evidence from a population-wide natural experiment in the USA. Epidemiology and Psychiatric Sciences, 30, e38. https://doi.org/10.1017/S2045796021000287
- Maynard, C., & Weinkove, D. (2018). The gut microbiota and ageing. Sub-cellular Biochemistry, 90, 351–371. https://doi.org/10.1007/978-981-13-2835-0_12
- Mithul Aravind, S., Wichienchot, S., Tsao, R., Ramakrishnan, S., & Chakkaravarthi, S. (2021). Role of dietary polyphenols on gut microbiota, their metabolites and health benefits. Food Research International, 142, 110189. https://doi.org/10.1016/j.foodres.2021.110189
- Nobs, S. P., Tuganbaev, T., & Elinav, E. (2019). Microbiome diurnal rhythmicity and its impact on host physiology and disease risk. EMBO Reports, 20(4), e47129. https://doi.org/10.15252/embr.201847129
- Noya, S. B., Colameo, D., Brüning, F., Spinnler, A., Mircsof, D., Opitz, L., Mann, M., Tyagarajan, S. K., Robles, M. S., & Brown, S. A. (2019). The forebrain synaptic transcriptome is organized by clocks but its proteome is driven by sleep. Science, 366(6462), eaav2642. https://doi.org/10.1126/science.aav2642
- Ohira, H., Tsutsui, W., & Fujioka, Y. (2017). Are short chain fatty acids in gut microbiota defensive players for inflammation and atherosclerosis? Journal of Atherosclerosis and Thrombosis, 24(7), 660–672. https://doi.org/10.5551/jat.RV17006
- Onyango, I. G., Bennett, J. P., & Stokin, G. B. (2021). Regulation of neuronal bioenergetics as a therapeutic strategy in neurodegenerative diseases. Neural Regeneration Research, 16(8), 1467–1482. https://doi.org/10.4103/1673-5374.303007
- Panda, S. (2016). Circadian physiology of metabolism. Science, 354(6315), 1008–1015. https://doi.org/10.1126/science.aah4967
- Parker, A., Fonseca, S., & Carding, S. R. (2020). Gut microbes and metabolites as modulators of blood-brain barrier integrity and brain health. Gut Microbes, 11(2), 135–157. https://doi.org/10.1080/19490976.2019.1638722
- Pervin, M., Unno, K., Takagaki, A., Isemura, M., & Nakamura, Y. (2019). Function of green tea catechins in the brain: Epigallocatechin gallate and its metabolites. International Journal of Molecular Sciences, 20(15), 3630. https://doi.org/10.3390/ijms20153630
- Pistollato, F., Sumalla Cano, S., Elio, I., Masias Vergara, M., Giampieri, F., & Battino, M. (2016). Associations between sleep, cortisol regulation, and diet: Possible implications for the risk of Alzheimer disease. Advances in Nutrition, 7(4), 679–689. https://doi.org/10.3945/an.115.011775
- Rashidinejad, A., Boostani, S., Babazadeh, A., Rehman, A., Rezaei, A., Akbari-Alavijeh, S., Shaddel, R., & Jafari, S. M. (2021). Opportunities and challenges for the nanodelivery of green tea catechins in functional foods. Food Research International, 142, 110186. https://doi.org/10.1016/j.foodres.2021.110186
- Robertson, S. J., Goethel, A., Girardin, S. E., & Philpott, D. J. (2018). Innate immune influences on the gut microbiome: Lessons from mouse models. Trends in Immunology, 39(12), 992–1004. https://doi.org/10.1016/j.it.2018.10.004
- Rogers, G. B., Keating, D. J., Young, R. L., Wong, M. L., Licinio, J., & Wesselingh, S. (2016). From gut dysbiosis to altered brain function and mental illness: Mechanisms and pathways. Molecular Psychiatry, 21(6), 738–748. https://doi.org/10.1038/mp.2016.50
- Rothenberg, D. O., & Zhang, L. (2019). Mechanisms underlying the anti-depressive effects of regular tea consumption. Nutrients, 11(6), 1361. https://doi.org/10.3390/nu11061361
- Salamone, D., Rivellese, A. A., & Vetrani, C. (2021). The relationship between gut microbiota, short-chain fatty acids and type 2 diabetes mellitus: The possible role of dietary fibre. Acta Diabetologica. https://doi.org/10.1007/s00592-021-01727-5
- Sender, R., Fuchs, S., & Milo, R. (2016). Are we really vastly outnumbered? Revisiting the ratio of bacterial to host cells in humans. Cell, 164(3), 337–340. https://doi.org/10.1016/j.cell.2016.01.013
- Settanni, C. R., Ianiro, G., Bibbò, S., Cammarota, G., & Gasbarrini, A. (2021). Gut microbiota alteration and modulation in psychiatric disorders: Current evidence on fecal microbiota transplantation. Progress in Neuro-psychopharmacology & Biological Psychiatry, 109, 110258. https://doi.org/10.1016/j.pnpbp.2021.110258
- Singh, R., Kiloung, J., Singh, S., & Sharma, D. (2008). Effect of paradoxical sleep deprivation on oxidative stress parameters in brain regions of adult and old rats. Biogerontology, 9(3), 153–162. https://doi.org/10.1007/s10522-008-9124-z
- Spichak, S., Bastiaanssen, T., Berding, K., Vlckova, K., Clarke, G., Dinan, T. G., & Cryan, J. F. (2021). Mining microbes for mental health: Determining the role of microbial metabolic pathways in human brain health and disease. Neuroscience and Biobehavioral Reviews, 125, 698–761. https://doi.org/10.1016/j.neubiorev.2021.02.044
- Spielman, L. J., Gibson, D. L., & Klegeris, A. (2018). Unhealthy gut, unhealthy brain: The role of the intestinal microbiota in neurodegenerative diseases. Neurochemistry International, 120, 149–163. https://doi.org/10.1016/j.neuint.2018.08.005
- Spielman, L. J., Little, J. P., & Klegeris, A. (2016). Physical activity and exercise attenuate neuroinflammation in neurological diseases. Brain Research Bulletin, 125, 19–29. https://doi.org/10.1016/j.brainresbull.2016.03.012
- Sun, Q., Cheng, L., Zeng, X., Zhang, X., Wu, Z., & Weng, P. (2020). The modulatory effect of plant polysaccharides on gut flora and the implication for neurodegenerative diseases from the perspective of the microbiota-gut-brain axis. International Journal of Biological Macromolecules, 164, 1484–1492. https://doi.org/10.1016/j.ijbiomac.2020.07.208
- Sun, Q., Cheng, L., Zhang, X., Wu, Z., & Weng, P. (2021). The interaction between tea polyphenols and host intestinal microorganisms: An effective way to prevent psychiatric disorders. Food & Function, 12(3), 952–962. https://doi.org/10.1039/d0fo02791j
- Teichman, E. M., O'Riordan, K. J., Gahan, C., Dinan, T. G., & Cryan, J. F. (2020). When rhythms meet the blues: Circadian interactions with the microbiota-gut-brain axis. Cell Metabolism, 31(3), 448–471. https://doi.org/10.1016/j.cmet.2020.02.008
- Torres-Fuentes, C., Golubeva, A. V., Zhdanov, A. V., Wallace, S., Arboleya, S., Papkovsky, D. B., El Aidy, S., Ross, P., Roy, B. L., Stanton, C., Dinan, T. G., Cryan, J. F., & Schellekens, H. (2019). Short-chain fatty acids and microbiota metabolites attenuate ghrelin receptor signaling. FASEB Journal, 33(12), 13546–13559. https://doi.org/10.1096/fj.201901433R
- Unno, K., Iguchi, K., Tanida, N., Fujitani, K., Takamori, N., Yamamoto, H., Ishii, N., Nagano, H., Nagashima, T., Hara, A., Shimoi, K., & Hoshino, M. (2013). Ingestion of theanine, an amino acid in tea, suppresses psychosocial stress in mice. Experimental Physiology, 98(1), 290–303. https://doi.org/10.1113/expphysiol.2012.065532
- Vignes, M., Maurice, T., Lanté, F., Nedjar, M., Thethi, K., Guiramand, J., & Récasens, M. (2006). Anxiolytic properties of green tea polyphenol (-)-epigallocatechin gallate (EGCG). Brain Research, 1110(1), 102–115. https://doi.org/10.1016/j.brainres.2006.06.062
- Wang, Y., Kuang, Z., Yu, X., Ruhn, K. A., Kubo, M., & Hooper, L. V. (2017). The intestinal microbiota regulates body composition through NFIL3 and the circadian clock. Science, 357(6354), 912–916. https://doi.org/10.1126/science.aan0677
- Wei, B. B., Liu, M. Y., Zhong, X., Yao, W. F., & Wei, M. J. (2019). Increased BBB permeability contributes to EGCG-caused cognitive function improvement in natural aging rats: Pharmacokinetic and distribution analyses. Acta Pharmacologica Sinica, 40(11), 1490–1500. https://doi.org/10.1038/s41401-019-0243-7
- Yan, R. N., Yang, C. S., & Zhang, X. (2021). Maintain host health with time-restricted eating and phytochemicals: A review based on gut microbiome and circadian rhythm. Trends in Food Science & Technology, 108, 258–268. https://doi.org/10.1016/j.tifs.2021.01.007
- Yang, Y., Qiao, L., Zhang, X., Wu, Z., & Weng, P. (2015). Effect of methylated tea catechins from Chinese oolong tea on the proliferation and differentiation of 3T3-L1 preadipocyte. Fitoterapia, 104, 45–49. https://doi.org/10.1016/j.fitote.2015.05.007
- Yoto, A., Motoki, M., Murao, S., & Yokogoshi, H. (2012). Effects of L-theanine or caffeine intake on changes in blood pressure under physical and psychological stresses. Journal of Physiological Anthropology, 31(1), 28. https://doi.org/10.1186/1880-6805-31-28
- Zhang, M., Zhang, X., Ho, C. T., & Huang, Q. (2019). Chemistry and health effect of tea polyphenol (-)-Epigallocatechin 3-O-(3-O-Methyl) gallate. Journal of Agricultural and Food Chemistry, 67(19), 5374–5378. https://doi.org/10.1021/acs.jafc.8b04837