Masseter muscle and gingival tissue inflammatory response following treatment with high-fructose corn syrup in rats: Anti-inflammatory and antioxidant effects of kefir
Ömer Ekici
Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Afyonkarahisar Health Sciences University, Afyonkarahisar, Turkey
Contribution: Project administration
Search for more papers by this authorEsra Aslan
Department of Histology and Embryology, Faculty of Medicine, Afyonkarahisar Health Sciences University, Afyonkarahisar, Turkey
Contribution: Visualization
Search for more papers by this authorTuğçe Aladağ
Department of Histology and Embryology, Faculty of Medicine, Afyonkarahisar Health Sciences University, Afyonkarahisar, Turkey
Contribution: Visualization
Search for more papers by this authorHilal Güzel
Department of Anatomy, Faculty of Medicine, Afyonkarahisar Health Sciences University, Afyonkarahisar, Turkey
Contribution: Data curation
Search for more papers by this authorÖmer Adil Korkmaz
Department of Chemistry, Faculty of Science, Yildiz Technical University, Istanbul, Turkey
Contribution: Investigation
Search for more papers by this authorAykut Bostancı
Department of Biology, K.Ö. Science Faculty, Karamanoglu Mehmetbey University, Karaman, Turkey
Contribution: Formal analysis
Search for more papers by this authorGökhan Sadi
Department of Biology, K.Ö. Science Faculty, Karamanoglu Mehmetbey University, Karaman, Turkey
Contribution: Methodology
Search for more papers by this authorCorresponding Author
Mehmet Bilgehan Pektaş
Department of Medical Pharmacology, Faculty of Medicine, Afyonkarahisar Health Sciences University, Afyonkarahisar, Turkey
Correspondence
Mehmet Bilgehan Pektaş, Department of Department of Medical Pharmacology, Faculty of Medicine, Afyonkarahisar Health Sciences University, 03200, Afyonkarahisar, Turkey.
Email: [email protected]
Contribution: Writing - review & editing
Search for more papers by this authorÖmer Ekici
Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Afyonkarahisar Health Sciences University, Afyonkarahisar, Turkey
Contribution: Project administration
Search for more papers by this authorEsra Aslan
Department of Histology and Embryology, Faculty of Medicine, Afyonkarahisar Health Sciences University, Afyonkarahisar, Turkey
Contribution: Visualization
Search for more papers by this authorTuğçe Aladağ
Department of Histology and Embryology, Faculty of Medicine, Afyonkarahisar Health Sciences University, Afyonkarahisar, Turkey
Contribution: Visualization
Search for more papers by this authorHilal Güzel
Department of Anatomy, Faculty of Medicine, Afyonkarahisar Health Sciences University, Afyonkarahisar, Turkey
Contribution: Data curation
Search for more papers by this authorÖmer Adil Korkmaz
Department of Chemistry, Faculty of Science, Yildiz Technical University, Istanbul, Turkey
Contribution: Investigation
Search for more papers by this authorAykut Bostancı
Department of Biology, K.Ö. Science Faculty, Karamanoglu Mehmetbey University, Karaman, Turkey
Contribution: Formal analysis
Search for more papers by this authorGökhan Sadi
Department of Biology, K.Ö. Science Faculty, Karamanoglu Mehmetbey University, Karaman, Turkey
Contribution: Methodology
Search for more papers by this authorCorresponding Author
Mehmet Bilgehan Pektaş
Department of Medical Pharmacology, Faculty of Medicine, Afyonkarahisar Health Sciences University, Afyonkarahisar, Turkey
Correspondence
Mehmet Bilgehan Pektaş, Department of Department of Medical Pharmacology, Faculty of Medicine, Afyonkarahisar Health Sciences University, 03200, Afyonkarahisar, Turkey.
Email: [email protected]
Contribution: Writing - review & editing
Search for more papers by this authorAbstract
The aim of the study was to evaluate whether high-fructose corn syrup (HFCS) intake (20% beverages) impacts antioxidative structures and inflammation in the gingival tissue and masseter muscle of rats. Kefir was tested for its potential utility on changes induced by HFCS. Animals were randomly divided into four groups as control, kefir, HFCS, and HFCS plus kefir. HFCS was given as 20% solutions in drinking water while kefir supplementations were given by gastric gavage for 8 weeks. It has been clearly determined that the HFCS diet increased expressions of interleukin (IL)-6, IL-1β, and tumor necrosis factor-α proinflammatory structures via lymphocyte infiltration by suppressing antioxidant enzymes such as catalase, superoxide dismutase, and glutathione peroxidase in both tissues. Kefir improved these undesirable changes in rats fed with HFCS. The results of this current study, the first investigation to examine the effects of kefir on masseter muscle and gingival tissue, may provide new access to the restorative effects of kefir consumption on oral health disorders caused by high fructose in the diet.
Practical applications
In this study, at an early age, the effects of kefir on improving inflammation via antioxidation in the masseter muscle and gingival tissue were investigated for the first time. We showed that kefir feeding ameliorates lymphocyte infiltration on the high-fructose corn syrup (HFCS)-induced masseter muscle and gingival tissue inflammation in rats. The mRNA expressions of inflammatory parameters measured in the study were supported by protein measurements via ELISA or immunohistochemistry. In the present study, kefir may play an important role in the antioxidation and inflammation process on the masseter muscle and gingival tissue against HFCS.
CONFLICT OF INTEREST
The authors report no conflicts of interest related to this study.
Open Research
DATA AVAILABILITY STATEMENT
The data that support the findings of this study are available on request from the corresponding author. The data are not publicly available due to privacy or ethical restrictions.
REFERENCES
- Adiloglu, A. K., Gonulates, N., Isler, M., & Senol, A. (2013). The effect of kefir consumption on human immune system: A cytokine study. Mikrobiyoloji Bulteni, 47, 273–281. https://doi.org/10.5578/mb.4709
- Akalin, F. A., Işiksal, E., Baltacioglu, E., Renda, N., & Karabulut, E. (2008). Superoxide dismutase activity in gingiva in type-2 diabetes mellitus patients with chronic periodontitis. Archives of Oral Biology, 53, 44–52. https://doi.org/10.1016/j.archoralbio.2007.07.009
- Babacanoglu, C., Yildirim, N., Sadi, G., Pektas, M. B., & Akar, F. (2013). Resveratrol prevents high-fructose corn syrup-induced vascular insulin resistance and dysfunction in rats. Food and Chemical Toxicology, 60, 160–167. https://doi.org/10.1016/j.fct.2013.07.026
- Bray, G. A., Nielsen, S. J., & Popkin, B. M. (2004). Consumption of high-fructose corn syrup in beverages may play a role in the epidemic of obesity. American Journal of Clinical Nutrition, 79, 537–543. https://doi.org/10.1093/ajcn/79.4.537
- Cavarape, A., Feletto, F., Mercuri, F., Quagliaro, L., Damante, G., & Ceriello, A. (2001). High-fructose diet decreases catalase mRNA levels in rat tissues. Journal of Endocrinological Investigation, 24, 838–845. https://doi.org/10.1007/BF03343940
- Chen, H. L., Hung, K. F., Yen, C. C., Laio, C. H., Wang, J. L., Lan, Y. W., Chong, K. Y., Fan, H. C., & Chen, C. M. (2019). Kefir peptides alleviate particulate matter <4 μm (PM4.0)-induced pulmonary inflammation by inhibiting the NF-κB pathway using luciferase transgenic mice. Scientific Reports, 9, 1–13. https://doi.org/10.1038/s41598-019-47872-4
- Chen, Y. T., Lin, Y. C., Lin, J. S., Yang, N. S., & Chen, M. J. (2018). Sugary kefir strain lactobacillus mali aps1 ameliorated hepatic steatosis by regulation of SIRT-1/Nrf-2 and gut microbiota in rats. Molecular Nutrition and Food Research, 62, 1–10. https://doi.org/10.1002/mnfr.201700903
- Chen, Z., Shi, J., Yang, X., Nan, B., Liu, Y., & Wang, Z. (2015). Chemical and physical characteristics and antioxidant activities of the exopolysaccharide produced by Tibetan kefir grains during milk fermentation. International Dairy Journal, 43, 15–21. https://doi.org/10.1016/j.idairyj.2014.10.004
- Choi, J. W., Kang, H. W., Lim, W. C., Kim, M. K., Lee, I. Y., & Cho, H. Y. (2017). Kefir prevented excess fat accumulation in diet-induced obese mice. Bioscience, Biotechnology, and Biochemistry, 81, 958–965. https://doi.org/10.1080/09168451.2016.1258984
- Cigliano, L., Spagnuolo, M. S., Crescenzo, R., Cancelliere, R., Iannotta, L., Mazzoli, A., Liverini, G., & Iossa, S. (2018). Short-term fructose feeding induces inflammation and oxidative stress in the hippocampus of young and adult rats. Molecular Neurobiology, 55, 2869–2883. https://doi.org/10.1007/s12035-017-0518-2
- De França, I. R., Meneses-Santos, D., Moreira, G. V., Lima, F. B., De Oliveira Carvalho, C. R., & Marçal, A. C. (2018). Insulin signaling pathway in the masseter muscle of dexamethasone-treated rats. Interventional Medicine and Applied Science, 10, 226–232. https://doi.org/10.1556/1646.10.2018.44
- El Golli-Bennour, E., Timoumi, R., Annaibi, E., Mokni, M., Omezzine, A., Bacha, H., & Abid-Essefi, S. (2019). Protective effects of kefir against deltamethrin-induced hepatotoxicity in rats. Environmental Science and Pollution Research, 26, 18856–18865. https://doi.org/10.1007/s11356-019-05253-4
- Ford, C. N., Slining, M. M., & Popkin, B. M. (2013). Trends in dietary intake among US 2- to 6-year-old children, 1989–2008. Journal of the Academy of Nutrition and Dietetics, 113, 35–42.e6. https://doi.org/10.1016/j.jand.2012.08.022
- Ghezzi, P., Floridi, L., Boraschi, D., Cuadrado, A., Manda, G., Levic, S., D'Acquisto, F., Hamilton, A., Athersuch, T. J., & Selley, L. (2018). Oxidative stress and inflammation induced by environmental and psychological stressors: A biomarker perspective. Antioxidants & Redox Signaling, 28, 852–872. https://doi.org/10.1089/ars.2017.7147
- Hamida, R. S., Shami, A., Ali, M. A., Almohawes, Z. N., Mohammed, A. E., & Bin-Meferij, M. M. (2021). Kefir: A protective dietary supplementation against viral infection. Biomedicine and Pharmacotherapy, 133, 110974. https://doi.org/10.1016/j.biopha.2020.110974
- Heiss, S. N. (2013). “Healthy” discussions about risk: The Corn Refiners Association's strategic negotiation of authority in the debate over high fructose corn syrup. Public Understanding of Science, 22, 219–235. https://doi.org/10.1177/0963662511402281
- Houmard, J. A., Pories, W. J., & Dohm, G. L. (2012). Severe obesity: Evidence for a deranged metabolic program in skeletal muscle? Exercise and Sport Sciences Reviews, 40, 204–210. https://doi.org/10.1097/JES.0b013e31825d53fc
- Hsieh, F. C., Lee, C. L., Chai, C. Y., Chen, W. T., Lu, Y. C., & Wu, C. S. (2013). Oral administration of Lactobacillus reuteri GMNL-263 improves insulin resistance and ameliorates hepatic steatosis in high fructose-fed rats. Nutrition and Metabolism, 10, 1–14. https://doi.org/10.1186/1743-7075-10-35
10.1186/1743-7075-10-35 Google Scholar
- Huang, H. Y., Korivi, M., Tsai, C. H., Yang, J. H., & Tsai, Y. C. (2013). Supplementation of lactobacillus plantarum K68 and fruit-vegetable ferment along with high fat-fructose diet attenuates metabolic syndrome in rats with insulin resistance. Evidence-based Complementary and Alternative Medicine, 2013, 943020. https://doi.org/10.1155/2013/943020
- Kim, Y. C., Lee, J. H., Kim, S. H., & Lee, M. G. (2005). Effect of CYP3A1(23) induction on clarithromycin pharmacokinetics in rats with diabetes mellitus. Antimicrobial Agents and Chemotherapy, 49, 2528–2532. https://doi.org/10.1128/AAC.49.6.2528-2532.2005
- Kiyah, J. D., & Barry, M. P. (2008). High-fructose corn syrup: Is this what's for dinner? The American Journal of Clinical Nutrition, 88(6), 1722–1732. https://doi.org/10.3945/ajcn.2008.25825C
- Korkmaz, O. A., Sadi, G., Kocabas, A., Yildirim, O. G., Sumlu, E., Koca, H. B., Nalbantoglu, B., Pektaş, M. B., & Akar, F. (2019). Lactobacillus helveticus and Lactobacillus plantarum modulate renal antioxidant status in a rat model of fructose-induced metabolic syndrome. Archives of Biological Sciences, 71, 265–273. https://doi.org/10.2298/ABS190123008K
- Korkmaz, O. A., Sumlu, E., Koca, H. B., Pektas, M. B., Kocabas, A., Sadi, G., & Akar, F. (2019). Effects of lactobacillus plantarum and lactobacillus helveticus on renal insulin signaling, inflammatory markers, and glucose transporters in high-fructose-fed rats. Medicina, 55, 207. https://doi.org/10.3390/medicina55050207
- Li, Y., Du, Z., Xie, X., Zhang, Y., Liu, H., Zhou, Z., Zhao, J., Lee, R. S., Xiao, Y., Ivanoviski, S., & Yan, F. (2020). Epigenetic changes caused by diabetes and their potential role in the development of periodontitis. Journal of Diabetes Investigation, 33300305. 1–10. https://doi.org/10.1111/jdi.13477
- Liu, J. R., Wang, S. Y., Chen, M. J., Chen, H. L., Yueh, P. Y., & Lin, C. W. (2006). Hypocholesterolaemic effects of milk-kefir and soyamilk-kefir in cholesterol-fed hamsters. British Journal of Nutrition, 95, 939–946. https://doi.org/10.1079/bjn20061752
- Ma, Q. (2013). Role of Nrf2 in oxidative stress and toxicity. Annual Review of Pharmacology and Toxicology, 53, 401–426. https://doi.org/10.1146/annurev-pharmtox-011112-140320
- Ma, X., Lin, L., Yue, J., Pradhan, G., Qin, G., Minze, L. J., Wu, H., Sheikh-Hamad, D., Smith, C. W., & Sun, Y. (2013). Ghrelin receptor regulates HFCS-induced adipose inflammation and insulin resistance. Nutrition & Diabetes, 3, e99. https://doi.org/10.1038/nutd.2013.41
- Ma, X., Lin, L., Yue, J., Wu, C. S., Guo, C. A., Wang, R., Yu, K. J., Devaraj, S., Murano, P., Chen, Z., & Sun, Y. (2017). Suppression of ghrelin exacerbates HFCS-induced adiposity and insulin resistance. International Journal of Molecular Sciences, 18(6), 1302. https://doi.org/10.3390/ijms18061302
- Meyers, A. M., Mourra, D., & Beeler, J. A. (2017). High fructose corn syrup induces metabolic dysregulation and altered dopamine signaling in the absence of obesity. PLoS ONE, 12, 8–11. https://doi.org/10.1371/journal.pone.0190206
- Moeller, S. M., Fryhofer, S. A., Osbahr, A. J., & Robinowitz, C. B. (2009). The effects of high fructose syrup. Journal of the American College of Nutrition, 28, 619–626. https://doi.org/10.1080/07315724.2009.10719794
- Park, D. Y., Ahn, Y. T., Huh, C. S., Mcgregor, R. A., & Choi, M. S. (2013). Dual probiotic strains suppress high fructose-induced metabolic syndrome. World Journal of Gastroenterology, 19, 274–283. https://doi.org/10.3748/wjg.v19.i2.274
- Pektas, M. B., Koca, H. B., Sadi, G., & Akar, F. (2016). Dietary fructose activates insulin signaling and inflammation in adipose tissue: Modulatory role of resveratrol. BioMed Research International, 2016, 8014252. https://doi.org/10.1155/2016/8014252
- Plaza-Díaz, J., Ruiz-Ojeda, F. J., Vilchez-Padial, L. M., & Gil, A. (2017). Evidence of the anti-inflammatory effects of probiotics and synbiotics in intestinal chronic diseases. Nutrients, 9, 555. https://doi.org/10.3390/nu9060555
- Prado, M. R., Blandón, L. M., Vandenberghe, L. P. S., Rodrigues, C., Castro, G. R., Thomaz-Soccol, V., & Soccol, C. R. (2015). Milk kefir: Composition, microbial cultures, biological activities, and related products. Frontiers in Microbiology, 6, 1117. https://doi.org/10.3389/fmicb.2015.01177
- Ritze, Y., Bárdos, G., Claus, A., Ehrmann, V., Bergheim, I., Schwiertz, A., & Bischoff, S. C. (2014). Lactobacillus rhamnosus GG protects against non-alcoholic fatty liver disease in mice. PLoS ONE, 9, 1–9. https://doi.org/10.1371/journal.pone.0080169
- Rosa, D. D., Grześkowiak, Ł. M., Ferreira, C. L. L. F., Fonseca, A. C. M., Reis, S. A., Dias, M. M., Siqueira, N. P., Silva, L. L., Neves, C. A., Oliveira, L. L., Machado, A. B. F., & Peluzio, M. C. G. (2016). Kefir reduces insulin resistance and inflammatory cytokine expression in an animal model of metabolic syndrome. Food & Function, 7, 3390–3401. https://doi.org/10.1039/C6FO00339G
- Sadi, G., Ergin, V., Yilmaz, G., Pektas, M. B., Yildirim, O. G., Menevse, A., & Akar, F. (2015). High-fructose corn syrup-induced hepatic dysfunction in rats: Improving effect of resveratrol. European Journal of Nutrition, 54, 895–904. https://doi.org/10.1007/s00394-014-0765-1
- Sadi, G., & Sadi, Ö. (2010). Reciprocal modulation of hepatic cytochrome P450 gene expressions with streptozotocin induced diabetes and resveratrol. Journal of Applied Biological Sciences, 4, 23–30.
- Sun, S., Zhang, D., Wu, Y., Yan, L., Liu, J., Pan, C., & Pan, Y. (2020). The expression of inducible nitric oxide synthase in the gingiva of rats with periodontitis and diabetes mellitus. Archives of Oral Biology, 112, 104652. https://doi.org/10.1016/j.archoralbio.2020.104652
- Tamer, F., Ulug, E., Akyol, A., & Nergiz-Unal, R. (2020). The potential efficacy of dietary fatty acids and fructose induced inflammation and oxidative stress on the insulin signaling and fat accumulation in mice. Food and Chemical Toxicology, 135, 110914. https://doi.org/10.1016/j.fct.2019.110914
- Todoric, J., Di Caro, G., Reibe, S., Henstridge, D. C., Green, C. R., Vrbanac, A., Ceteci, F., Conche, C., McNulty, R., Shalapour, S., Taniguchi, K., Meikle, P. J., Watrous, J. D., Moranchel, R., Najhawan, M., Jain, M., Liu, X., Kisseleva, T., Diaz-Meco, M. T., … Karin, M. (2020). Fructose stimulated de novo lipogenesis is promoted by inflammation. Nature Metabolism, 2, 1034–1045. https://doi.org/10.1038/s42255-020-0261-2
- Tukel, H. C., Alptekin, O., Turan, B., & Delilbasi, E. (2015). Effects of metabolic syndrome on masseter muscle of male Wistar rats. European Journal of Oral Sciences, 123, 432–438. https://doi.org/10.1111/eos.12226
- Tung, Y. T., Chen, H. L., Wu, H. S., Ho, M. H., Chong, K. Y., & Chen, C. M. (2018). Kefir peptides prevent hyperlipidemia and obesity in high-fat-diet-induced obese rats via lipid metabolism modulation. Molecular Nutrition and Food Research, 62, 1–9. https://doi.org/10.1002/mnfr.201700505
- Wang, H., Chen, P., Liu, X. X., Zhao, W., Shi, L., Gu, X. W., Zhu, C. R., Zhu, H. H., & Zong, L. (2014). Prognostic impact of gastrointestinal bleeding and expression of PTEN and Ki-67 on primary gastrointestinal stromal tumors. World Journal of Surgical Oncology, 12, 1–10. https://doi.org/10.1186/1477-7819-12-89
- Wang, J., Tang, H., Zhang, C., Zhao, Y., Derrien, M., Rocher, E., Van-Hylckama-Vlieg, J. E., Strissel, K., Zhao, L., Obin, M., & Shen, J. (2015). Modulation of gut microbiota during probiotic-mediated attenuation of metabolic syndrome in high fat diet-fed mice. ISME Journal, 9, 1–15. https://doi.org/10.1038/ismej.2014.99
- Wang, Y., Wu, Y., Wang, Y., Xu, H., Mei, X., Yu, D., Wang, Y., & Li, W. (2017). Antioxidant properties of probiotic bacteria. Nutrients, 9(5), 521. https://doi.org/10.3390/nu9050521
- Yadav, H., Jain, S., & Sinha, P. R. (2007). Antidiabetic effect of probiotic dahi containing Lactobacillus acidophilus and Lactobacillus casei in high fructose fed rats. Nutrition, 23, 62–68. https://doi.org/10.1016/j.nut.2006.09.002
- Yener, A. U., Sehitoglu, M. H., Ozkan, M. T. A., Bekler, A., Ekin, A., Cokkalender, O., Deniz, M., Sacar, M., Karaca, T., Ozcan, S., & Kurt, T. (2015). Effects of kefir on ischemia-reperfusion injury. European Review for Medical and Pharmacological Sciences, 19, 887–896.
- Yildirim, O. G., Sumlu, E., Aslan, E., Koca, H. B., Pektas, M. B., Sadi, G., & Akar, F. (2019). High-fructose in drinking water initiates activation of inflammatory cytokines and testicular degeneration in rat. Toxicology Mechanisms and Methods, 29, 224–232. https://doi.org/10.1080/15376516.2018.1543745
- Yin, Q. Q., Pei, J. J., Xu, S., Luo, D. Z., Dong, S. Q., Sun, M. H., You, L., Sun, Z. J., & Liu, X. P. (2013). Pioglitazone improves cognitive function via increasing insulin sensitivity and strengthening antioxidant defense system in fructose-drinking insulin resistance rats. PLoS ONE, 8(3), e59313. https://doi.org/10.1371/journal.pone.0059313
- Zhang, Y., Wang, L., Zhang, J., Li, Y., He, Q., Li, H., Guo, X., Guo, J., & Zhang, H. (2014). Probiotic Lactobacillus casei Zhang ameliorates high-fructose-induced impaired glucose tolerance in hyperinsulinemia rats. European Journal of Nutrition, 53, 221–232. https://doi.org/10.1007/s00394-013-0519-5
- Zhao, X. J., Yu, H. W., Yang, Y. Z., Wu, W. Y., Chen, T. Y., Jia, K. K., Kang, L. L., Jiao, R. Q., & Kong, L. D. (2018). Polydatin prevents fructose-induced liver inflammation and lipid deposition through increasing miR-200a to regulate Keap1/Nrf2 pathway. Redox Biology, 18, 124–137. https://doi.org/10.1016/j.redox.2018.07.002