PROOXIDANT AND ANTIOXIDANT ACTIVITIES OF ROSMARINIC ACID
J.L. MUÑOZ-MUÑOZ
GENZ: Grupo de Investigación Enzimología, Departamento de Bioquímica y Biología Molecular-A, Facultad de Biología, Universidad de Murcia, Murcia, E-30100 Espinardo, Spain
Search for more papers by this authorF. GARCIA-MOLINA
GENZ: Grupo de Investigación Enzimología, Departamento de Bioquímica y Biología Molecular-A, Facultad de Biología, Universidad de Murcia, Murcia, E-30100 Espinardo, Spain
Search for more papers by this authorE. ROS
GENZ: Grupo de Investigación Enzimología, Departamento de Bioquímica y Biología Molecular-A, Facultad de Biología, Universidad de Murcia, Murcia, E-30100 Espinardo, Spain
Search for more papers by this authorJ. TUDELA
GENZ: Grupo de Investigación Enzimología, Departamento de Bioquímica y Biología Molecular-A, Facultad de Biología, Universidad de Murcia, Murcia, E-30100 Espinardo, Spain
Search for more papers by this authorCorresponding Author
F. GARCÍA-CANOVAS
GENZ: Grupo de Investigación Enzimología, Departamento de Bioquímica y Biología Molecular-A, Facultad de Biología, Universidad de Murcia, Murcia, E-30100 Espinardo, Spain
TEL: +34 868 884764; FAX: +34 868 883963; EMAIL: [email protected]Search for more papers by this authorJ.N. RODRIGUEZ-LOPEZ
GENZ: Grupo de Investigación Enzimología, Departamento de Bioquímica y Biología Molecular-A, Facultad de Biología, Universidad de Murcia, Murcia, E-30100 Espinardo, Spain
Search for more papers by this authorJ.L. MUÑOZ-MUÑOZ
GENZ: Grupo de Investigación Enzimología, Departamento de Bioquímica y Biología Molecular-A, Facultad de Biología, Universidad de Murcia, Murcia, E-30100 Espinardo, Spain
Search for more papers by this authorF. GARCIA-MOLINA
GENZ: Grupo de Investigación Enzimología, Departamento de Bioquímica y Biología Molecular-A, Facultad de Biología, Universidad de Murcia, Murcia, E-30100 Espinardo, Spain
Search for more papers by this authorE. ROS
GENZ: Grupo de Investigación Enzimología, Departamento de Bioquímica y Biología Molecular-A, Facultad de Biología, Universidad de Murcia, Murcia, E-30100 Espinardo, Spain
Search for more papers by this authorJ. TUDELA
GENZ: Grupo de Investigación Enzimología, Departamento de Bioquímica y Biología Molecular-A, Facultad de Biología, Universidad de Murcia, Murcia, E-30100 Espinardo, Spain
Search for more papers by this authorCorresponding Author
F. GARCÍA-CANOVAS
GENZ: Grupo de Investigación Enzimología, Departamento de Bioquímica y Biología Molecular-A, Facultad de Biología, Universidad de Murcia, Murcia, E-30100 Espinardo, Spain
TEL: +34 868 884764; FAX: +34 868 883963; EMAIL: [email protected]Search for more papers by this authorJ.N. RODRIGUEZ-LOPEZ
GENZ: Grupo de Investigación Enzimología, Departamento de Bioquímica y Biología Molecular-A, Facultad de Biología, Universidad de Murcia, Murcia, E-30100 Espinardo, Spain
Search for more papers by this authorAbstract
ABSTRACT
Rosmarinic acid is a fundamental compound of Rosmarinus officinalis. In this work, the intrinsic prooxidant (generation of H2O2 and free radicals by the action of peroxidase) and antioxidant (consumption of H2O2 and free radicals) properties of rosmarinic acid are characterized. In addition, its melanogenic prooxidant activity is characterized as it acts as a substrate of polyphenol oxidase to generate o-quinones, and its antimelanogenic and, so, antioxidant activity as it carries out the suicide inactivation of polyphenol oxidase. The balance between its pro- and antioxidant activities demonstrates that rosmarinic acid can be considered as a net antioxidant.
PRACTICAL APPLICATIONS
Antioxidants prevent oxidative damage by modulating the oxidative status of cells. The present results indicated that rosmarinic acid is an antioxidant and can act as scavenger of free radicals in biological systems, and could therefore provide health benefits to consumers. Moreover, rosmarinic acid can act as a suicide substrate of polyphenol oxidase and can inhibit the enzymatic browning of vegetables and fruits and melanogenesis in mammals.
REFERENCES
- AL-SEREITI, M.R., ABU-AMER, K.M. and SEN, P. 1999. Pharmacology of rosemary (Rosmarinus officinalis Linn.) and its therapeutic potentials. Indian J. Exp. Biol. 37, 124–130.
- BORS, W., MICHEL, C., STETTMAIER, K., LU, Y. and FOO, L.Y. 2004. Antioxidant mechanisms of polyphenolic caffeic acid oligomers, constituents of Salvia officinalis. Biol. Res. 37, 301–311.
- BRADFORD, M.M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248–254.
- BRAND-WILLIAMS, W., CUVELIER, M.E. and BERSET, C. 1995. Use of a free radical method to evaluate antioxidant activity. Lebensm. Wiss. Technol. 28, 25–30.
- CALABRESE, V., SCAPAGNINI, G., CATALANO, C., DINOTTA, F., GERACI, D. and MORGANTI, P. 2000. Biochemical studies of a natural antioxidant isolated from rosemary and its application in cosmetic dermatology. Int. J. Tissue React. 22, 5–13.
- CAO, H., CHENG, W.-X., LI, C., PAN, X.-L., XIE, X.G. and LIE, T.H. 2005. DFT study on the antioxidant activity of rosmarinic acid. J. Mol. Struct. 719, 177–183.
- CHANG, T.S. 2007. Two potent suicide substrates of mushroom tyrosinase. J. Agric. Food Chem. 55, 2010–2015.
- CHANG, T.S., LIN, M.Y. and LIN, H.J. 2010. Indentifying 8-hydroxynaringenin as a suicide substrate of mushroom tyrosinase. J. Cosmet. Sci. 61, 205–210.
- DECKER, H., SCHWEIKARDT, T. and TUCZEK, F. 2006. The crystal structure of tyrosinase: All questions answered? Angew. Chem. Int. Ed. Engl. 45, 4546–4550.
- DEETH, R.J. and DIEDRICH, C. 2010. Structural and mechanistic insights into the oxy form of tyrosinase from molecular dynamics simulations. J. Biol. Inorg. Chem. 15, 117–129.
-
DIETLER, C. and
LERCH, K.
1982. Reaction inactivation of tyrosinase. In Oxidases and Related Redox Systems ( T.E. King,
H.S. Mason and
M. Morrison, eds.) pp. 305–317, Pergamon Press, New York.
10.1016/B978-0-08-024421-1.50019-7 Google Scholar
- ESCRIBANO, J., TUDELA, J., GARCIA-CARMONA, F. and GARCIA-CANOVAS, F. 1989. A kinetic study of the suicide inactivation of an enzyme measured through coupling reactions. Biochem. J. 262, 597–603.
- FENOLL, L.G., RODRÍGUEZ-LOPEZ, J.N., GARCIA-MOLINA, F., GARCIA-CANOVAS, F. and TUDELA, J. 2002. Michaelis constant of mushroom tyrosinase with respect to oxygen in the presence of monophenols and diphenols. Int. J. Biochem. Cell Biol. 34, 332–336.
- HOTTA, H., NAGANO, S., UEDA, M., TSUJINO, Y., KOYAMA, J. and OSAKAI, T. 2002. Higher radical scavenging activities of polyphenolic antioxidants can be ascribed to chemicals reactions following their oxidation. Biochim. Biophys. Acta 1572, 123–132.
- INOUE, T., SHIOTA, Y. and YOSHIZAWA, K. 2008. Quantum chemical approach to the mechanism for the biological conversion of tyrosine to dopaquinone. J. Am. Chem. Soc. 130, 16890–16897.
- ISMAYA, W.T., ROZEBOOM, H.J., WEIJN, A., MES, J.J., FUSETTI, F., WICHERS, H.J. and DIJKSTRA, W.B. 2011. Crystal structure of Agaricus bisporus mushroom tyrosinase: Identity of the tetramer subunits and interaction with tropolone. Biochemistry 50, 5477–5486.
- ITO, H., MIYAZAKI, T., ONO, M. and SAKURAI, H. 1998. Antiallergic activities of rabdosiin and its related compounds: Chemical and biochemical evaluations. Bioorg. Med. Chem. 6, 1051–1056.
- JACKMAN, M., HUBER, M., HAJNAL, A. and LERCH, K. 1992. Stabilization of the oxy form of tyrosinase by a single conservative amino acid substitution. Biochem. J. 282, 915–918.
- Jandel Scientific 2007. SigmaPlot 9 for Windows®. Jandel Scientific, Core Madera, CA.
- KOVAL, I.A., GAMEZ, P., BELLE, C., SELMECZI, K. and REEDIJK, J. 2006. Synthetic models of the active site of catechol oxidase: Mechanistic studies. Chem. Soc. Rev. 35, 814–840.
- LAND, E.J., RAMSDEN, C.A. and RILEY, P.A. 2007. The mechanism of suicide-inactivation of tyrosinase: A substrate structure investigation. Tohoku J. Exp. Med. 212, 341–348.
- LEE, J., KIM, Y.S. and PARK, D. 2007. Rosmarinic acid induces melanogenesis through protein kinase A activation signalling. Biochem. Pharmacol. 74, 960–968.
- LI, Y., WANG, Y., JIANG, H. and DENG, J. 2009. Crystal structure of Manduca sexta prophenoloxidase provides insights into the mechanism of type 3 copper enzymes. Proc. Natl. Acad. Sci. U. S. A. 106, 17002–17006.
- MARTINEZ-TOME, M., JIMENEZ, A.M., RUGGIERI, S., FREGA, N., STRABBIOLI, R. and MURCIA, M.A. 2001. Antioxidant properties of Mediterranean spices compared with common food additives. J. Food Prot. 64, 1412–1419.
- MATOBA, Y., KUMAGAI, T., YAMAMOTO, A., YOSHITSU, H. and SUGIYAMA, M. 2006. Crystallographic evidence that the dinuclear copper center of tyrosinase is flexible during catalysis. J. Biol. Chem. 281, 8981–8990.
- MOÑINO, I., MARTINEZ, C., SOTOMAYOR, J.A., LAFUENTE, A. and JORDAN, M.J. 2008. Polyphenolic transmission to Segureño lamb meat from ewes' diet supplemented with the distillate from rosemary (Rosmarinus officinalis) leaves. J. Agric. Food Chem. 26, 3363–3367.
- MUNOZ-MUNOZ, J.L., GARCIA-MOLINA, F., GARCIA-RUIZ, P.A., MOLINA-ALARCON, M., TUDELA, J., GARCIA-CANOVAS, F. and RODRÍGUEZ-LOPEZ, J.N. 2008. Phenolic substrates and suicide inactivation of tyrosinase: Kinetics and mechanism. Biochem. J. 416, 431–440.
- MUNOZ-MUNOZ, J.L., GARCIA-MOLINA, F., GARCIA-RUIZ, P.A., ARRIBAS, E., TUDELA, J., GARCIA-CANOVAS, F. and RODRIGUEZ-LOPEZ, J.N. 2009. Enzymatic and chemical reactions of trihydroxylated phenols. Food Chem. 113, 435–444.
- MUNOZ-MUNOZ, J.L., GARCIA-MOLINA, F., VARON, R., TUDELA, J., GARCIA-CANOVAS, F. and RODRIGUEZ-LOPEZ, J.N. 2010. Quantification of the antioxidant capacity of different molecules and their kinetic antioxidant efficiency. J. Agric. Food Chem. 58, 2062–2070.
- MURAKAMI, K., HANEDA, M., QIAO, S., NARUSE, M. and YOSHINO, M. 2007. Prooxidant action of rosmarinic acid: Transition metal-dependent generation of reactive oxygen species. Toxicol. In Vitro 21, 613–617.
- OLIVARES, C., GARCIA-BORRON, J.C. and SOLANO, F. 2002. Identification of active site residues involved in metal cofactor binding and stereospecific substrate recognition in mammalian tyrosinase. Implications to the catalytic cycle. Biochemistry 41, 679–686.
- OSAKABE, N., TAKANO, H., SANBONGI, C., YASUDA, A., YANAGISAWA, R., INOUE, K. and YOSHIKAWA, T. 2004. Anti-inflammatory and anti-allergic effect of rosmarinic acid (RA); inhibition of seasonal allergic rhinoconjunctivitis (SAR) and its mechanism. Biofactors 21, 127–131.
- PEREZ-FONS, F., ARANDA, F.J., GUILLEN, J., VILLALAIN, J. and MICOL, V. 2006. Rosemary (Rosmarinus officinalis) diterpenes affect lipid polymorphism and fluidity in phospholipids membranes. Arch. Biochem. Biophys. 453, 224–236.
- PETERSEN, M. and SIMMONDS, M.S.J. 2003. Rosmarinic acid. Phytochemistry 62, 121–125.
- PIRKER, K.F., KAY, C.W.M., SOLZE, K., TUNEGA, D., RECHENAUER, T.G. and GOODMAN, B.A. 2009. Free radical generation in rosmarinic acid investigated by electron paramagnetic resonance spectroscopy. Free Radic. Res. 43, 47–57.
- RODRÍGUEZ-LOPEZ, J.N., FENOLL, L.G., GARCIA-RUIZ, P.A., VARON, R., TUDELA, J., THORNELEY, R.N. and GARCIA-CANOVAS, F. 2000b. Stopped-flow and steady-state study of the diphenolase activity of mushroom tyrosinase. Biochemistry 39, 10497–10506.
- RODRÍGUEZ-LÓPEZ, J.N., GILABERT, M.A., TUDELA, J., THORNELEY, R.N.F. and GARCÍA-CÁNOVAS, F. 2000a. Reactivity of horseradish peroxidase compound II toward substrates: Kinetic evidence for a two-step mechanism. Biochemistry 39, 13201–13209.
- ROLFF, M., SCHOTTENHEIM, J., PETERS, G. and TUCZEK, F. 2010. The first catalytic tyrosinase model system based on a mononuclear copper(I) complex: Kinetics and mechanism. Angew. Chem. Int. Ed. Engl. 49, 6438–6442.
- ROLFF, M., SCHOTTENHEIM, J., DECKER, H. and TUCZEK, F. 2011. Copper-O2 reactivity of tyrosinase models towards external monophenolic substrates: Molecular mechanism and comparison with the enzyme. Chem. Soc. Rev. 40, 4077–4098.
- SANCHEZ-CAMPILLO, M., GABALON, J.A., CASTILLO, J., BENAVENTE-GARCIA, O., DEL BAÑO, M.J., ALCARAZ, M., VICENTE, V., ALVAREZ, N. and LOZANO, J.A. 2009. Rosmarinic acid, a photo-protective agent against UV and other ionizing radiations. Food Chem. Toxicol. 47, 386–392.
- SENDOVSKI, M., KANTEEV, M., SHUSTER BEN-YOSEF, V., ADIR, N. and FISHMAN, A. 2011. First structures of an active bacterial tyrosinase reveal copper plasticity. J. Mol. Biol. 405, 227–237.
- SINGLETARY, K., MACDONAL, C. and WALLIG, M. 1996. Inhibition by rosemary and carnosol of 7,12-dimethylbenz-α-anthracene (DMBA)-induced rat mammary tumorigenesis and in vivo DMBA-DNA adduct formation. Cancer Lett. 104, 43–48.
- SINGLETARY, K.W. 1996. Rosemary extract and carnosol stimulate rat liver glutathione-S-transferase and quinone reductase activities. Cancer Lett. 100, 139–144.
- TAI, S.S.-K., LIN, C.-G., WU, M.-H. and CHANG, T.S. 2009. Evaluation of depigmenting activity by 8-hydroxydaidzein in mouse B16 melanoma cells and human volunteers. Int. J. Mol. Sci. 10, 4257–4266.
- ZHENG, W. and WANG, S.Y. 2001. Antioxidant activity and phenolics compounds in selected herbs. J. Agric. Food Chem. 49, 5165–5170.