Cattle dry manure fertilization increases forage yield of grass-legume mixtures, while maintaining the legume proportion and root-associated microbiota
Corresponding Author
Estefanía Oyharçabal
Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
Instituto Nacional de Tecnología Agropecuaria, Estación Experimental Agropecuaria Chubut (INTA EEA Chubut), Trelew, Argentina
Correspondence
Estefanía Oyharçabal, 25 de Mayo 4870 Trelew (CP 9100), Provincia del Chubut, Patagonia Argentina.
Email: [email protected]; [email protected]
Search for more papers by this authorFernanda Covacevich
Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
Instituto de Investigaciones en Biodiversidad y Biotecnología (INBIOTEC)/Fundación para las Investigaciones Biológicas aplicadas, Buenos Aires, Argentina
Search for more papers by this authorIngrid Bain
Instituto Nacional de Tecnología Agropecuaria, Estación Experimental Agropecuaria Chubut (INTA EEA Chubut), Trelew, Argentina
Search for more papers by this authorClaudina Soledad Acuña
Instituto Nacional de Tecnología Agropecuaria, Estación Experimental Agropecuaria Chubut (INTA EEA Chubut), Trelew, Argentina
Search for more papers by this authorGermán Darío Berone
Facultad de Ciencias Agrarias–Universidad Nacional de Mar del Plata (FCA-UNMdP), Balcarce, Argentina
Instituto Nacional de Tecnología Agropecuaria, Estación Experimental Agropecuaria Balcarce (INTA EEA Balcarce), Trelew, Argentina
Search for more papers by this authorCorresponding Author
Estefanía Oyharçabal
Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
Instituto Nacional de Tecnología Agropecuaria, Estación Experimental Agropecuaria Chubut (INTA EEA Chubut), Trelew, Argentina
Correspondence
Estefanía Oyharçabal, 25 de Mayo 4870 Trelew (CP 9100), Provincia del Chubut, Patagonia Argentina.
Email: [email protected]; [email protected]
Search for more papers by this authorFernanda Covacevich
Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
Instituto de Investigaciones en Biodiversidad y Biotecnología (INBIOTEC)/Fundación para las Investigaciones Biológicas aplicadas, Buenos Aires, Argentina
Search for more papers by this authorIngrid Bain
Instituto Nacional de Tecnología Agropecuaria, Estación Experimental Agropecuaria Chubut (INTA EEA Chubut), Trelew, Argentina
Search for more papers by this authorClaudina Soledad Acuña
Instituto Nacional de Tecnología Agropecuaria, Estación Experimental Agropecuaria Chubut (INTA EEA Chubut), Trelew, Argentina
Search for more papers by this authorGermán Darío Berone
Facultad de Ciencias Agrarias–Universidad Nacional de Mar del Plata (FCA-UNMdP), Balcarce, Argentina
Instituto Nacional de Tecnología Agropecuaria, Estación Experimental Agropecuaria Balcarce (INTA EEA Balcarce), Trelew, Argentina
Search for more papers by this authorAbstract
The aim of this study was to find ways to improve the forage yield of grass-legume mixtures without compromising soil biodiversity. In Argentinean Patagonia, the effects of applying cattle dry manure (M) and urea (U) (0, 60, 120, or 240 kg N ha−1 year−1) were assessed on herbage production of irrigated fescue-lotus mixtures, as well as on the activity/abundance of autochthonous arbuscular mycorrhizal fungi and N-fixing rhizobium bacteria. We hypothesised that manure has advantages over urea in increasing forage yields while maintaining the proportion of legumes and root-associated microbiota. The 120 U, 240 U, and 240 M resulted in the greatest forage production; however, yield varied depending on the source applied. The high productivity of the 120 U and 240 U was probably due to the fast grass growth immediately after fertilization, which resulted in a depressed growth of the legume. The high yield of the swards fertilized with 240 M was probably due to slight and delayed growth of grass without legume yield decline. The highest radiation interception was found in swards with a low legume proportion, suggesting a light competition from grass fertilized with the highest urea doses, which were also consistent with the highest N and P nutritional status. The microbial activity/abundance were not affected by fertilization, but the final number of nodules was positively associated with the legume proportion. In conclusion, manure fertilization increased forage yield of the mixtures, while preserving the legume proportion and the root-associated microbiota. Our findings aid in reducing synthetic-N fertilizers applied in pasture-based livestock systems.
CONFLICT OF INTEREST STATEMENT
The authors have no conflicts of interest to disclose.
Open Research
DATA AVAILABILITY STATEMENT
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
gfs12656-sup-0001-Figures.docxWord 2007 document , 91.2 KB | FIGURE S1. Interannual distribution of monthly precipitation (mm; black bars), estimated monthly water applied by irrigations (mm; grey bars), mean monthly temperature (°C; solid line) during the experimental period (year 1 and year 2); and mean monthly temperature for the last 30 years (°C; dotted line). FIGURE S2. Accumulated dry matter (DM) of the mixed swards in (a) year 1, and (b) year 2, for each fertilization treatment (0 N, 60 U, 120 U, 240 U, 60 M, 120 M and 240 M). Productivity is indicated for each component, legume (dark grey bar) and grass (light grey bar). Error bars indicates ±SE of the mean of the total forage harvested (n = 4). Different letters indicate significant differences (Tukey, 0.05). FIGURE S3. Relationship between the average P and N concentration in the dry matter (DM) of the harvested grass (solid line) and legume (dashed line) forage components of the mixed swards for each fertilization treatment (0 N, 60 U, 120 U, 240 U, 60 M, 120 M and 240 M). Linear regression is given for each grass and legume component. Solid coarse line indicates the critical P curve (Pc = 0.065 Nc + 1.5; Duru & Ducrocq, 1997). Statistical significance (p-value, .05) is indicated for each variable analysed (g P kg−1 DM grass and legume). FIGURE S4. Soil microbial abundance/activity parameters of the mixed swards during spring and summer of Year 1: October 2018–May 2019 and Year 2: October 2019–May 2020, in response to the fertilization treatments: 0 N, 60 U, 120 U, 240 U, 60 M, 120 M and 240 M. In (a) total soil microbial activity (Fluorescein [F] diacetate hydrolysis in dry soil [DS]); (b) abundance of AMF spores; colonization of roots of the mixed sward by AMF measured as (c) total mycorrhizal frequency (AMC%); and (d) arbuscule frequency (A%). Error bar indicates ±SE of the mean (n = 4). Different letters indicate significant differences; n/s indicates not significant differences (Tukey, .05). |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
REFERENCES
- Agnusdei, M. G., Assuero, S. G., Lattanzi, F. A., & Marino, M. A. (2010). Critical N concentration can vary with growth conditions in forage grasses: Implications for plant N status assessment and N deficiency diagnosis. Nutrient Cycling in Agroecosystems, 88(2), 215–230. https://doi.org/10.1007/s10705-010-9348-6
- Aydin, I., & Uzun, F. (2005). Nitrogen and phosphorus fertilization of rangelands affects yield, forage quality and the botanical composition. European Journal of Agronomy, 23(1), 8–14. https://doi.org/10.1016/j.eja.2004.08.001
- Borer, E. T., Seabloom, E. W., Gruner, D. S., Harpole, W. S., Hillebrand, H., Lind, E. M., Adler, P. B., Alberti, J., Anderson, T. M., Bakker, J. D., Biederman, L., Blumenthal, D., Brown, C. S., Brudvig, L. A., Buckley, Y. M., Cadotte, M., Chu, C., Cleland, E. E., Crawley, M. J., … Yang, L. H. (2014). Herbivores and nutrients control grassland plant diversity via light limitation. Nature, 508(7497), 517–520. https://doi.org/10.1038/nature13144
- Brady, N. C., & Weil, R. R. (2008). Nitrogen and sulfur economy of soils. Chapter 13. In The nature and properties of soil (14th ed., pp. 583-642). Prentice-Hall. https://doi.org/10.13140/RG.2.1.1435.0482
10.13140/RG.2.1.1435.0482 Google Scholar
- Brundrett, M. (2008). Mycorrhizal associations: The web resource. Section 10. Methods for identifying mycorrhizas. Available online at https://mycorrhizas.info/method.html
- Carlsson, G., & Huss-Danell, K. (2003). Nitrogen fixation in perennial forage legumes in the field. Plant and Soil, 253(2), 353–372. https://doi.org/10.1023/A:1024847017371
- Chang, C., & Janzen, H. H. (1996). Long-term fate of nitrogen from annual feedlot manure applications. Journal of Environmental Quality, 25(4), 785–790. https://doi.org/10.2134/jeq1996.00472425002500040019x
- Chapman, D. E. (2016). Using ecophysiology to improve farm efficiency: Application in temperate dairy grazing systems. Agriculture, 6, 17. https://doi.org/10.3390/agriculture6020017
10.3390/agriculture6020017 Google Scholar
- Corkidi, L., Rowland, D. L., Johnson, N. C., & Allen, E. B. (2002). Nitrogen fertilization alters the functioning of arbuscular mycorrhizas at two semiarid grasslands. Plant and Soil, 240(2), 299–310. https://doi.org/10.1023/A:1015792204633
- Covacevich, F., & Echeverría, H. E. (2009). Mycorrhizal occurrence and responsiveness of tall fescue and wheatgrass are affected by the source of phosphorus fertilizer and fungal inoculation. Journal of Plant Interactions, 4(2), 101–112. https://doi.org/10.1080/17429140802546060
- Covacevich, F., Echeverría, H. E., & Aguirrezabal, L. A. N. (2007). Soil available phosphorus status determines indigenous mycorrhizal colonization of field and glasshouse-grown spring wheat from Argentina. Applied Soil Ecology, 35, 1–9. https://doi.org/10.1016/j.apsoil.2006.06.001
- Covacevich, F., Marino, M. A., & Echeverría, H. E. (2006). The phosphorus source determines the arbuscular mycorrhizal potential and the native mycorrhizal colonization of tall fescue and wheatgrass. European Journal of Soil Biology, 42, 127–138. https://doi.org/10.1016/j.ejsobi.2005.12.002
- Di Rienzo, J. A., Casanoves, F., Balzarini, M. G., Gonzalez, L., Tablada, M., & Robledo, C. W. (2020). InfoStat versión 2020. Centro de Transferencia InfoStat, FCA, UNC.
- Donaghy, D. J., Turner, L. R., & Adamczewski, K. A. (2008). Effect of defoliation management on water-soluble carbohydrate energy reserves, dry matter yields, and herbage quality of tall fescue. Agronomy Journal, 100(1), 122–127. https://doi.org/10.2134/agronj2007.0016
- Duru, M., & Ducrocq, H. (1997). A nitrogen and phosphorus herbage nutrient index as a tool for assessing the effect of N and P supply on the dry matter yield of permanent pastures. Nutrient Cycling in Agroecosystems, 47(1), 59–69. https://doi.org/10.1007/bf01985719
- Elgersma, A., Nassiri, M., & Schlepers, H. (1998). Competition in perennial ryegrass—White clover species composition and nitrogen fixation. Grass and Forage Science, 53, 353–366. https://doi.org/10.1046/j.1365-2494.1998.00151.x
- Elgersma, A., & Søegaard, K. (2016). Effects of species diversity on seasonal variation in herbage yield and nutritive value of seven binary grass-legume mixtures and pure grass under cutting. European Journal of Agronomy, 78, 73–83. https://doi.org/10.1016/j.eja.2016.04.011
- Erisman, J. W., Sutton, M. A., Galloway, J., Klimont, Z., & Winiwarter, W. (2008). How a century of ammonia synthesis changed the world? Nature Geoscience, 1(10), 636–639. https://doi.org/10.1038/ngeo325
- Errecart, P. M., Agnusdei, M. G., Lattanzi, F. A., Marino, M. A., & Berone, G. D. (2014). Critical nitrogen concentration declines with soil water availability in tall fescue. Crop Science, 54, 318–330. https://doi.org/10.2135/cropsci2013.08.0561
- Faurie, O., Soussana, J. F., & Sinoquet, H. (1996). Radiation interception, partitioning and use in grass-clover mixtures. Annals of Botany, 77(1), 35–46. https://doi.org/10.1006/anbo.1996.0005
- Finn, J. A., Kirwan, L., Connolly, J., Sebastià, M. T., Helgadottir, A., Baadshaug, O. H., Bélanger, G., Black, A., Brophy, C., Collins, R. P., Čop, J., Dalmannsdóttir, S., Delgado, I., Elgersma, A., Fothergill, M., Frankow-Lindberg, B. E., Ghesquiere, A., Golinska, B., Golinski, P., … Lüscher, A. (2013). Ecosystem function enhanced by combining four functional types of plant species in intensively managed grassland mixtures: A 3-year continental-scale field experiment. Journal of Applied Ecology, 50(2), 365–375. https://doi.org/10.1111/1365-2664.12041
- Flavel, T. C., & Murphy, D. V. (2006). Carbon and nitrogen mineralization rates after application of organic amendments to soil. Journal of Environmental Quality, 35(1), 183–193. https://doi.org/10.2134/jeq2005.0022
- Foley, J. A., Ramankutty, N., Brauman, K. A., Cassidy, E. S., Gerber, J. S., Johnston, M., Mueller, N. D., O'Connell, C., Ray, D. K., West, P. C., Balzer, C., Bennett, E. M., Carpenter, S. R., Hill, J., Monfreda, C., Polasky, S., Rockström, J., Sheehan, J., Siebert, S., … Zaks, D. P. M. (2011). Solutions for a cultivated planet. Nature, 478(7369), 337–342. https://doi.org/10.1038/nature10452
- Franzluebbers, A. J., & Martin, G. (2022). Farming with forages can reconnect crop and livestock operations to enhance circularity and foster ecosystem services. Grass and Forage Science, 77, 270–281. https://doi.org/10.1111/gfs.12592
- Franzluebbers, A. J., Wendroth, O., Creamer, N. G., & Feng, G. G. (2020). Focusing the future of farming on agroecology. Agricultural & Environmental Letters, 5, e20034. https://doi.org/10.1002/ael2.20034
- Fulkerson, W. J., & Slack, K. (1994). Leaf number as a criterion for determining defoliation time for Lolium perenne: 1. Effect of water-soluble carbohydrates and senescence. Grass and Forage Science, 9, 373–377. https://doi.org/10.1111/j.1365-2494.1994.tb02013.x
10.1111/j.1365-2494.1994.tb02013.x Google Scholar
- Fustec, J., Lesuffleur, F., Mahieu, S., & Cliquet, J. B. (2010). Nitrogen rhizodeposition of legumes. A Review. Agronomy for Sustainable Development, 30, 57–66. https://doi.org/10.1051/agro/2009003
- Gerdemann, J. W., & Nicolson, T. H. (1963). Spores of mycorrhizal Endogone species extracted from soil by wet sieving and decanting. Transactions of the British Mycological Society, 46, 235–244. https://doi.org/10.1016/S0007-1536(63)80079-0
10.1016/S0007-1536(63)80079-0 Google Scholar
- Govindarajulu, M., Pfeffer, P. E., Jin, H., Abubaker, J., Douds, D. D., Allen, J. W., Bücking, H., Lammers, P. J., & Shachar-Hill, Y. (2005). Nitrogen transfer in the arbuscular mycorrhizal symbiosis. Nature, 435, 819–823. https://doi.org/10.1038/nature03610
- Green, V. S., Stott, D. E., & Diack, M. (2006). Assay for fluorescein diacetate hydrolytic activity: Optimization for soil samples. Soil Biology & Biochemistry, 38, 693–701. https://doi.org/10.1016/j.soilbio.2005.06.020
- Greenwood, D. J., Lemaire, G., Gosse, G., Cruz, P., Draycott, A., & Neeteson, J. J. (1990). Decline in percentage N of C3 and C4 crops with increasing plant mass. Annals of Botany, 66(4), 425–436. https://doi.org/10.1093/oxfordjournals.aob.a088044
- Gutser, R., Ebertseder, T., Weber, A., Schraml, M., & Schmidhalter, U. (2005). Short-term and residual availability of nitrogen after long-term application of organic fertilizers on arable land. Journal of Plant Nutrition and Soil Science, 168(4), 439–446. https://doi.org/10.1002/jpln.200520510
- Hartwig, U. A. (1998). The regulation of symbiotic N2 fixation: A conceptual model of N feedback from the ecosystem to the gene expression level. Perspectives in Plant Ecology, Evolution and Systematics, 1, 92–120. https://doi.org/10.1078/1433-8319-00054
10.1078/1433-8319-00054 Google Scholar
- Joner, E. J. (2000). The effect of long-term fertilization with organic or inorganic fertilizers on mycorrhiza-mediated phosphorus uptake in subterranean clover. Biology and Fertility of Soils, 32(5), 435–440. https://doi.org/10.1007/s003740000279
- Justes, E., Mary, B., Meynard, J.-M., Machet, J.-M., & Thelier-Huche, L. (1994). Determination of a critical nitrogen dilution curve for winter wheat crops. Annals of Applied Biology, 74, 397–407. https://doi.org/10.1006/anbo.1994.1133
- Khaiti, M., & Lemaire, G. (1992). Dynamics of shoot and root growth of lucerne after seeding and after cutting. European Journal of Agronomy, 1(4), 241–247. https://doi.org/10.1016/S1161-0301(14)80076-2
10.1016/S1161-0301(14)80076-2 Google Scholar
- Kjeldahl, J. (1883). Neue Methode zur Bestimmung des Stickstoffs in organischen Körpern. Zeitschrift für Analytische Chemie, 22(1), 366–383.
10.1007/BF01338151 Google Scholar
- LAM China. (2001). Mycorrhiza Manual, Arbuscular Mycorrhizal Fungi in Plant Production Systems: Detection, Taxonomy, Conservation and Ecophysiology. https://www2.dijon.inrae.fr/mychintec/Protocole/protoframe.html
- Ledgard, S. F., Sprosen, M. S., Penno, J. W., & Rajendram, G. S. (2001). Nitrogen fixation by white clover in pastures grazed by dairy cows: Temporal variation and effects of nitrogen fertilization. Plant and Soil, 229, 177–187. https://doi.org/10.1023/A:1004833804002
- Lemaire, G., Garnier, J., da Silveira Pontes, L., de Faccio Carvalho, P. C., Billen, G., & Assmann, T. S. (2023). Domestic herbivores, the crucial trophic level for sustainable agriculture: Avenues for reconnecting livestock to cropping systems. Agronomy, 13, 982. https://doi.org/10.3390/agronomy13040982
- Lemaire, G., & Gastal, F. (1997). N uptake and distribution in plant canopies. In G. Lemaire (Ed.), Diagnosis of the Nitrogen Status in Crops (pp. 3–43). Springer. https://doi.org/10.1007/978-3-642-60684-7_1
10.1007/978-3-642-60684-7_1 Google Scholar
- Lemaire, G., & Gastal, F. (2009). Quantifying crop responses to nitrogen deficiency and avenues to improve nitrogen use efficiency. In D. F. C. V. O. Sadras (Ed.), Crop physiology—Applications for genetic improvement and agronomy (Vol. N1, pp. 171–211). Academic Press, Elsevier. https://doi.org/10.1016/B978-0-12-417104-6.00008-X
10.1016/B978-0-12-374431-9.00008-6 Google Scholar
- Lemaire, G., Salette, J., Sigogne, M., & Terrasson, J.-P. (1984). Relation entre dynamique de croissance et dynamique de prélèvement d'azote pour un peuplement de graminées fourragères. I. —Etude de l'effet du milieu. Agronomie, 4(5), 423–430. https://doi.org/10.1051/agro:19840503
10.1051/agro:19840503 Google Scholar
- Lindström, K., Murwira, M., Willems, A., & Altier, N. (2010). The biodiversity of beneficial microbe-host mutualism: The case of rhizobia. Research in Microbiology, 161, 453–463. https://doi.org/10.1016/j.resmic.2010.05.005
- Lüscher, A., Hartwig, U. A., Suter, D., & Nosberger, J. (2000). Direct evidence that symbiotic N2 fixation in fertile grassland is an important trait for a strong response of plants to elevated atmospheric CO2. Global Change Biology, 6, 655–662. https://doi.org/10.1046/j.1365-2486.2000.00345.x
- Lüscher, A., Soussana, J. F., & Huguenin-Elie, O. (2011). Role and impacts of legumes in grasslands for high productivity and N gain from symbiotic N2 fixation. Chapter 11. In G. Lemaire, J. Hodgson, & A. Chabbi (Eds.), Grassland productivity and ecosystem services (pp. 101–107). CAB International. https://doi.org/10.2989/10220119.2014.955878
10.1079/9781845938093.0101 Google Scholar
- Lüscher, A., Mueller-Harvey, I., Soussana, J. F., Rees, R. M., & Peyraud, J. L. (2014). Potential of legume-based grassland-livestock systems in Europe: A review. Grass and Forage Science, 69(2), 206–228. https://doi.org/10.1111/gfs.12124
- Lynch, D. H., Voroney, P., & Warman, P. (2013). Soil physical properties and organic matter fractions under forages receiving composts, manure or fertilizer. Compost Science & Utilization, 13(4), 252–261. https://doi.org/10.1080/1065657X.2005.10702249
10.1080/1065657X.2005.10702249 Google Scholar
- McRoberts, K. C., Parsons, D., Ketterings, Q. M., Hai, T. T., Quan, N. H., Ba, N. X., Nicholson, C. F., & Cherney, D. J. R. (2018). Urea and composted cattle manure affect forage yield and nutritive value in sandy soils of south-central Vietnam. Grass and Forage Science, 73(1), 132–145. https://doi.org/10.1111/gfs.12289
- Mendoza, R., García, I., Deplama, D., & López, C. F. (2016). Competition and growth of a grass-legume mixture fertilized with nitrogen and phosphorus: Effect on nutrient acquisition, root morphology and symbiosis with soil microorganisms. Crop and Pasture Science, 67(6), 629–640. https://doi.org/10.1071/CP15257
- Morris, P., Carter, E. B., Hauck, B., Lanot, A., & Allison, G. (2021). Responses of Lotus corniculatus to environmental change 3: The sensitivity of phenolic accumulation to growth temperature and light intensity and effects on tissue digestibility. Planta, 253(2), 35. https://doi.org/10.1007/s00425-020-03524-w
- Nyfeler, D., Huguenin-Elie, O., Suter, M., Frossard, E., Connolly, J., & Lüscher, A. (2009). Strong mixture effects among four species in fertilized agricultural grassland led to persistent and consistent transgressive overyielding. Journal of Applied Ecology, 46(March), 638–691. https://doi.org/10.1111/j.1365-2664.2009.01653.x
10.1111/j.1365-2664.2009.01653.x Google Scholar
- Ozlu, E., & Kumar, S. (2018). Response of soil organic carbon, pH, electrical conductivity, and water stable aggregates to long-term annual manure and inorganic fertilizer. Soil & Water Management & Conservation, 82(5), 1243–1251. https://doi.org/10.2136/sssaj2018.02.0082
- Paul, J. W., & Beauchamp, E. G. (1996). Soil microbial biomass C, N mineralization, and N uptake by corn in dairy cattle slurry- and urea-amended soils. Canadian Journal of Soil Science, 76(4), 469–472. https://doi.org/10.4141/cjss96-058
- Phillips, J. M., & Hayman, D. S. (1970). Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Transactions of the British Mycological Society, 55(1), 158–160.
10.1016/S0007-1536(70)80110-3 Google Scholar
- Pirhofer-Waltz, K., Rasmussen, J., Høgh-Jensen, H., Eriksen, J., Søegaard, K., & Rasmussenet, J. (2012). Nitrogen transfer from forage legumes to nine neighbouring plants in a multi-species grassland. Plant and Soil, 350, 71–84. https://doi.org/10.1007/s11104-011-0882-z
- Poux, X., & Aubert, P.-M. (2022). Putting permanent grassland at the heart of European agroecological transition: Findings and questions arising from the “ten years for agroecology” (TYFA) scenario. Grass & Forage Science, 77, 257–269. https://doi.org/10.1111/gfs.12597
- Poveda, J., Abril-Urias, P., & Escobar, C. (2020). Biological control of plant-parasitic nematodes by filamentous fungi inducers of resistance: Trichoderma, mycorrhizal and endophytic fungi. Frontiers in Microbiology, 11, 992. https://doi.org/10.3389/fmicb.2020.00992
- Quaik, S., Embrandiri, A., Ravindran, B., Hossain, K., Al-Dhabi, N. A., Arasu, M. V., Ignacimuthu, S., & Ismail, N. (2020). Veterinary antibiotics in animal manure and manure laden soil: Scenario and challenges in Asian countries. Journal of King Saud University – Science, 32, 1300–1305. https://doi.org/10.1016/j.jksus.2019.11.015
- Robson, M. J. (1972). The effect of temperature on the growth of the S. 170 tall fescue (Festuca arundinacea) I. Constant temperature. Journal of Applied Ecology, 9(2), 643–653. https://doi.org/10.2307/2402461
- Shaw, W. M. (1959). Nitric-perchloric acid oxidation for sulfur in plant and animal tissues. Agricultural and Food Chemistry, 7, 843–847.
- Soussana, J. F., & Lemaire, G. (2014). Coupling carbon and nitrogen cycles for environmentally sustainable intensification of grasslands and crop-livestock systems. Agriculture, Ecosystems and Environment, 190, 9–17. https://doi.org/10.1016/j.agee.2013.10.012
- Spehn, E. M., Scherer-Lorenzen, M., Schmid, B., Hector, A., Caldeira, M. C., Dimitrakopoulos, P. G., Finn, J. A., Jumpponen, A., O'Donnovan, G., Pereira, J. S., Schulze, E. D., Troumbis, A. Y., & Körner, C. (2002). The role of legumes as a component of biodiversity in a cross-european study of grassland biomass nitrogen. Oikos, 98, 205–218. https://doi.org/10.1034/j.1600-0706.2002.980203.x
- Sturludóttir, E., Brophy, C., Bélanger, G., Gustavsson, A. M., Jørgensen, M., Lunnan, T., & Helgadóttir, Á. (2013). Benefits of mixing grasses and legumes for herbage yield and nutritive value in northern Europe and Canada. Grass and Forage Science, 69(2), 229–240. https://doi.org/10.1111/gfs.12037
- Suter, M., Connolly, J., Finn, J. A., Loges, R., Kirwan, L., Sebastià, M. T., & Lüscher, A. (2015). Nitrogen yield advantage from grass-legume mixtures is robust over a wide range of legume proportions and environmental conditions. Global Change Biology, 21(6), 2424–2438. https://doi.org/10.1111/gcb.12880
- Tripathi, S., Srivastava, P., Devi, R. D., & Bhadouria, R. (2020). Influence of synthetic fertilizers and pesticides on soil health and soil microbiology. In M. N. V. Prasad (Ed.), In agrochemicals detection, treatment and remediation (pp. 25–54). Pesticides and Chemical Fertilizers. https://doi.org/10.1016/B978-0-08-103017-2.00002-7
10.1016/B978-0-08-103017-2.00002-7 Google Scholar
- Walker, C., Mize, C. W., & McNabb, H. S., Jr. (1982). Populations of endogonaceous fungi at two locations in central Iowa. Canadian Journal of Botany, 60(12), 2518–2529. https://doi.org/10.1139/b82-305
10.1139/b82-305 Google Scholar
- Walsh, J. J., Jones, D. L., Chadwick, D. R., & Williams, A. P. (2018). Repeated application of anaerobic digestate, undigested cattle slurry and inorganic fertilizer N: Impacts on pasture yield and quality. Grass and Forage Science, 73(3), 758–763. https://doi.org/10.1111/gfs.12354
- Walsh, J. J., Rousk, J., Edwards-Jones, G., Jones, D. L., & Williams, A. P. (2012). Fungal and bacterial growth following the application of slurry and anaerobic digestate of livestock manure to temperate pasture soils. Biology and Fertility of Soils, 48, 889–897. https://doi.org/10.1007/s00374-012-0681-6
- Williams, P. H., & Haynes, R. J. (1995). Effect of sheep, deer and cattle dung on herbage production and soil nutrient content. Grass and Forage Science, 50(3), 263–271. https://doi.org/10.1111/j.1365-2494.1995.tb02322.x
- Zhang, X., Wu, X., Zhang, S., Xing, Y., Wang, R., & Liang, W. (2014). Organic amendment effects on aggregate-associated organic C, microbial biomass C and glomalin in agricultural soils. Catena, 123, 188–194. https://doi.org/10.1016/j.catena.2014.08.011
- Zhen, H., Jia, L., Huang, C., Qiao, Y., Li, J., Li, H., Chen, K., & Wan, Y. (2020). Long-term effects of intensive application of manure on heavy metal pollution risk in protected-field vegetable production. Environmental Pollution, 263, 114552. https://doi.org/10.1016/j.envpol.2020.114552