Metal-based nanoparticles for bone tissue engineering
Reza Eivazzadeh-Keihan
Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, Iran
Search for more papers by this authorEhsan Bahojb Noruzi
Faculty of Chemistry, Department of Inorganic Chemistry, University of Tabriz, Tabriz, Iran
Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
Search for more papers by this authorKarim Khanmohammadi Chenab
Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, Iran
Search for more papers by this authorAmir Jafari
Department of Medical Nanotechnology, Faculty of Advanced Technology in Medicine, Iran University of Medical Sciences, Tehran, Iran
Search for more papers by this authorFateme Radinekiyan
Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, Iran
Search for more papers by this authorSeyed Masoud Hashemi
Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, Iran
Search for more papers by this authorFarnoush Ahmadpour
Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, Iran
Search for more papers by this authorAli Behboudi
Faculty of Chemical, Petroleum and Gas Engineering, Iran University of Science and Technology, Tehran, Iran
Search for more papers by this authorJafar Mosafer
Research Center of Advanced Technologies in Medicine, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
Search for more papers by this authorCorresponding Author
Ahad Mokhtarzadeh
Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
Department of Biotechnology, Higher Education Institute of Rab-Rashid, Tabriz, Iran
Correspondence
Ahad Mokhtarzadeh, Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
Email: [email protected]
Ali Maleki, Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran.
Email: [email protected]
Michael R Hamblin, Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, 02114, USA.
Email: [email protected]
Search for more papers by this authorCorresponding Author
Ali Maleki
Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, Iran
Correspondence
Ahad Mokhtarzadeh, Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
Email: [email protected]
Ali Maleki, Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran.
Email: [email protected]
Michael R Hamblin, Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, 02114, USA.
Email: [email protected]
Search for more papers by this authorCorresponding Author
Michael R. Hamblin
Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts, USA
Department of Dermatology, Harvard Medical School, Boston, Massachusetts, USA
Harvard-MIT Division of Health Sciences and Technology, Cambridge, Massachusetts, USA
Correspondence
Ahad Mokhtarzadeh, Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
Email: [email protected]
Ali Maleki, Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran.
Email: [email protected]
Michael R Hamblin, Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, 02114, USA.
Email: [email protected]
Search for more papers by this authorReza Eivazzadeh-Keihan
Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, Iran
Search for more papers by this authorEhsan Bahojb Noruzi
Faculty of Chemistry, Department of Inorganic Chemistry, University of Tabriz, Tabriz, Iran
Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
Search for more papers by this authorKarim Khanmohammadi Chenab
Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, Iran
Search for more papers by this authorAmir Jafari
Department of Medical Nanotechnology, Faculty of Advanced Technology in Medicine, Iran University of Medical Sciences, Tehran, Iran
Search for more papers by this authorFateme Radinekiyan
Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, Iran
Search for more papers by this authorSeyed Masoud Hashemi
Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, Iran
Search for more papers by this authorFarnoush Ahmadpour
Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, Iran
Search for more papers by this authorAli Behboudi
Faculty of Chemical, Petroleum and Gas Engineering, Iran University of Science and Technology, Tehran, Iran
Search for more papers by this authorJafar Mosafer
Research Center of Advanced Technologies in Medicine, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
Search for more papers by this authorCorresponding Author
Ahad Mokhtarzadeh
Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
Department of Biotechnology, Higher Education Institute of Rab-Rashid, Tabriz, Iran
Correspondence
Ahad Mokhtarzadeh, Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
Email: [email protected]
Ali Maleki, Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran.
Email: [email protected]
Michael R Hamblin, Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, 02114, USA.
Email: [email protected]
Search for more papers by this authorCorresponding Author
Ali Maleki
Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, Iran
Correspondence
Ahad Mokhtarzadeh, Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
Email: [email protected]
Ali Maleki, Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran.
Email: [email protected]
Michael R Hamblin, Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, 02114, USA.
Email: [email protected]
Search for more papers by this authorCorresponding Author
Michael R. Hamblin
Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts, USA
Department of Dermatology, Harvard Medical School, Boston, Massachusetts, USA
Harvard-MIT Division of Health Sciences and Technology, Cambridge, Massachusetts, USA
Correspondence
Ahad Mokhtarzadeh, Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
Email: [email protected]
Ali Maleki, Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran.
Email: [email protected]
Michael R Hamblin, Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, 02114, USA.
Email: [email protected]
Search for more papers by this authorAbstract
Tissue is vital to the organization of multicellular organisms, because it creates the different organs and provides the main scaffold for body shape. The quest for effective methods to allow tissue regeneration and create scaffolds for new tissue growth has intensified in recent years. Tissue engineering has recently used some promising alternatives to existing conventional scaffold materials, many of which have been derived from nanotechnology. One important example of these is metal nanoparticles. The purpose of this review is to cover novel tissue engineering methods, paying special attention to those based on the use of metal-based nanoparticles. The unique physiochemical properties of metal nanoparticles, such as antibacterial effects, shape memory phenomenon, low cytotoxicity, stimulation of the proliferation process, good mechanical and tensile strength, acceptable biocompatibility, significant osteogenic potential, and ability to regulate cell growth pathways, suggest that they can perform as novel types of scaffolds for bone tissue engineering. The basic principles of various nanoparticle-based composites and scaffolds are discussed in this review. The merits and demerits of these particles are critically discussed, and their importance in bone tissue engineering is highlighted.
CONFLICT OF INTEREST
MRH declares the following potential conflicts of interest. Scientific Advisory Boards: Transdermal Cap Inc, Cleveland, OH; BeWell Global Inc, Wan Chai, Hong Kong; Hologenix Inc. Santa Monica, CA; LumiThera Inc, Poulsbo, WA; Vielight, Toronto, Canada; Bright Photomedicine, Sao Paulo, Brazil; Quantum Dynamics LLC, Cambridge, MA; Global Photon Inc, Bee Cave, TX; Medical Coherence, Boston MA; NeuroThera, Newark DE; JOOVV Inc, Minneapolis-St. Paul MN; AIRx Medical, Pleasanton CA; FIR Industries, Inc. Ramsey, NJ; UVLRx Therapeutics, Oldsmar, FL; Ultralux UV Inc, Lansing MI; Illumiheal & Petthera, Shoreline, WA; MB Lasertherapy, Houston, TX; ARRC LED, San Clemente, CA; Varuna Biomedical Corp. Incline Village, NV; Niraxx Light Therapeutics, Inc, Boston, MA. Consulting; Lexington Int, Boca Raton, FL; USHIO Corp, Japan; Merck KGaA, Darmstadt, Germany; Philips Electronics Nederland B.V. Eindhoven, Netherlands; Johnson & Johnson Inc, Philadelphia, PA; Sanofi-Aventis Deutschland GmbH, Frankfurt am Main, Germany. Stockholdings: Global Photon Inc, Bee Cave, TX; Mitonix, Newark, DE.
REFERENCES
- Agarwal, A., Guthrie, K. M., Czuprynski, C. J., Schurr, M. J., Mcanulty, J. F., Murphy, C. J., & Abbott, N. L. (2011). Polymeric multilayers that contain silver nanoparticles can be stamped onto biological tissues to provide antibacterial activity. Advanced Functional Materials, 21, 1863–1873. https://doi.org/10.1002/adfm.201002662
- Ajeesh, M., Francis, B. F., Annie, J., & Harikrishna Varma, P. R. (2010). Nano iron oxide–hydroxyapatite composite ceramics with enhanced radiopacity. Journal of Materials Science: Materials in Medicine, 21, 1427–1434. https://doi.org/10.1007/s10856-010-4005-9
- Akagawa, Y., Ichikawa, Y., Nikai, H., & Tsuru, H. (1993). Interface histology of unloaded and early loaded partially stabilized zirconia endosseous implant in initial bone healing. The Journal of Prosthetic Dentistry, 69, 599–604. https://doi.org/10.1016/0022-3913(93)90289-z
- Akturk, A., Erol Taygun, M., & Goller, G. (2020). Optimization of the electrospinning process variables for gelatin/silver nanoparticles/bioactive glass nanocomposites for bone tissue engineering. Polymer Composites, 41, 2411–2425. https://doi.org/10.1002/pc.25545
- Aliramaji, S., Zamanian, A., & Mozafari, M. (2017). Super-paramagnetic responsive silk fibroin/chitosan/magnetite scaffolds with tunable pore structures for bone tissue engineering applications. Materials Science and Engineering: C, 70, 736–744. https://doi.org/10.1016/j.msec.2016.09.039
- Alkilany, A. M., Nagaria, P. K., Hexel, C. R., Shaw, T. J., Murphy, C. J., & Wyatt, M. D. (2009). Cellular uptake and cytotoxicity of gold nanorods: Molecular origin of cytotoxicity and surface effects. Small, 5, 701–708. https://doi.org/10.1002/smll.200801546
- Altuna, P., Lucas-Taulé, E., Gargallo-Albiol, J., Figueras-Álvarez, O., Hernández-Alfaro, F., & Nart, J. (2016). Clinical evidence on titanium–zirconium dental implants: A systematic review and meta-analysis. International Journal of Oral and Maxillofacial Surgery, 45, 842–850. https://doi.org/10.1016/j.ijom.2016.01.004
- Andreu, I., & Natividad, E. (2013). Accuracy of available methods for quantifying the heat power generation of nanoparticles for magnetic hyperthermia. International Journal of Hyperthermia, 29, 739–751. https://doi.org/10.3109/02656736.2013.826825
- Bahojb Noruzi, E., Kheirkhahi, M., Shaabani, B., Geremia, S., Hickey, N., Asaro, F., … Kafil, H. S. (2019). Design of a thiosemicarbazide functionalized calix[4]arene ligand and related transition metal complexes: Synthesis, characterization and biological studies. Frontiers in Chemistry, 7, 663. https://doi.org/10.3389/fchem.2019.00663
- Bahojb Noruzi, E., Shaabani, B., Geremia, S., Hickey, N., Nitti, P., & Kafil, H. S. (2020). Synthesis, crystal structure, and biological activity of a multidentate calix[4]arene ligand doubly functionalized by 2-hydroxybenzeledene-thiosemicarbazone. Molecules, 25, 370. https://doi.org/10.3390/molecules25020370
- Balagangadharan, K., Chandran, S. V., Arumugam, B., Saravanan, S., Venkatasubbu, G. D., & Selvamurugan, N. (2018). Chitosan/nano-hydroxyapatite/nano-zirconium dioxide scaffolds with miR-590-5p for bone regeneration. International Journal of Biological Macromolecules, 111, 953–958. https://doi.org/10.1016/j.ijbiomac.2018.01.122
- Bani, M. S., Hatamie, S., Haghpanahi, M., Bahreinizad, H., Alavijeh, M. H. S., Eivazzadeh-Keihan, R., & Wei, Z. H. (2019). Casein-coated iron oxide nanoparticles for in vitro hyperthermia for cancer therapy. Spine, 9, 1940003. https://doi.org/10.1142/S2010324719400034
- Bashir, M. R., Bhatti, L., Marin, D., & Nelson, R. C. (2015). Emerging applications for ferumoxytol as a contrast agent in MRI. Journal of Magnetic Resonance Imaging, 41, 884–898. https://doi.org/10.1002/jmri.24691
- Besinis, A., De Peralta, T., Tredwin, C. J., & Handy, R. D. (2015). Review of nanomaterials in dentistry: Interactions with the oral microenvironment, clinical applications, hazards, and benefits. ACS Nano, 9, 2255–2289. https://doi.org/10.1021/nn505015e
- Bhowmick, A., Jana, P., Pramanik, N., Mitra, T., Banerjee, S. L., Gnanamani, A., … Kundu, P. P. (2016). Multifunctional zirconium oxide doped chitosan based hybrid nanocomposites as bone tissue engineering materials. Carbohydrate Polymers, 151, 879–888. https://doi.org/10.1016/j.carbpol.2016.06.034
- Bhowmick, A., Pramanik, N., Jana, P., Mitra, T., Gnanamani, A., Das, M., & Kundu, P. P. (2017). Development of bone-like zirconium oxide nanoceramic modified chitosan based porous nanocomposites for biomedical application. International Journal of Biological Macromolecules, 95, 348–356. https://doi.org/10.1016/j.ijbiomac.2016.11.052
- Bhowmick, A., Pramanik, N., Mitra, T., Gnanamani, A., Das, M., & Kundu, P. P. (2017). Mechanical and biological investigations of chitosan–polyvinyl alcohol based ZrO2 doped porous hybrid composites for bone tissue engineering applications. New Journal of Chemistry, 41, 7524–7530. https://doi.org/10.1039/C7NJ01246B
- Bondarenko, O., Juganson, K., Ivask, A., Kasemets, K., Mortimer, M., & Kahru, A. (2013). Toxicity of Ag, CuO and ZnO nanoparticles to selected environmentally relevant test organisms and mammalian cells in vitro: A critical review. Archives of Toxicology, 87, 1181–1200. https://doi.org/10.1007/s00204-013-1079-4
- Borzenkov, M., Chirico, G., Collini, M., & Pallavicini, P. (2018). Environmental Nanotechnology. Cham: Springer.
10.1007/978-3-319-76090-2_10 Google Scholar
- Cai, S., Pourdeyhimi, B., & Loboa, E. G. (2019). Industrial-scale fabrication of an osteogenic and antibacterial PLA/silver-loaded calcium phosphate composite with significantly reduced cytotoxicity. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 107, 900–910. https://doi.org/10.1002/jbm.b.34185
- Campana, V., Milano, G., Pagano, E., Barba, M., Cicione, C., Salonna, G., … Logroscino, G. (2014). Bone substitutes in orthopaedic surgery: From basic science to clinical practice. Journal of Materials Science: Materials in Medicine, 25, 2445–2461. https://doi.org/10.1007/s10856-014-5240-2
- Cao, D., Chen, Y., Tang, Y., Peng, X. C., Dong, H., Li, L. H., … Liu, J. Y. (2013). Loss of RASSF1A expression in colorectal cancer and its association with K-ras status. BioMed Research International, 2013, 1–7. https://doi.org/10.1155/2013/976765
- Cao, D., Xu, Z., Chen, Y., Ke, Q., Zhang, C., & Guo, Y. (2018). Ag-loaded MgSrFe-layered double hydroxide/chitosan composite scaffold with enhanced osteogenic and antibacterial property for bone engineering tissue. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 106, 863–873. https://doi.org/10.1002/jbm.b.33900
- Cao, Z., Wang, D., Li, Y., Xie, W., Wang, X., Tao, L., … Zhao, L. (2018). Effect of nanoheat stimulation mediated by magnetic nanocomposite hydrogel on the osteogenic differentiation of mesenchymal stem cells. Science China. Life Sciences, 61, 448–456. https://doi.org/10.1007/s11427-017-9287-8
- Carinci, F., Pezzetti, F., Volinia, S., Francioso, F., Arcelli, D., Farina, E., & Piattelli, A. (2004). Zirconium oxide: Analysis of MG63 osteoblast-like cell response by means of a microarray technology. Biomaterials, 25, 215–228. https://doi.org/10.1016/s0142-9612(03)00486-1
- Challa, V. S. A., Mali, S., & Misra, R. D. K. (2013). Reduced toxicity and superior cellular response of preosteoblasts to Ti-6Al-7Nb alloy and comparison with Ti-6Al-4V. Journal of Biomedical Materials Research Part A, 101, 2083–2089. https://doi.org/10.1002/jbm.a.34492
- Chen, H., Sun, J., Wang, Z., Zhou, Y., Lou, Z., Chen, B., … Ma, J. (2018). Magnetic cell–scaffold interface constructed by superparamagnetic IONP enhanced osteogenesis of adipose-derived stem cells. ACS Applied Materials & Interfaces, 10, 44279–44289. https://doi.org/10.1021/acsami.8b17427
- Chen, Y., Roohani-Esfahani, S. I., Lu, Z., Zreiqat, H., & Dunstan, C. R. (2015). Zirconium ions up-regulate the BMP/SMAD signaling pathway and promote the proliferation and differentiation of human osteoblasts. PLoS ONE, 10, e0113426. https://doi.org/10.1371/journal.pone.0113426
- Chen, Z., Ni, S., Han, S., Crawford, R., Lu, S., Wei, F., … Xiao, Y. (2017). Nanoporous microstructures mediate osteogenesis by modulating the osteo-immune response of macrophages. Nanoscale, 9, 706–718. https://doi.org/10.1039/C6NR06421C
- Chenab, K. K., Eivazzadeh-Keihan, R., Maleki, A., Pashazadeh-Panahi, P., Hamblin, M. R., & Mokhtarzadeh, A. (2019). Biomedical applications of nanoflares: Targeted intracellular fluorescence probes. Nanomedicine: Nanotechnology, Biology and Medicine, 17, 342–358. https://doi.org/10.1016/j.nano.2019.02.006
- Cheng, P., Han, P., Zhao, C., Zhang, S., Wu, H., Ni, J., … Xu, H. (2016). High-purity magnesium interference screws promote fibrocartilaginous entheses regeneration in the anterior cruciate ligament reconstruction rabbit model via accumulation of BMP-2 and VEGF. Biomaterials, 81, 14–26. https://doi.org/10.1016/j.biomaterials.2015.12.005
- Choi, S. Y., Song, M. S., Ryu, P. D., Lam, A. T. N., Joo, S. W., & Lee, S. Y. (2015). Gold nanoparticles promote osteogenic differentiation in human adipose-derived mesenchymal stem cells through the Wnt/β-catenin signaling pathway. International Journal of Nanomedicine, 10, 4383–4392. https://doi.org/10.2147/IJN.S78775
- Coradeghini, R., Gioria, S., García, C. P., Nativo, P., Franchini, F., Gilliland, D., … Rossi, F. (2013). Size-dependent toxicity and cell interaction mechanisms of gold nanoparticles on mouse fibroblasts. Toxicology Letters, 217, 205–216. https://doi.org/10.1016/j.toxlet.2012.11.022
- Covacci, V., Bruzzese, N., Maccauro, G., Andreassi, C., Ricci, G. A., Piconi, C., … Cittadini, A. (1999). In vitro evaluation of the mutagenic and carcinogenic power of high purity zirconia ceramic. Biomaterials, 20, 371–376. https://doi.org/10.1016/s0142-9612(98)00182-3
- Dang, W., Li, T., Li, B., Ma, H., Zhai, D., Wang, X., … Wu, C. (2018). A bifunctional scaffold with CuFeSe2 nanocrystals for tumor therapy and bone reconstruction. Biomaterials, 160, 92–106. https://doi.org/10.1016/j.biomaterials.2017.11.020
- De Santis, R., Russo, A., Gloria, A., D'Amora, U., Russo, T., Panseri, S., … Dediu, V. A. (2015). Towards the design of 3D fiber-deposited poly(ε-caprolactone)/iron-doped hydroxyapatite nanocomposite magnetic scaffolds for bone regeneration. Journal of Biomedical Nanotechnology, 11, 1236–1246. https://doi.org/10.1166/jbn.2015.2065
- Dhar, S., Reddy, E. M., Prabhune, A., Pokharkar, V., Shiras, A., & Prasad, B. L. V. (2011). Cytotoxicity of sophorolipid-gellan gum-gold nanoparticle conjugates and their doxorubicin loaded derivatives towards human glioma and human glioma stem cell lines. Nanoscale, 3, 575–580. https://doi.org/10.1039/c0nr00598c
- Dhivya, S., Ajita, J., & Selvamurugan, N. (2015). Metallic nanomaterials for bone tissue engineering. Journal of Biomedical Nanotechnology, 11, 1675–1700. https://doi.org/10.1166/jbn.2015.2115
- Dias, A., Hussain, A., Marcos, A., & Roque, A. (2011). A biotechnological perspective on the application of iron oxide magnetic colloids modified with polysaccharides. Biotechnology Advances, 29, 142–155. https://doi.org/10.1016/j.biotechadv.2010.10.003
- Doostmohammadi, A., Karimzadeh Esfahani, Z., Ardeshirylajimi, A., & Rahmati Dehkordi, Z. (2019). Zirconium modified calcium-silicate-based nanoceramics: An in vivo evaluation in a rabbit tibial defect model. International Journal of Applied Ceramic Technology, 16, 431–437. https://doi.org/10.1111/ijac.13076
- Dykman, L., & Khlebtsov, N. (2012). Gold nanoparticles in biomedical applications: Recent advances and perspectives. Chemical Society Reviews, 41, 2256–2282. https://doi.org/10.1039/C1CS15166E
- Eivazzadeh-Keihan, R., Chenab, K. K., Taheri-Ledari, R., Mosafer, J., Hashemi, S. M., Mokhtarzadeh, A., … Hamblin, M. R. (2019). Recent advances in the application of mesoporous silica-based nanomaterials for bone tissue engineering. Materials Science and Engineering: C, 107, 110267. https://doi.org/10.1016/j.msec.2019.110267
- Eivazzadeh-Keihan, R., Maleki, A., De la Guardia, M., Bani, M. S., Chenab, K. K., Pashazadeh-Panahi, P., … Hamblin, M. R. (2019). Carbon based nanomaterials for tissue engineering of bone: Building new bone on small black scaffolds: A review. Journal of Advanced Research, 18, 185–201. https://doi.org/10.1016/j.jare.2019.03.011
- Eivazzadeh-Keihan, R., Noruzi, E. B., Radinekiyan, F., Bani, M. S., Maleki, A., Shaabani, B., & Haghpanahi, M. (2020). Synthesis of core-shell magnetic supramolecular nanocatalysts based on amino-functionalized calix[4]arenes for the synthesis of 4H-chromenes by ultrasonic waves. ChemistryOpen, 9, 735–742. https://doi.org/10.1002/open.202000005
- Eivazzadeh-Keihan, R., Pashazadeh, P., Hejazi, M., De la Guardia, M., & Mokhtarzadeh, A. (2017). Recent advances in nanomaterial-mediated bio and immune sensors for detection of aflatoxin in food products. TrAC Trends in Analytical Chemistry, 87, 112–128. https://doi.org/10.1016/j.trac.2016.12.003
- Eivazzadeh-Keihan, R., Pashazadeh-Panahi, P., Baradaran, B., De la Guardia, M., Hejazi, M., Sohrabi, H., … Maleki, A. (2018). Recent progress in optical and electrochemical biosensors for sensing of Clostridium botulinum neurotoxin. TrAC Trends in Analytical Chemistry, 103, 184–197. https://doi.org/10.1016/j.trac.2018.03.019
- Eivazzadeh-Keihan, R., Pashazadeh-Panahi, P., Baradaran, B., Maleki, A., Hehazi, M., Mokhtarzadeh, A., & De la Guardia, M. (2018). Recent advances on nanomaterial based electrochemical and optical aptasensors for detection of cancer biomarkers. TrAC Trends in Analytical Chemistry, 100, 103–115. https://doi.org/10.1016/j.trac.2017.12.019
- Eivazzadeh-Keihan, R., Pashazadeh-Panahi, P., Mahmoudi, T., Chenab, K. K., Baradaran, B., Hashemzaei, M., … Maleki, A. (2019). Dengue virus: A review on advances in detection and trends–from conventional methods to novel biosensors. Microchimica Acta, 186, 329. https://doi.org/10.1007/s00604-019-3420-y
- Eivazzadeh-Keihan, R., Radinekiyan, F., Maleki, A., Bani, M. S., & Azizi, M. (2020). A new generation of star polymer: Magnetic aromatic polyamides with unique microscopic flower morphology and in vitro hyperthermia of cancer therapy. Journal of Materials Science, 55, 319–336. https://doi.org/10.1007/s10853-019-04005-6
- Eivazzadeh-Keihan, R., Radinekiyan, F., Maleki, A., Bani, M. S., Hajizadeh, Z., & Asgharnasl, S. (2019). A novel biocompatible core-shell magnetic nanocomposite based on cross-linked chitosan hydrogels for in vitro hyperthermia of cancer therapy. International Journal of Biological Macromolecules, 140, 407–414. https://doi.org/10.1016/j.ijbiomac.2019.08.031
- El-Rashidy, A. A., Waly, G., Gad, A., Roether, J. A., Hum, J., Yang, Y., … Goldmann, W. H. (2018). Antibacterial activity and biocompatibility of zein scaffolds containing silver-doped bioactive glass. Biomedical Materials, 13, 065006. https://doi.org/10.1088/1748-605x/aad8cf
- Erol, M. M., Mouriňo, V., Newby, P., Chatzistavrou, X., Roether, J. A., Hupa, L., & Boccaccini, A. R. (2012). Copper-releasing, boron-containing bioactive glass-based scaffolds coated with alginate for bone tissue engineering. Acta Biomaterialia, 8, 792–801. https://doi.org/10.1016/j.actbio.2011.10.013
- Ewald, A., Käppel, C., Vorndran, E., Moseke, C., Gelinsky, M., & Gbureck, U. (2012). The effect of Cu (II)-loaded brushite scaffolds on growth and activity of osteoblastic cells. Journal of Biomedical Materials Research Part A, 100, 2392–2400. https://doi.org/10.1002/jbm.a.34184
- Farid, M. M., Hathout, R. M., Fawzy, M., & Abou-Aisha, K. (2014). Silencing of the scavenger receptor (Class B–Type 1) gene using siRNA-loaded chitosan nanaoparticles in a HepG2 cell model. Colloids and Surfaces B: Biointerfaces, 123, 930–937. https://doi.org/10.1016/j.colsurfb.2014.10.045
- Farrokhi-Rad, M., & Shahrabi, T. (2014). Effect of suspension medium on the electrophoretic deposition of hydroxyapatite nanoparticles and properties of obtained coatings. Ceramics International, 40, 3031–3039. https://doi.org/10.1016/j.ceramint.2013.10.004
- Forero, J., Roa, E., Reyes, J., Acevedo, C., & Osses, N. (2017). Development of useful biomaterial for bone tissue engineering by incorporating nano-copper-zinc alloy (nCuZn) in chitosan/gelatin/nano-hydroxyapatite (Ch/G/nHAp) scaffold. Materials, 10, 1177. https://doi.org/10.3390/ma10101177
- Frandsen, C. J., Brammer, K. S., Noh, K., Connelly, L. S., Oh, S., Chen, L. H., & Jin, S. (2011). Zirconium oxide nanotube surface prompts increased osteoblast functionality and mineralization. Materials Science and Engineering: C, 31, 1716–1722. https://doi.org/10.1016/j.msec.2011.07.016
- Fromm, K. M. (2013). Bioinorganic chemistry of silver: Its interactions with amino acids and peptides. Chimia International Journal for Chemistry, 67, 851–854. https://doi.org/10.2533/chimia.2013.851
- Fu, Q., Saiz, E., Rahaman, M. N., & Tomsia, A. P. (2013). Toward strong and tough glass and ceramic scaffolds for bone repair. Advanced Functional Materials, 23, 5461–5476. https://doi.org/10.1002/adfm.201301121
- Furno, F., Morley, K. S., Wong, B., Sharp, B. L., Arnold, P. L., Howdle, S. M., … Reid, H. J. (2004). Silver nanoparticles and polymeric medical devices: A new approach to prevention of infection? Journal of Antimicrobial Chemotherapy, 54, 1019–1024. https://doi.org/10.1093/jac/dkh478
- Gahlert, M., Rӧhling, S., Wieland, M., Sprecher, C. M., Kniha, H., & Milz, S. (2009). Osseointegration of zirconia and titanium dental implants: A histological and histomorphometrical study in the maxilla of pigs. Clinical Oral Implants Research, 20, 1247–1253. https://doi.org/10.1111/j.1600-0501.2009.01734.x
- Gérard, C., Bordeleau, L. J., Barralet, J., & Doillon, C. J. (2010). The stimulation of angiogenesis and collagen deposition by copper. Biomaterials, 31, 824–831. https://doi.org/10.1016/j.biomaterials.2009.10.009
- Giljohann, D. A., Seferos, D. S., Daniel, W. L., Massich, M. D., Patel, P. C., & Mirkin, C. A. (2010). Gold nanoparticles for biology and medicine. Angewandte Chemie International Edition, 49, 3280–3294. https://doi.org/10.1002/anie.200904359
- Gitelis, S., Wilkins, R. M., & Yasko, A. W. (2008). BMPs and cancer: Is the risk real. American Academy of Orthopaedic Surgeons, 1, 2–5.
- Glenske, K., Donkiewicz, P., Kӧwitsch, A., Milosevic-Oljaca, N., Rider, P., Rofall, S., … Schnettler, R. (2018). Applications of metals for bone regeneration. International Journal of Molecular Sciences, 19, 826. https://doi.org/10.3390/ijms19030826
- Gouda, M. (2012). Nano-zirconium oxide and nano-silver oxide/cotton gauze fabrics for antimicrobial and wound healing acceleration. Journal of Industrial Textiles, 41, 222–240. https://doi.org/10.1177/1528083711414960
- Greulich, C., Kittler, S., Epple, M., Muhr, G., & Kӧller, M. (2009). Studies on the biocompatibility and the interaction of silver nanoparticles with human mesenchymal stem cells (hMSCs). Langenbeck's Archives of Surgery, 394, 495–502. https://doi.org/10.1007/s00423-009-0472-1
- Gudovan, D., Balaure, P. C., Eduard Mihaiescu, D., Fudulu, A., & Radu, M. (2015). Functionalized magnetic nanoparticles for biomedical applications. Current Pharmaceutical Design, 21, 6038–6054. https://doi.org/10.2174/1381612821666151027151702
- Hajinasab, A., Saber-Samandar, S., Ahmadi, S., & Alamara, K. (2018). Preparation and characterization of a biocompatible magnetic scaffold for biomedical engineering. Materials Chemistry and Physics, 204, 378–387. https://doi.org/10.1016/j.matchemphys.2017.10.080
- Hamido, F., Misfer, A. K., AL Harran, H., Khadrawe, T. A., Soliman, A., Talaat, A., … Khairat, S. (2011). The use of the LARS artificial ligament to augment a short or undersized ACL hamstrings tendon graft. The Knee, 18, 373–378. https://doi.org/10.1016/j.knee.2010.09.003
- Hasan, A., Morshed, M., Memic, A., Hassan, S., Webster, T. J., & Marei, H. E. S. (2018). Nanoparticles in tissue engineering: Applications, challenges and prospects. International Journal of Nanomedicine, 13, 5637–5655. https://doi.org/10.2147/IJN.S153758
- Hasan, A., Paul, A., Memic, A., & Khademhosseini, A. (2015). A multilayered microfluidic blood vessel-like structure. Biomedical Microdevices, 17, 88. https://doi.org/10.1007/s10544-015-9993-2
- Hasan, A., Waibhaw, G., Saxena, V., & Pandey, L. M. (2018). Nano-biocomposite scaffolds of chitosan, carboxymethyl cellulose and silver nanoparticle modified cellulose nanowhiskers for bone tissue engineering applications. International Journal of Biological Macromolecules, 111, 923–934. https://doi.org/10.1016/j.ijbiomac.2018.01.089
- Hasssan, M., Fetecau, C., Majeed, A., & Zeeshan, A. (2018). Effects of iron nanoparticles' shape on convective flow of ferrofluid under highly oscillating magnetic field over stretchable rotating disk. Journal of Magnetism and Magnetic Materials, 465, 531–539. https://doi.org/10.1016/J.JMMM.2018.06.019
- He, J., He, F. L., Li, D. W., Liu, Y. L., & Yin, D. C. (2016). A novel porous Fe/Fe-W alloy scaffold with a double-layer structured skeleton: preparation, in vitro degradability and biocompatibility. Colloids and Surfaces B: Biointerfaces, 142, 325–333. https://doi.org/10.1016/j.colsurfb.2016.03.002
- Heidari, F., Bahrololoom, M. E., Vashaee, D., & Tayebi, L. (2015). In situ preparation of iron oxide nanoparticles in natural hydroxyapatite/chitosan matrix for bone tissue engineering application. Ceramics International, 41, 3094–3100. https://doi.org/10.1016/j.ceramint.2014.10.153
- Hejazy, M., Koohi, M. K., Bassiri Mohamad Pour, A., & Najafi, D. (2018). Toxicity of manufactured copper nanoparticles—A review. Nanomedicine Research Journal, 3, 1–9. https://doi.org/10.22034/NMRJ.2018.01.001
- Henslee, A. M., Spicer, P. P., Yoon, D. M., Nair, M. B., Meretoja, V. V., Wiyherel, K. E., … Kasper, F. K. (2011). Biodegradable composite scaffolds incorporating an intramedullary rod and delivering bone morphogenetic protein-2 for stabilization and bone regeneration in segmental long bone defects. Acta Biomaterialia, 7, 3627–3637. https://doi.org/10.1016/j.actbio.2011.06.043
- Heo, D. N., Ko, W. K., Bae, M. S., Lee, J. B., Lee, D. W., Byun, W., … Kwon, I. K. (2014). Enhanced bone regeneration with a gold nanoparticle–hydrogel complex. Journal of Materials Chemistry B, 2, 1584–1593. https://doi.org/10.1039/C3TB21246G
- Hoffman, K., Skrtic, D., Sun, J., & Tutak, W. (2014). Airbrushed composite polymer Zr-ACP nanofiber scaffolds with improved cell penetration for bone tissue regeneration. Tissue Engineering Part C: Methods, 21, 284–291. https://doi.org/10.1089/ten.tec.2014.0236
- Honda, M., Kawanobe, Y., Ishii, K., Konishi, T., Mizumoto, M., Kanzawa, N., … Aizawa, M. (2013). In vitro and in vivo antimicrobial properties of silver-containing hydroxyapatite prepared via ultrasonic spray pyrolysis route. Materials Science and Engineering: C, 33, 5008–5018. https://doi.org/10.1016/j.msec.2013.08.026
- Hu, Q., Li, B., Wang, M., & Shen, J. (2004). Preparation and characterization of biodegradable chitosan/hydroxyapatite nanocomposite rods via in situ hybridization: A potential material as internal fixation of bone fracture. Biomaterials, 25, 779–785. https://doi.org/10.1016/s0142-9612(03)00582-9
- Huang, W. S., & Chu, I. M. (2019). Injectable polypeptide hydrogel/inorganic nanoparticle composites for bone tissue engineering. PLoS ONE, 14, e0210285. https://doi.org/10.1371/journal.pone.0210285
- Ingle, A. P., Duran, N., & Rai, M. (2014). Bioactivity, mechanism of action, and cytotoxicity of copper-based nanoparticles: A review. Applied Microbiology and Biotechnology, 98, 1001–1009. https://doi.org/10.1007/s00253-013-5422-8
- Jaganathan, S. K., & Mani, M. P. (2019). Enriched mechanical, thermal, and blood compatibility of single stage electrospun polyurethane nickel oxide nanocomposite for cardiac tissue engineering. Polymer Composites, 40, 2381–2390. https://doi.org/10.1002/pc.25098
- Jaidev, L., Kumar, S., & Chatterjee, K. (2017). Multi-biofunctional polymer graphene composite for bone tissue regeneration that elutes copper ions to impart angiogenic, osteogenic and bactericidal properties. Colloids and Surfaces B: Biointerfaces, 159, 293–302. https://doi.org/10.1016/j.colsurfb.2017.07.083
- Jangra, S. L., Stalin, K., Dilbaghi, N., Kumar, S., Tawale, J., Singh, S. P., & Pasricha, R. (2012). Antimicrobial activity of zirconia (ZrO2) nanoparticles and zirconium complexes. Journal of Nanoscience and Nanotechnology, 12, 7105–7112. https://doi.org/10.1166/jnn.2012.6574
- Jin, G., Qin, H., Cao, H., Qian, S., Zhao, Y., Peng, X., … Chu, P. K. (2014). Synergistic effects of dual Zn/Ag ion implantation in osteogenic activity and antibacterial ability of titanium. Biomaterials, 35, 7699–7713. https://doi.org/10.1016/j.biomaterials.2014.05.074
- Jones, J. R., & Hench, L. L. (2004). Factors affecting the structure and properties of bioactive foam scaffolds for tissue engineering. Journal of Biomedical Materials Research Part B, 68, 36–44. https://doi.org/10.1002/jbm.b.10071
- Josset, Y., Oum'Hamed, Z., Zarrinpour, A., Lorenzato, M., Adnet, J. J., & Laurent–Maquin, D. (1999). In vitro reactions of human osteoblasts in culture with zirconia and alumina ceramics. Journal of Biomedical Materials Research, 47, 481–493. https://doi.org/10.1002/(SICI)1097-4636(19991215)47:4<481::AID-JBM4>3.0.CO;2-Y
10.1002/(SICI)1097-4636(19991215)47:4<481::AID-JBM4>3.0.CO;2-Y CAS PubMed Web of Science® Google Scholar
- Jung, S. K., Kim, J. H., Kim, H. J., Ji, Y. H., Kim, J. H., & Son, S. W. (2014). Silver nanoparticle-induced hMSC proliferation is associated with HIF-1α-mediated upregulation of IL-8 expression. The Journal of Investigative Dermatology, 134, 3003–3007. https://doi.org/10.1038/jid.2014.281
- Jung, W. K., Koo, H. C., Kim, K. W., Shin, S., Kim, S. H., & Park, Y. H. (2008). Antibacterial activity and mechanism of action of the silver ion in Staphylococcus aureus and Escherichia coli. Applied and Environmental Microbiology, 74, 2171–2178. https://doi.org/10.1128/AEM.02001-07
- Karunakaran, G., Suriyaprabha, R., Rajendran, V., & Kannan, N. (2014). Effect of contact angle, zeta potential and particles size on the in vitro studies of Al2O3 and SiO2 nanoparticles. IET Nanobiotechnology, 9, 27–34. https://doi.org/10.1049/iet-nbt.2013.0067
- Kataoka, K., Harada, A., & Nagasaki, Y. (2012). Block copolymer micelles for drug delivery: Design, characterization and biological significance. Advanced Drug Delivery Reviews, 64, 37–48. https://doi.org/10.1016/j.addr.2012.09.013
- Khandan, A., & Ozada, N. (2017). Bredigite-magnetite (Ca7MgSi4O16-Fe3O4) nanoparticles: A study on their magnetic properties. Journal of Alloys and Compounds, 726, 729–736. https://doi.org/10.1016/j.jallcom.2017.07.288
- Khanmohammadi Chenab, K., Sohrabi, B., & Rahmanzadeh, A. (2019). Superhydrophobicity: Advanced biological and biomedical applications. Biomaterials Science, 7, 3110–3137. https://doi.org/10.1039/C9BM00558G
- Khetani, S. R., & Bhatia, S. N. (2006). Engineering tissues for in vitro applications. Current Opinion in Biotechnology, 17, 524–531. https://doi.org/10.1016/j.copbio.2006.08.009
- Kim, H., Che, L., Ha, Y., & Ryu, W. (2014). Mechanically-reinforced electrospun composite silk fibroin nanofibers containing hydroxyapatite nanoparticles. Materials Science and Engineering: C, 40, 324–335. https://doi.org/10.1016/j.msec.2014.04.012
- Kim, J. E., Lee, J., Jang, M., Kwak, M. H., Go, J., Kho, E. K., … Hwang, D. Y. (2015). Accelerated healing of cutaneous wounds using phytochemically stabilized gold nanoparticle deposited hydrocolloid membranes. Biomaterials Science, 3, 509–519. https://doi.org/10.1039/C4BM00390J
- Kim, J. J., Singh, R. K., Seo, S. J., Kim, T. H., Kim, J. H., Lee, E. J., & Kim, H. W. (2014). Magnetic scaffolds of polycaprolactone with functionalized magnetite nanoparticles: Physicochemical, mechanical, and biological properties effective for bone regeneration. RSC Advances, 4, 17325–17336. https://doi.org/10.1039/C4RA00040D
- Kim, J. S., Kuk, E., Yu, K. N., Kim, J. H., Park, S. J., Lee, H. J., … Hwang, C. Y. (2007). Antimicrobial effects of silver nanoparticles. Nanomedicine: Nanotechnology, Biology and Medicine, 3, 95–101. https://doi.org/10.1016/j.nano.2006.12.001
- Kingsley, J. D., Ranjan, S., Dasgupta, N., & Saha, P. (2013). Nanotechnology for tissue engineering: Need, techniques and applications. Journal of Pharmacy Research, 7, 200–204. https://doi.org/10.1016/j.jopr.2013.02.021
10.1016/j.jopr.2013.02.021 Google Scholar
- Kokorev, O. V., Hodorenko, V. N., Chekalkin, T. L., Kim, J. S., Kang, S.-B., Dambaev, G. T., & Gunther, V. E. (2016). In vitro and in vivo evaluation of porous TiNi-based alloy as a scaffold for cell tissue engineering. Artificial Cells, Nanomedicine, and Biotechnology, 44, 704–709. https://doi.org/10.3109/21691401.2014.982799
- Kolosnjaj-Tabi, J., & Wilhelm, C. (2017). Magnetic nanoparticles in cancer therapy: How can thermal approaches help? Future Medicine, 12, 1–3. https://doi.org/10.2217/nnm-2017-0014
10.2217/nnm-2017-0014 Google Scholar
- Kovacevic, D., Gulotta, L. V., Ying, L., Ehteshami, J. R., Deng, X.-H., & Rodeo, S. A. (2015). rhPDGF-BB promotes early healing in a rat rotator cuff repair model. Clinical Orthopaedics and Related Research, 473, 1644–1654. https://doi.org/10.1007/s11999-014-4020-0
- Kretlow, J. D., & Mikos, A. G. (2007). Review: Mineralization of synthetic polymer scaffolds for bone tissue engineering. Tissue Engineering, 13, 927–938. https://doi.org/10.1089/ten.2006.0394
- Kumar Saini, R., Prasad Bagri, L., & Bajpai, A. K. (2019). Nano-silver hydroxyapatite based antibacterial 3D scaffolds of gelatin/alginate/poly (vinyl alcohol) for bone tissue engineering applications. Colloids and Surfaces B: Biointerfaces, 177, 211–218. https://doi.org/10.1016/j.colsurfb.2019.01.064
- Kwan, K. H. L., Liu, X., To, M. K. T., Yeung, K. W. K., Ho, C. M., & Wong, K. K. Y. (2011). Modulation of collagen alignment by silver nanoparticles results in better mechanical properties in wound healing. Nanomedicine: Nanotechnology, Biology and Medicine, 7, 497–504. https://doi.org/10.1016/j.nano.2011.01.003
- Lai, W. Y., Feng, S. W., Chan, Y.-H., Chang, W.-J., Wang, H. T., & Huang, H.-M. (2018). In vivo investigation into effectiveness of Fe3O4/PLLA nanofibers for bone tissue engineering applications. Polymers, 10, 804. https://doi.org/10.3390/polym10070804
- Laurencin, C. T., Ashe, K. M., Henry, N., Kan, H. M., & Lo, K. W. H. (2014). Delivery of small molecules for bone regenerative engineering: Preclinical studies and potential clinical applications. Drug Discovery Today, 19, 794–800. https://doi.org/10.1016/j.drudis.2014.01.012
- Lee, D., Lee, S. J., Moon, J. H., Kim, J. H., Heo, D. N., Bang, J. B., … Kwon, I. K. (2018). Preparation of antibacterial chitosan membranes containing silver nanoparticles for dental barrier membrane applications. Journal of Industrial and Engineering Chemistry, 66, 196–202. https://doi.org/10.1016/j.jiec.2018.05.030
- Lee, I. C., Ko, J. W., Park, S. H., Lim, J. O., Shin, I. S., Moon, C., … Kim, J. C. (2016). Comparative toxicity and biodistribution of copper nanoparticles and cupric ions in rats. International Journal of Nanomedicine, 11, 2883–2900. https://doi.org/10.2147/IJN.S106346
- Li, H., Li, J., Jiang, J., Lv, F., Chang, J., Chen, S., & Wu, C. (2017). An osteogenesis/angiogenesis-stimulation artificial ligament for anterior cruciate ligament reconstruction. Acta Biomaterialia, 54, 399–410. https://doi.org/10.1016/j.actbio.2017.03.014
- Li, J., Qian, S., Ning, C., & Liu, X. (2016). rBMSC and bacterial responses to isoelastic carbon fiber-reinforced poly (ether-ether-ketone) modified by zirconium implantation. Journal of Materials Chemistry B, 4, 96–104. https://doi.org/10.1039/C5TB01784J
- Li, J., Zhai, D., Lv, F., Yu, Q., Ma, H., Yin, J., … Wu, C. (2016). Preparation of copper-containing bioactive glass/eggshell membrane nanocomposites for improving angiogenesis, antibacterial activity and wound healing. Acta Biomaterialia, 36, 254–266. https://doi.org/10.1016/j.actbio.2016.03.011
- Li, Y., Fan, L., Liu, S., Liu, W., Zhang, H., Zhou, T., … Chen, J. (2013). The promotion of bone regeneration through positive regulation of angiogenic–osteogenic coupling using microRNA-26a. Biomaterials, 34, 5048–5058. https://doi.org/10.1016/j.biomaterials.2013.03.052
- Li, Y., Ye, D., Li, M., Ma, M., & Gu, N. (2018). Adaptive materials based on iron oxide nanoparticles for bone regeneration. ChemPhysChem, 19, 1965–1979. https://doi.org/10.1002/cphc.201701294
- Linder, M. C., & Hazegh-Azam, M. (1996). Copper biochemistry and molecular biology. The American Journal of Clinical Nutrition, 63, 797S–811S. https://doi.org/10.1093/ajcn/63.5.797
- Liu, B., & Zheng, Y. F. (2011). Effects of alloying elements (Mn, Co, Al, W, Sn, B, C and S) on biodegradability and in vitro biocompatibility of pure iron. Acta Biomaterialia, 7, 1407–1420. https://doi.org/10.1016/j.actbio.2010.11.001
- Liu, D., Zhang, J., Yi, C., & Yang, M. (2010). The effects of gold nanoparticles on the proliferation, differentiation, and mineralization function of MC3T3-E1 cells in vitro. Chinese Science Bulletin, 55, 1013–1019. https://doi.org/10.1007/s11434-010-0046-1
10.1007/s11434-010-0046-1 Google Scholar
- Liu, X., Huang, A., Ding, C., & Chu, P. K. (2006). Bioactivity and cytocompatibility of zirconia (ZrO2) films fabricated by cathodic arc deposition. Biomaterials, 27, 3904–3911. https://doi.org/10.1016/j.biomaterials.2006.03.007
- Liu, X., Lee, P. Y., Ho, C. M., Lui, V. C. H., Chen, Y., Che, C. M., … Wong, K. K. Y. (2010). Silver nanoparticles mediate differential responses in keratinocytes and fibroblasts during skin wound healing. ChemMedChem, 5, 468–475. https://doi.org/10.1002/cmdc.200900502
- Liu, X., Xie, Y., Shii, S., Feng, Q., Bachhuka, A., Guo, X., … Vasilev, K. (2019). The co-effect of surface topography gradient fabricated via immobilization of gold nanoparticles and surface chemistry via deposition of plasma polymerized film of allylamine/acrylic acid on osteoblast-like cell behavior. Applied Surface Science, 473, 838–847. https://doi.org/10.1016/j.apsusc.2018.12.216
- Liu, Y., Liu, Y., Zheng, C., Huang, N., Chen, X., Zhu, X., … Liu, J. (2018). Ru nanoparticles coated with γ-Fe2O3 promoting and monitoring the differentiation of human mesenchymal stem cells via MRI tracking. Colloids and Surfaces B: Biointerfaces, 170, 701–711. https://doi.org/10.1016/j.colsurfb.2018.05.041
- Loh, Q. L., & Choong, C. (2013). Three-dimensional scaffolds for tissue engineering applications: Role of porosity and pore size. Tissue Engineering Part B: Reviews, 19, 485–502. https://doi.org/10.1089/ten.teb.2012.0437
- Luca, L., Rougemont, A. L., Walpoth, B. H., Gurny, R., & Jordan, O. (2010). The effects of carrier nature and pH on rhBMP-2-induced ectopic bone formation. Journal of Controlled Release, 147, 38–44. https://doi.org/10.1016/j.jconrel.2010.06.011
- Luo, C., Yang, X., Li, M., Huang, H., Kang, Q., Zhang, X., … Luo, Y. (2018). A novel strategy for in vivo angiogenesis and osteogenesis: Magnetic micro-movement in a bone scaffold. Artificial Cells, Nanomedicine, and Biotechnology, 46, 636–645. https://doi.org/10.1080/21691401.2018.1465947
- Luo, Y., Yang, J., Yan, Y., Li, J., Shen, M., Zhang, G., … Shi, X. (2015). RGD-functionalized ultrasmall iron oxide nanoparticles for targeted T1-weighted MR imaging of gliomas. Nanoscale, 7, 14538–14546. https://doi.org/10.1039/C5NR04003E
- Lv, J., Xiu, P., Tan, J., Jia, Z., Cai, H., & Liu, Z. (2015). Enhanced angiogenesis and osteogenesis in critical bone defects by the controlled release of BMP-2 and VEGF: Implantation of electron beam melting-fabricated porous Ti6Al4V scaffolds incorporating growth factor-doped fibrin glue. Biomedical Materials, 10, 035013. https://doi.org/10.1088/1748-6041/10/3/035013
- Mabrouk, M., Elsheniney, S. A., Kenawy, S. H., El-Bassyouni, G. T., & Hamzawy, E. M. A. (2019). Novel, cost-effective, Cu-doped calcium silicate nanoparticles for bone fracture intervention: Inherent bioactivity and in vivo performance. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 107, 388–399. https://doi.org/10.1002/jbm.b.34130
- Maghsoudlou, M. A., Nassireslami, E., Saber-Samandari, S., & Khandan, A. (2020). Bone regeneration using bio-nanocomposite tissue reinforced with bioactive nanoparticles for femoral defect applications in medicine. Avicenna Journal of Medical Biotechnology, 12, 68–76.
- Maleki, A., Aghaei, M., Hafizi-Atabak, H. R., & Ferdowsi, M. (2017). Ultrasonic treatment of CoFe2O4@B2O3-SiO2 as a new hybrid magnetic composite nanostructure and catalytic application in the synthesis of dihydroquinazolinones. Ultrasonics Sonochemistry, 37, 260–266. https://doi.org/10.1016/j.ultsonch.2017.01.022
- Maleki, A., & Kamalzare, M. (2014). Fe3O4@cellulose composite nanocatalyst: Preparation, characterization and application in the synthesis of benzodiazepines. Catalysis Communications, 53, 67–71. https://doi.org/10.1016/j.catcom.2014.05.004
- Maleki, A., Ravaghi, P., & Movahed, H. (2018). Green approach for the synthesis of carboxycoumarins by using a highly active magnetically recyclable nanobiocomposite via sustainable catalysis. Micro & Nano Letters, 13, 591–594. https://doi.org/10.1049/mnl.2017.0560
- Martínez-Sanmiguel, J. J., G Zarate-Triviño, D., Hernandez-Delgadillo, R., Giraldo-Betancur, A. L., Pineda-Aguilar, N., Galindo-Rodríguez, S. A., … Rodríguez-Padilla, C. (2019). Anti-inflammatory and antimicrobial activity of bioactive hydroxyapatite/silver nanocomposites. Journal of Biomaterials Applications, 33, 1314–1326. https://doi.org/10.1177/0885328219835995
- Matsumoto, T., Kubo, S., Sasaki, K., Kawakami, Y., Oka, S., Sasaki, H., … Mifune, Y. (2012). Acceleration of tendon-bone healing of anterior cruciate ligament graft using autologous ruptured tissue. The American Journal of Sports Medicine, 40, 1296–1302. https://doi.org/10.1177/0363546512439026
- Mehrabani, M. G., Karimian, R., Mehramouz, B., Rahimi, M., & Kafil, H. S. (2018). Preparation of biocompatible and biodegradable silk fibroin/chitin/silver nanoparticles 3D scaffolds as a bandage for antimicrobial wound dressing. International Journal of Biological Macromolecules, 114, 961–971. https://doi.org/10.1016/j.ijbiomac.2018.03.128
- Mokhtarzadeh, A., Eivazzadeh-Keihan, R., Pashazadeh, P., Hejazi, M., Gharaatifar, N., Hasanzadeh, M., … de la Guardia, M. (2017). Nanomaterial-based biosensors for detection of pathogenic virus. Trends in Analytical Chemistry, 97, 445–457. https://doi.org/10.1016/j.trac.2017.10.005
- Mondal, S., Hoang, G., Manivasagan, P., Moorthy, M. S., Phan, T. T. V., Kim, H. H., … Oh, J. (2019). Rapid microwave-assisted synthesis of gold loaded hydroxyapatite collagen nano-bio materials for drug delivery and tissue engineering application. Ceramics International, 45, 2977–2988. https://doi.org/10.1016/j.ceramint.2018.10.016
- Montgomery, S. R., Petrigliano, F. A., & Gamradt, S. C. (2011). Biologic augmentation of rotator cuff repair. Current Reviews in Musculoskeletal Medicine, 4, 221–230. https://doi.org/10.1007/s12178-011-9095-6
- Morones, J. R., Elechiguerra, J. L., Camacho, A., Holt, K., Kouri, J. B., Ramírez, J. T., & Yacaman, M. J. (2005). The bactericidal effect of silver nanoparticles. Nanotechnology, 16, 2346–2353. https://doi.org/10.1088/0957-4484/16/10/059
- Nahand, J. S., Taghizadeh-boroujeni, S., Karimzadeh, M., Borran, S., Pourhanifeh, M. H., Moghoofei, M., … Mirzaei, H. (2019). microRNAs: New prognostic, diagnostic, and therapeutic biomarkers in cervical cancer. Journal of Cellular Physiology, 234, 17064–17099. https://doi.org/10.1002/jcp.28457
- Nerem, R. M. (2000). Tissue engineering a blood vessel substitute: The role of biomechanics. Yonsei Medical Journal, 41, 735–739. https://doi.org/10.3349/ymj.2000.41.6.735
- Nielsen, F., & Milne, D. (2004). A moderately high intake compared to a low intake of zinc depresses magnesium balance and alters indices of bone turnover in postmenopausal women. European Journal of Clinical Nutrition, 58, 703–710. https://doi.org/10.1038/sj.ejcn.1601867
- O'Brien, F. J. (2011). Biomaterials & scaffolds for tissue engineering. Materials Today, 14, 88–95. https://doi.org/10.1016/S1369-7021(11)70058-X
- Oliveira, J. M., Rodrigues, M. T., Silva, S. S., Malafaya, P. B., Gomes, M. E., Viegas, C. A., … Reis, R. L. (2006). Novel hydroxyapatite/chitosan bilayered scaffold for osteochondral tissue-engineering applications: Scaffold design and its performance when seeded with goat bone marrow stromal cells. Biomaterials, 27, 6123–6137. https://doi.org/10.1016/j.biomaterials.2006.07.034
- Oliveira, J. M., Sousa, R. A., Malafaya, P. B., Silva, S. S., Kotobuki, N., Hirose, M., … Reis, R. L. (2011). In vivo study of dendronlike nanoparticles for stem cells “tune-up”: From nano to tissues. Nanomedicine: Nanotechnology, Biology and Medicine, 7, 914–924. https://doi.org/10.1016/j.nano.2011.03.002
- Oriňák, A., Oriňáková, R., Králová, Z. O., Turoňová, A. M., Kupková, M., Hrubovčáková, M., … Džunda, R. (2014). Sintered metallic foams for biodegradable bone replacement materials. Journal of Porous Materials, 21, 131–140. https://doi.org/10.1007/s10934-013-9757-4
- Ortiz, A. J., Fernández, E., Vicente, A., Calvo, J. L., & Ortiz, C. (2011). Metallic ions released from stainless steel, nickel-free, and titanium orthodontic alloys: Toxicity and DNA damage. American Journal of Orthodontics and Dentofacial Orthopedics, 140, e115–e122. https://doi.org/10.1016/j.ajodo.2011.02.021
- Oshima, Y., Iwasa, F., Tachi, K., & Baba, K. (2017). Effect of nanofeatured topography on ceria-stabilized zirconia/alumina nanocomposite on osteogenesis and osseointegration. The International Journal of Oral & Maxillofacial Implants, 32, 81–91. https://doi.org/10.11607/jomi.4366
- Palacios, C. (2006). The role of nutrients in bone health, from A to Z. Critical Reviews in Food Science and Nutrition, 46, 621–628. https://doi.org/10.1080/10408390500466174
- Pan, Y., Neuss, S., Leifer, A., Fischler, M., Wen, F., Simon, U., … Jahnen-Dechent, W. (2007). Size-dependent cytotoxicity of gold nanoparticles. Small, 3, 1941–1949. https://doi.org/10.1002/smll.200700378
- Parchi, P. D., Gianluca, C., Dolfi, L., Baluganti, A., Nicola, P., Chiellini, F., & Lisanti, M. (2013). Anterior cruciate ligament reconstruction with LARS™ artificial ligament results at a mean follow-up of eight years. International Orthopaedics, 37, 1567–1574. https://doi.org/10.1007/s00264-013-1917-2
- Park, J. H., von Maltzahn, G., Zhang, L., Schwartz, M. P., Ruoslahti, E., Bhatia, S. N., & Sailor, M. J. (2008). Magnetic iron oxide nanoworms for tumor targeting and imaging. Advanced Materials, 20, 1630–1635. https://doi.org/10.1002/adma.200800004
- Patil, S., & Singh, N. (2019). Antibacterial silk fibroin scaffolds with green synthesized silver nanoparticles for osteoblast proliferation and human mesenchymal stem cell differentiation. Colloids and Surfaces B: Biointerfaces, 176, 150–155. https://doi.org/10.1016/j.colsurfb.2018.12.067
- Patra, H. K., Banerjee, S., Chaudhuri, U., Lahiri, P., & Dasgupta, A. K. (2007). Cell selective response to gold nanoparticles. Nanomedicine: Nanotechnology, Biology and Medicine, 3, 111–119. https://doi.org/10.1016/j.nano.2007.03.005
- Pattnaik, S., Nethala, S., Tripathi, A., Saravanan, S., Moorthi, A., & Selvamurugan, N. (2011). Chitosan scaffolds containing silicon dioxide and zirconia nano particles for bone tissue engineering. International Journal of Biological Macromolecules, 49, 1167–1172. https://doi.org/10.1016/j.ijbiomac.2011.09.016
- Peuster, M., Fink, C., Wohlsein, P., Bruegmann, M., Günther, A., Kaese, V., … v Schnakenburg, C. (2003). Degradation of tungsten coils implanted into the subclavian artery of New Zealand white rabbits is not associated with local or systemic toxicity. Biomaterials, 24, 393–399. https://doi.org/10.1016/S0142-9612(02)00352-6
- Phetnin, R., & Rattanachan, S. T. (2015). Preparation and antibacterial property on silver incorporated mesoporous bioactive glass microspheres. Journal of Sol-Gel Science and Technology, 75, 279–290. https://doi.org/10.1007/s10971-015-3697-1
- Pooja, D., Panyaram, S., Kulhari, H., Rachamalla, S. S., & Sistla, R. (2014). Xanthan gum stabilized gold nanoparticles: Characterization, biocompatibility, stability and cytotoxicity. Carbohydrate Polymers, 110, 1–9. https://doi.org/10.1016/j.carbpol.2014.03.041
- Pourjavadi, A., Doroudian, M., Ahadpour, A., & Azari, S. (2019). Injectable chitosan/κ-carrageenan hydrogel designed with au nanoparticles: A conductive scaffold for tissue engineering demands. International Journal of Biological Macromolecules, 126, 310–317. https://doi.org/10.1016/j.ijbiomac.2018.11.256
- Prabhu, B. M., Ali, S. F., Murdock, R. C., Hussain, S. M., & Srivatsan, M. (2010). Copper nanoparticles exert size and concentration dependent toxicity on somatosensory neurons of rat. Nanotoxicology, 4, 150–160. https://doi.org/10.3109/17435390903337693
- Priya, B. A., Senthilguru, K., Agarwal, T., Narayana, S. N. G. H., Giri, S., Pramanik, K., … Banerjee, I. (2015). Nickel doped nanohydroxyapatite: Vascular endothelial growth factor inducing biomaterial for bone tissue engineering. RSC Advances, 5, 72515–72528. https://doi.org/10.1039/C5RA09560C
- Provenzi, C. (2014). Efeito da incorporação de dióxido de zircônio nanoestruturado em uma resina adesiva experimental.
- Przekora, A. (2019). Current trends in fabrication of biomaterials for bone and cartilage regeneration: Materials modifications and biophysical stimulations. International Journal of Molecular Sciences, 20, 435. https://doi.org/10.3390/ijms20020435
- Qiu, Y., Liu, Y., Wang, L., Xu, L., Bai, R., Ji, Y., … Chen, C. (2010). Surface chemistry and aspect ratio mediated cellular uptake of Au nanorods. Biomaterials, 31, 7606–7619. https://doi.org/10.1016/j.biomaterials.2010.06.051
- Rahimi, M., Ahmadi, R., Kafil, H. S., & Shafiei-Irannejad, V. (2019). A novel bioactive quaternized chitosan and its silver-containing nanocomposites as a potent antimicrobial wound dressing: Structural and biological properties. Materials Science and Engineering: C, 101, 360–369. https://doi.org/10.1016/j.msec.2019.03.092
- Rahimi, M., Karimian, R., Mostafidi, E., Noruzi, E. B., Taghizadeh, S., Shokouhi, B., & Kafil, H. S. (2018). Highly branched amine-functionalized p-sulfonatocalix[4]arene decorated with human plasma proteins as a smart, targeted, and stealthy nano-vehicle for the combination chemotherapy of MCF7 cells. New Journal of Chemistry, 42, 13010–13024. https://doi.org/10.1039/C8NJ01790E
- Rahimi, M., Karimian, R., Noruzi, E. B., Ganbarov, K., Zarei, M., Kamounah, F. S., … Kafil, H. S. (2019). Needle-shaped amphoteric calix[4]arene as a magnetic nanocarrier for simultaneous delivery of anticancer drugs to the breast cancer cells. International Journal of Nanomedicine, 14, 2619–2636. https://doi.org/10.2147/IJN.S194596
- Rahimi, M., Noruzi, E. B., Sheykhsaran, E., Ebadi, B., Kariminezhad, Z., Molaparast, M., … Ahmadi, R. (2020). Carbohydrate polymer-based silver nanocomposites: Recent progress in the antimicrobial wound dressings. Carbohydrate Polymers, 231, 115696. https://doi.org/10.1016/j.carbpol.2019.115696
- Rahimi, M., Safa, K. D., & Salehi, R. (2017). Co-delivery of doxorubicin and methotrexate by dendritic chitosan-g-mPEG as a magnetic nanocarrier for multi-drug delivery in combination chemotherapy. Polymer Chemistry, 8, 7333–7350. https://doi.org/10.1039/C7PY01701D
- Rahimi, M., Shafiei-Irannejad, V., Safa, K. D., & Salehi, R. (2018). Multi-branched ionic liquid-chitosan as a smart and biocompatible nano-vehicle for combination chemotherapy with stealth and targeted properties. Carbohydrate Polymers, 196, 299–312. https://doi.org/10.1016/j.carbpol.2018.05.059
- Ranger, P., Renaud, A., Phan, P., Dahan, P., De Oliveira, E., & Delisle, J. (2011). Evaluation of reconstructive surgery using artificial ligaments in 71 acute knee dislocations. International Orthopaedics, 35, 1477–1482. https://doi.org/10.1007/s00264-010-1154-x
- Razavi, M., Fathi, M., Savabi, O., Beni, B. H., Razavi, S. M., Vashaee, D., & Tayebi, L. (2014). Coating of biodegradable magnesium alloy bone implants using nanostructured diopside (CaMgSi2O6). Applied Surface Science, 288, 130–137. https://doi.org/10.1016/j.apsusc.2013.09.160
- Restrepo, N., Lopera, A., Claudia, G., Villegas, P., & Arroyave, J. (2015). VI Latin American Congress on Biomedical Engineering CLAIB 2014, Paraná, Argentina 29, 30 & 31 October 2014. Springer.
- Rivron, N. C., Liu, J. J., Rouwkema, J., de Boer, J., & Van Blitterswijk, C. A. (2008). Engineering vascularised tissues in vitro. European Cells & Materials, 15, 27–40. https://doi.org/10.22203/ecm.v015a03
- Rodríguez, J. P., Rios, S., & Gonzalez, M. (2002). Modulation of the proliferation and differentiation of human mesenchymal stem cells by copper. Journal of Cellular Biochemistry, 85, 92–100. https://doi.org/10.1002/jcb.10111
- Roe, D., Karandikar, B., Bonn-Savage, N., Gibbins, B., & Roullet, J. B. (2008). Antimicrobial surface functionalization of plastic catheters by silver nanoparticles. Journal of Antimicrobial Chemotherapy, 61, 869–876. https://doi.org/10.1093/jac/dkn034
- Roohani-Esfahani, S., Dunstan, C., Davies, B., Pearce, S., Williams, R., & Zreiqat, H. (2012). Repairing a critical-sized bone defect with highly porous modified and unmodified baghdadite scaffolds. Acta Biomaterialia, 8, 4162–4172. https://doi.org/10.1016/j.actbio.2012.07.036
- Roohani-Esfahani, S. I., Nouri-Khorasani, S., Lu, Z., Appleyard, R., & Zreiqat, H. (2010). The influence hydroxyapatite nanoparticle shape and size on the properties of biphasic calcium phosphate scaffolds coated with hydroxyapatite–PCL composites. Biomaterials, 31, 5498–5509. https://doi.org/10.1016/j.biomaterials.2010.03.058
- Rorabeck, C. H. (2002). Session IV: Salvage of the infected total knee replacement: Infection: The problem. Clinical Orthopaedics and Related Research, 404, 113–115. https://doi.org/10.1097/01.blo.0000030491.43495.b8
10.1097/01.blo.0000030491.43495.b8 Google Scholar
- Rosarin, F. S., & Mirunalini, S. (2011). Nobel metallic nanoparticles with novel biomedical properties. Journal of Bioanalysis & Biomedicine, 3, 85–91. https://doi.org/10.4172/1948-593X.1000049
10.4172/1948-593X.1000049 Google Scholar
- Roy, K., Mao, H. Q., Huang, S. K., & Leong, K. W. (1999). Oral gene delivery with chitosan–DNA nanoparticles generates immunologic protection in a murine model of peanut allergy. Nature Medicine, 5, 387–391. https://doi.org/10.1038/7385
- Ruiz-Hernández, E., Serrano, M. C., Arcos, D., & Vallet-Regí, M. (2006). Glass–glass ceramic thermoseeds for hyperthermic treatment of bone tumors. Journal of Biomedical Materials Research Part A, 79A, 533–543. https://doi.org/10.1002/jbm.a.30889
- Sadri Nahand, J., Bokharaei-Salim, F., Karimzadeh, M., Moghoofei, M., Karampoo, S., Mirzaei, H., … Hamblin, M. MicroRNAs and exosomes: Key players in HIV pathogenesis. HIV Medicine, 21, 246–278. https://doi.org/10.1111/hiv.12822
10.1111/hiv.12822 Google Scholar
- Sahmani, S., Shahali, M., Nejad, M. G., Khandan, A., Aghdam, M., & Saber-Samandari, S. (2019). Effect of copper oxide nanoparticles on electrical conductivity and cell viability of calcium phosphate scaffolds with improved mechanical strength for bone tissue engineering. The European Physical Journal Plus, 134, 7. https://doi.org/10.1140/epjp/i2019-12375-x
- Saldaña, L., Mendez-Vilas, A., Jiang, L., Multigner, M., González-Carrasco, J. L., Pérez-Prado, M. T., … Vilaboa, N. (2007). In vitro biocompatibility of an ultrafine grained zirconium. Biomaterials, 28, 4343–4354. https://doi.org/10.1016/j.biomaterials.2007.06.015
- Saleh, T., Ahmed, E., Yu, L., Kwak, H. H., Kang, B. J., Park, K. M., … Woo, H. M. (2019). Characterization of silver nanoparticle-modified decellularized rat esophagus for esophageal tissue engineering: Structural properties and biocompatibility. Journal of Bioscience and Bioengineering, 128, 613–621. https://doi.org/10.1016/j.jbiosc.2019.04.017
- Samal, S. K., Dash, M., Shelyakova, T., Declercq, H. A., Uhlarz, M., Bañobre-López, M., … Dediu, V. A. (2015). Biomimetic magnetic silk scaffolds. ACS Applied Materials & Interfaces, 7, 6282–6292. https://doi.org/10.1021/acsami.5b00529
- Saravanan, S., Nethala, S., Pattnaik, S., Tripathi, A., Moorthi, A., & Selvamurugan, N. (2011). Preparation, characterization and antimicrobial activity of a bio-composite scaffold containing chitosan/nano-hydroxyapatite/nano-silver for bone tissue engineering. International Journal of Biological Macromolecules, 49, 188–193. https://doi.org/10.1016/j.ijbiomac.2011.04.010
- Schultze-Mosgau, S., Schliephake, H., Radespiel-Tröger, M., & Neukam, F. W. (2000). Osseointegration of endodontic endosseous conesZirconium oxide vs titanium. Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, and Endodontology, 89, 91–98. https://doi.org/10.1016/S1079-2104(00)80022-0
- Serrano García, R., Stafford, S., & Gun'ko, Y. K. (2018). Recent progress in synthesis and functionalization of multimodal fluorescent-magnetic nanoparticles for biological applications. Applied Sciences, 8, 172. https://doi.org/10.3390/app8020172
10.3390/app8020172 Google Scholar
- Shahbazi-Raz, F., Amani, V., Noruzi, E. B., Safari, N., Boča, R., Titiš, J., & Notash, B. (2015). Synthesis, characterization, electrochemical and magnetic study of mixed ligand mono iron and O-methoxy bridged diiron complexes. Inorganica Chimica Acta, 435, 262–273. https://doi.org/10.1016/j.ica.2015.07.003
- Shakeri, M. S., Alizadeh, M., Kazemzadeh, A., Ebadzadeh, T., & Aghajani, H. (2016). Kinetics analysis of electrophoretic deposition using small and large signal modeling: The case study of nano-mullite suspension. Journal of Advanced Materials and Processing, 4, 3–14.
- Shi, M., Kwon, H. S., Peng, Z., Elder, A., & Yang, H. (2012). Effects of surface chemistry on the generation of reactive oxygen species by copper nanoparticles. ACS Nano, 6, 2157–2164. https://doi.org/10.1021/nn300445d
- Silber, J. S., Anderson, D. G., Daffner, S. D., Brislin, B. T., Leland, J. M., Hilibrand, A. S., … Albert, T. J. (2003). Donor site morbidity after anterior iliac crest bone harvest for single-level anterior cervical discectomy and fusion. Spine, 28, 134–139. https://doi.org/10.1097/00007632-200301150-00008
- Śmieszek, A., Szydlarska, J., Mucha, A., Chrapiec, M., & Marycz, K. (2017). Enhanced cytocompatibility and osteoinductive properties of sol–gel-derived silica/zirconium dioxide coatings by metformin functionalization. Journal of Biomaterials Applications, 32, 570–586. https://doi.org/10.1177/0885328217738006
- Soenen, S. J., Manshian, B., Montenegro, J. M., Amin, F., Meermann, B., Thiron, T., … Parak, W. J. (2012). Cytotoxic effects of gold nanoparticles: A multiparametric study. ACS Nano, 6, 5767–5783. https://doi.org/10.1021/nn301714n
- Solairaj, D., Rameshthangam, P., & Arunachalam, G. (2017). Anticancer activity of silver and copper embedded chitin nanocomposites against human breast cancer (MCF-7) cells. International Journal of Biological Macromolecules, 105, 608–619. https://doi.org/10.1016/j.ijbiomac.2017.07.078
- Song, F., Jie, W., Zhang, T., Li, W., Jiang, Y., Wan, L., … Liu, B. (2016). Room-temperature fabrication of a three-dimensional reduced-graphene oxide/polypyrrole/hydroxyapatite composite scaffold for bone tissue engineering. RSC Advances, 6, 92804–92812. https://doi.org/10.1039/C6RA15267H
- Sperandio, F. F., Simões, A., Corrêa, L., Aranha, A. C. C., Giudice, F. S., Hamblin, M. R., & Sousa, S. C. O. M. (2015). Low-level laser irradiation promotes the proliferation and maturation of keratinocytes during epithelial wound repair. Journal of Biophotonics, 8, 795–803. https://doi.org/10.1002/jbio.201400064
- Stanić, V., Dimitrijević, S., Antić-Stanković, J., Mitrić, M., Jokić, B., Plećaš, I. B., & Raičević, S. (2010). Synthesis, characterization and antimicrobial activity of copper and zinc-doped hydroxyapatite nanopowders. Applied Surface Science, 256, 6083–6089. https://doi.org/10.1016/j.apsusc.2010.03.124
- Tang, Y., Shen, Y., Huang, L., Lv, G., Lei, C., Fan, X., … Yang, Y. (2015). In vitro cytotoxicity of gold nanorods in A549 cells. Environmental Toxicology and Pharmacology, 39, 871–878. https://doi.org/10.1016/j.etap.2015.02.003
- Telgerd, M. D., Sadeghinia, M., Birhanu, G., Daryasari, M. P., Zandi-Karimi, A., Sadeghinia, A., … Seyedjafari, E. (2019). Enhanced osteogenic differentiation of mesenchymal stem cells on metal–organic framework based on copper, zinc, and imidazole coated poly-L-lactic acid nanofiber scaffolds. Journal of Biomedical Materials Research Part A, 107, 1841–1848. https://doi.org/10.1002/jbm.a.36707
- Tian, J., Wong, K. K. Y., Ho, C. M., Lok, C. N., Yu, W. Y., Che, C. M., … Tam, P. K. H. (2007). Topical delivery of silver nanoparticles promotes wound healing. ChemMedChem, 2, 129–136. https://doi.org/10.1002/cmdc.200600171
- Tomaszewska, E., Muszyński, S., Ognik, K., Dobrowolski, P., Kwiecień, M., Juśkiewicz, J., … Gładyszewska, B. (2017). Comparison of the effect of dietary copper nanoparticles with copper (II) salt on bone geometric and structural parameters as well as material characteristics in a rat model. Journal of Trace Elements in Medicine and Biology, 42, 103–110. https://doi.org/10.1016/j.jtemb.2017.05.002
- Touri, R., Moztarzadeh, F., Sadeghian, Z., Bizari, D., Tahriri, M., & Mozafari, M. (2013). The use of carbon nanotubes to reinforce 45S5 bioglass-based scaffolds for tissue engineering applications. BioMed Research International, 2013, 1–8. https://doi.org/10.1155/2013/465086
- Tripathi, A., Saravanan, S., Pattnaik, S., Moorthi, A., Partridge, N. C., & Selvamurugan, N. (2012). Bio-composite scaffolds containing chitosan/nano-hydroxyapatite/nano-copper–zinc for bone tissue engineering. International Journal of Biological Macromolecules, 50, 294–299. https://doi.org/10.1016/j.ijbiomac.2011.11.013
- Vacanti, J. P., & Langer, R. (1999). Tissue engineering: the design and fabrication of living replacement devices for surgical reconstruction and transplantation. The Lancet, 354, S32–S34. https://doi.org/10.1016/S0140-6736(99)90247-7
10.1016/S0140-6736(99)90247-7 Google Scholar
- Veiseh, O., Gunn, J. W., & Zhang, M. (2010). Design and fabrication of magnetic nanoparticles for targeted drug delivery and imaging. Advanced Drug Delivery Reviews, 62, 284–304. https://doi.org/10.1016/j.addr.2009.11.002
- Viateau, V., Manassero, M., Anagnostou, F., Guérard, S., Mitton, D., & Migonney, V. (2013). Biological and biomechanical evaluation of the ligament advanced reinforcement system (LARS AC) in a sheep model of anterior cruciate ligament replacement: A 3-month and 12-month study. Arthroscopy: The Journal of Arthroscopic & Related Surgery, 29, 1079–1088. https://doi.org/10.1016/j.arthro.2013.02.025
- Vieira, S., Vial, S., Maia, F. R., Carvalho, M., Reis, R. L., Granja, P. L., & Oliveira, J. M. (2015). Gellan gum-coated gold nanorods: An intracellular nanosystem for bone tissue engineering. RSC Advances, 5, 77996–78005. https://doi.org/10.1039/C5RA13556G
- Vieira, S., Vial, S., Reis, R. L., & Oliveira, J. M. (2017). Nanoparticles for bone tissue engineering. Biotechnology Progress, 33, 590–611. https://doi.org/10.1002/btpr.2469
- Vorndran, E., Geffers, M., Ewald, A., Lemm, M., Nies, B., & Gbureck, U. (2013). Ready-to-use injectable calcium phosphate bone cement paste as drug carrier. Acta Biomaterialia, 9, 9558–9567. https://doi.org/10.1016/j.actbio.2013.08.009
- Walmsley, G. G., McArdle, A., Tevlin, R., Momeni, A., Atashroo, D., Hu, M. S., … Longaker, M. T. (2015). Nanotechnology in bone tissue engineering. Nanomedicine: Nanotechnology, Biology and Medicine, 11, 1253–1263. https://doi.org/10.1016/j.nano.2015.02.013
- Wang, C., Lin, K., Chang, J., & Sun, J. (2013). Osteogenesis and angiogenesis induced by porous β-CaSiO3/PDLGA composite scaffold via activation of AMPK/ERK1/2 and PI3K/Akt pathways. Biomaterials, 34, 64–77. https://doi.org/10.1016/j.biomaterials.2012.09.021
- Wang, C. H., Guo, Z. S., Pang, F., Zhang, L. Y., Yan, M., Yan, J. H., … Bi, L. (2015). Effects of graphene modification on the bioactivation of polyethylene-terephthalate-based artificial ligaments. ACS Applied Materials & Interfaces, 7, 15263–15276. https://doi.org/10.1021/acsami.5b02893
- Wang, G., Liu, X., Zreiqat, H., & Ding, C. (2011). Enhanced effects of nano-scale topography on the bioactivity and osteoblast behaviors of micron rough ZrO2 coatings. Colloids and Surfaces B: Biointerfaces, 86, 267–274. https://doi.org/10.1016/j.colsurfb.2011.04.006
- Wang, G., Meng, F., Ding, C., Chu, P. K., & Liu, X. (2010). Microstructure, bioactivity and osteoblast behavior of monoclinic zirconia coating with nanostructured surface. Acta Biomaterialia, 6, 990–1000. https://doi.org/10.1016/j.actbio.2009.09.021
- Wang, H., Zhao, S., Cui, X., Pan, Y., Huang, W., Ye, S., … Wang, D. (2015). Evaluation of three-dimensional silver-doped borate bioactive glass scaffolds for bone repair: Biodegradability, biocompatibility, and antibacterial activity. Journal of Materials Research, 30, 2722–2735. https://doi.org/10.1557/jmr.2015.243
- Wang, Y., Newell, B. B., & Irudayaraj, J. (2012). Folic acid protected silver nanocarriers for targeted drug delivery. Journal of Biomedical Nanotechnology, 8, 751–759. https://doi.org/10.1166/jbn.2012.1437
- Wei, P., Yuan, Z., Cai, Q., Mao, J., & Yang, X. (2018). Bioresorbable microspheres with surface-loaded nanosilver and apatite as dual-functional injectable cell carriers for bone regeneration. Macromolecular Rapid Communications, 39, 1800062. https://doi.org/10.1002/marc.201800062
- Wilson, R. (2008). The use of gold nanoparticles in diagnostics and detection. Chemical Society Reviews, 37, 2028–2045. https://doi.org/10.1039/B712179M
- Wintermantel, E., Mayer, J., Blum, J., Eckert, K. L., Lüscher, P., & Mathey, M. (1996). Tissue engineering scaffolds using superstructures. Biomaterials, 17, 83–91. https://doi.org/10.1016/0142-9612(96)85753-X
- Worthington, K. L., Adamcakova-Dodd, A., Wongrakpanich, A., Mudunkotuwa, I. A., Mapuskar, K. A., Joshi, V. B., … Thorne, P. S. (2013). Chitosan coating of copper nanoparticles reduces in vitro toxicity and increases inflammation in the lung. Nanotechnology, 24, 395101. https://doi.org/10.1088/0957-4484/24/39/395101
- Wu, C., Fan, W., Zhu, Y., Gelinsky, M., Chang, J., Cuniberti, G., … Xiao, Y. (2011). Multifunctional magnetic mesoporous bioactive glass scaffolds with a hierarchical pore structure. Acta Biomaterialia, 7, 3563–3572. https://doi.org/10.1016/j.actbio.2011.06.028
- Wu, C., Xia, L., Han, P., Xu, M., Fang, B., Wang, J., … Xiao, Y. (2015). Graphene-oxide-modified β-tricalcium phosphate bioceramics stimulate in vitro and in vivo osteogenesis. Carbon, 93, 116–129. https://doi.org/10.1016/j.carbon.2015.04.048
- Wu, C., Zhou, Y., Xu, M., Han, P., Chen, L., Chang, J., & Xiao, Y. (2013). Copper-containing mesoporous bioactive glass scaffolds with multifunctional properties of angiogenesis capacity, osteostimulation and antibacterial activity. Biomaterials, 34, 422–433. https://doi.org/10.1016/j.biomaterials.2012.09.066
- Wu, T., Zhang, Q., Ren, W., Yi, X., Zhou, Z., Peng, X., … Lang, M. (2013). Controlled release of gentamicin from gelatin/genipin reinforced beta-tricalcium phosphate scaffold for the treatment of osteomyelitis. Journal of Materials Chemistry B, 1, 3304–3313. https://doi.org/10.1039/C3TB20261E
- Xia, Y., Chen, H., Zhao, Y., Zhang, F., Li, X., Wang, L., … Gu, N. (2019). Novel magnetic calcium phosphate-stem cell construct with magnetic field enhances osteogenic differentiation and bone tissue engineering. Materials Science and Engineering: C, 98, 30–41. https://doi.org/10.1016/j.msec.2018.12.120
- Xie, X., Hu, K., Fang, D., Shang, L., Tran, S. D., & Cerruti, M. (2015). Graphene and hydroxyapatite self-assemble into homogeneous, free standing nanocomposite hydrogels for bone tissue engineering. Nanoscale, 7, 7992–8002. https://doi.org/10.1039/C5NR01107H
- Xiu, Z. M., Zhang, Q. B., Puppala, H. L., Colvin, V. L., & Alvarez, P. J. J. (2012). Negligible particle-specific antibacterial activity of silver nanoparticles. Nano Letters, 12, 4271–4275. https://doi.org/10.1021/nl301934w
- Xu, Y. J., Dong, L., Lu, Y., Zhang, L. C., An, D., Gao, H. L., … Xu, W. P. (2016). Magnetic hydroxyapatite nanoworms for magnetic resonance diagnosis of acute hepatic injury. Nanoscale, 8, 1684–1690. https://doi.org/10.1039/C5NR07023F
- Xu, Z. L., Lei, Y., Yin, W. J., Chen, Y. X., Ke, Q. F., Guo, Y. P., & Zhang, C. Q. (2016). Enhanced antibacterial activity and osteoinductivity of Ag-loaded strontium hydroxyapatite/chitosan porous scaffolds for bone tissue engineering. Journal of Materials Chemistry B, 4, 7919–7928. https://doi.org/10.1039/C6TB01282E
- Xue, Y., Hong, X., Gao, J., Shen, R., & Ye, Z. (2019). Preparation and biological characterization of the mixture of poly (lactic-co-glycolic acid)/chitosan/Ag nanoparticles for periodontal tissue engineering. International Journal of Nanomedicine, 14, 483–498. https://doi.org/10.2147/IJN.S184396
- Yadegarian, S., Davoodnia, A., & Nakhaei, A. (2015). Solvent-free synthesis of 1,2,4,5-tetrasubstituted imidazoles using nano Fe3O4@SiO2-OSO3H as a stable and magnetically recyclable heterogeneous catalyst. Oriental Journal of Chemistry, 31, 573–579. https://doi.org/10.13005/ojc/310173
- Yan, Y., & Han, Y. (2007). Structure and bioactivity of micro-arc oxidized zirconia films. Surface and Coatings Technology, 201, 5692–5695. https://doi.org/10.1016/j.surfcoat.2006.07.058
- Yan, Y., Zhang, X., Huang, Y., Ding, Q., & Pang, X. (2014). Antibacterial and bioactivity of silver substituted hydroxyapatite/TiO2 nanotube composite coatings on titanium. Applied Surface Science, 314, 348–357. https://doi.org/10.1016/j.apsusc.2014.07.027
- Yang, F., Wang, J., Hou, J., Guo, H., & Liu, C. (2013). Bone regeneration using cell-mediated responsive degradable PEG-based scaffolds incorporating with rhBMP-2. Biomaterials, 34, 1514–1528. https://doi.org/10.1016/j.biomaterials.2012.10.058
- Yang, N., & Li, W. H. (2015). Preparation of gold nanoparticles using chitosan oligosaccharide as a reducing and capping reagent and their in vitro cytotoxic effect on human fibroblasts cells. Materials Letters, 138, 154–157. https://doi.org/10.1016/j.matlet.2014.09.078
- Yang, W., Zhong, Y., Feng, P., Gao, C., Peng, S., Zhao, Z., & Shuai, C. (2019). Disperse magnetic sources constructed with functionalized Fe3O4 nanoparticles in poly-L-lactic acid scaffolds. Polymer Testing, 76, 33–42. https://doi.org/10.1016/j.polymertesting.2019.03.008
- Yang, Y., Yan, Q., Liu, Q., Li, Y., Liu, H., Wang, P., … Dong, Y. (2018). An ultrasensitive sandwich-type electrochemical immunosensor based on the signal amplification strategy of echinoidea-shaped Au@Ag-Cu2O nanoparticles for prostate specific antigen detection. Biosensors and Bioelectronics, 99, 450–457. https://doi.org/10.1016/j.bios.2017.08.018
- Ye, J. H., Xu, Y. J., Gao, J., Yan, S. G., Zhao, J., Tu, Q., … Mostoslavsky, G. (2011). Critical-size calvarial bone defects healing in a mouse model with silk scaffolds and SATB2-modified iPSCs. Biomaterials, 32, 5065–5076. https://doi.org/10.1016/j.biomaterials.2011.03.053
- Yi, C., Liu, D., Fong, C. C., Zhang, J., & Yang, M. (2010). Gold nanoparticles promote osteogenic differentiation of mesenchymal stem cells through p38 MAPK pathway. ACS Nano, 4, 6439–6448. https://doi.org/10.3892/mmr.2017.7170
- Yu, B., Fu, S., Kang, Z., Zhu, M., Ding, H., Luo, T., … Zhang, Y. (2020). Enhanced bone regeneration of 3D printed β-Ca2SiO4 scaffolds by aluminum ions solid solution. Ceramics International, 46, 7783–7791. https://doi.org/10.1016/j.ceramint.2019.11.282
- Yu, M., Huang, S., Yu, K. J., & Clyne, A. M. (2012). Dextran and polymer polyethylene glycol (PEG) coating reduce both 5 and 30 nm iron oxide nanoparticle cytotoxicity in 2D and 3D cell culture. International Journal of Molecular Sciences, 13, 5554–5570. https://doi.org/10.3390/ijms13055554
- Yu, M., Lei, B., Gao, C., Yan, J., & Ma, P. X. (2017). Optimizing surface-engineered ultra-small gold nanoparticles for highly efficient miRNA delivery to enhance osteogenic differentiation of bone mesenchymal stromal cells. Nano Research, 10, 49–63. https://doi.org/10.1007/s12274-016-1265-9
- Zhang, D., Liu, D., Zhang, J., Fong, C., & Yang, M. (2014). Gold nanoparticles stimulate differentiation and mineralization of primary osteoblasts through the ERK/MAPK signaling pathway. Materials Science and Engineering: C, 42, 70–77. https://doi.org/10.1016/j.msec.2014.04.042
- Zhang, J., Zhao, S., Zhu, M., Zhu, Y., Zhang, Y., Liu, Z., & Zhang, C. (2014). 3D-printed magnetic Fe3O4/MBG/PCL composite scaffolds with multifunctionality of bone regeneration, local anticancer drug delivery and hyperthermia. Journal of Materials Chemistry B, 2, 7583–7595. https://doi.org/10.1039/C4TB01063A
- Zhang, M., Zhang, K., De Gusseme, B., & Verstraete, W. (2012). Biogenic silver nanoparticles (bio-Ag0) decrease biofouling of bio-Ag0/PES nanocomposite membranes. Water Research, 46, 2077–2087. https://doi.org/10.1016/j.watres.2012.01.015
- Zhang, R., Lee, P., Lui, V. C. H., Chen, Y., Liu, X., Lok, C. N., … Wong, K. K. Y. (2015). Silver nanoparticles promote osteogenesis of mesenchymal stem cells and improve bone fracture healing in osteogenesis mechanism mouse model. Nanomedicine: Nanotechnology, Biology and Medicine, 11, 1949–1959. https://doi.org/10.1016/j.nano.2015.07.016
- Zhang, X., Li, Y., Chen, Y. E., Chen, J., & Ma, P. X. (2016). Cell-free 3D scaffold with two-stage delivery of miRNA-26a to regenerate critical-sized bone defects. Nature Communications, 7, 10376. https://doi.org/10.1038/ncomms10376
- Zhang, X. D., Wu, D., Shen, X., Liu, P. X., Yang, N., Zhao, B., … Fan, F. Y. (2011). Size-dependent in vivo toxicity of PEG-coated gold nanoparticles. International Journal of Nanomedicine, 6, 2071–2081. https://doi.org/10.2147/IJN.S21657
- Zhang, Y., Liu, Y., Li, M., Lu, S., & Wang, J. (2013). The effect of iron incorporation on the in vitro bioactivity and drug release of mesoporous bioactive glasses. Ceramics International, 39, 6591–6598. https://doi.org/10.1016/j.ceramint.2013.01.094
- Zhang, Y., Zhai, D., Xu, M., Yao, Q., Chang, J., & Wu, C. (2016). 3D-printed bioceramic scaffolds with a Fe3O4/graphene oxide nanocomposite interface for hyperthermia therapy of bone tumor cells. Journal of Materials Chemistry B, 4, 2874–2886. https://doi.org/10.1039/C6TB00390G
- Zhao, Y., Fan, T., Chen, J., Su, J., Zhi, X., Pan, P., … Zhang, Q. (2019). Magnetic bioinspired micro/nanostructured composite scaffold for bone regeneration. Colloids and Surfaces B: Biointerfaces, 174, 70–79. https://doi.org/10.1016/j.colsurfb.2018.11.003
- Zheng, K., Balasubramanian, P., Paterson, T. E., Stein, R., MacNeil, S., Fiorilli, S., … Boccaccini, A. R. (2019). Ag modified mesoporous bioactive glass nanoparticles for enhanced antibacterial activity in 3D infected skin model. Materials Science and Engineering: C, 103, 109764. https://doi.org/10.1016/j.msec.2019.109764
- Zheng, K., Wu, J., Li, W., Dippold, D., Wan, Y., & Boccaccini, A. R. (2018). Incorporation of Cu-containing bioactive glass nanoparticles in gelatin-coated scaffolds enhances bioactivity and osteogenic activity. ACS Biomaterials Science & Engineering, 4, 1546–1557. https://doi.org/10.1021/acsbiomaterials.8b00051
- Ziche, M., Jones, J., & Gullino, P. M. (1982). Role of prostaglandin E1 and copper in angiogenesis. Journal of the National Cancer Institute, 69, 475–482. https://doi.org/10.1093/jnci/69.2.475