Preparation of Starch Coconut Fatty Acid Inclusion Complexes by Twin-Screw Extrusion
Gordon Selling
Plant Polymer Research, USDA, Agricultural Research Service, National Center for Agricultural Utilization Research, 1815 N University, Peoria, IL, USA
Search for more papers by this authorCorresponding Author
Steven C. Cermak
Bio-Oils Research, USDA, Agricultural Research Service, National Center for Agricultural Utilization Research, 1815 N University, Peoria, IL, 61604 USA
E-mail: [email protected]
Search for more papers by this authorJames A. Kenar
Functional Foods Research, USDA, Agricultural Research Service, National Center for Agricultural Utilization Research, 1815 N University, Peoria, IL, 61604 USA
Search for more papers by this authorVictoria L. Finkenstadt
Plant Polymer Research, USDA, Agricultural Research Service, National Center for Agricultural Utilization Research, 1815 N University, Peoria, IL, USA
Division of Agricultural Systems, USDA, National Institute of Food and Agriculture, Beacon Complex, Kansas City, MO, 64133 USA
Search for more papers by this authorGordon Selling
Plant Polymer Research, USDA, Agricultural Research Service, National Center for Agricultural Utilization Research, 1815 N University, Peoria, IL, USA
Search for more papers by this authorCorresponding Author
Steven C. Cermak
Bio-Oils Research, USDA, Agricultural Research Service, National Center for Agricultural Utilization Research, 1815 N University, Peoria, IL, 61604 USA
E-mail: [email protected]
Search for more papers by this authorJames A. Kenar
Functional Foods Research, USDA, Agricultural Research Service, National Center for Agricultural Utilization Research, 1815 N University, Peoria, IL, 61604 USA
Search for more papers by this authorVictoria L. Finkenstadt
Plant Polymer Research, USDA, Agricultural Research Service, National Center for Agricultural Utilization Research, 1815 N University, Peoria, IL, USA
Division of Agricultural Systems, USDA, National Institute of Food and Agriculture, Beacon Complex, Kansas City, MO, 64133 USA
Search for more papers by this authorDisclaimer: Mention of trade names or commercial products in this publication is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the U.S. Department of Agriculture. USDA is an equal opportunity employer.
Abstract
Starch-guest molecule amylose inclusion complexes (AIC) are of interest to industry as a means to encapsulate and deliver compounds. Coconut fatty acids (CFA) consist predominantly of medium chain fatty acids having useful food and nonfood applications. This article describes the formation of high amylose corn (HAC)- or waxy corn starch (WC)-CFA AIC containing 0%, 2%, 7.5%, and 15% CFA using a continuous thermomechanical extrusion process at 20% feed moisture and a twin-screw extruder with a unique screw design. The extrusion conditions completely destructure both the HAC and waxy starch granules and the resulting materials are evaluated using SEM, XRD, FT-IR, FTIR-m, and TGA. The HAC-CFA materials are shown to contain AIC having 61 V type helical structure between amylose and the CFA that are confirmed by XRD and IR spectral analysis. By TGA, extruded HAC materials containing 15% CFA are shown to have excess CFA present in addition to formed AIC. In contrast, the WC is shown not to form AIC with the CFA and only trap the CFA within the starch matrix. The understanding gained from this study is helpful to design the processing of starch-based biopolymers to prepare AIC having improved functional properties for potential commercial applications.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
star202300228-sup-0001-SuppMat.pdf589.1 KB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1L. Copeland, J. Blazek, H. Salman, M. C. Tang, Food Hydrocolloids 2009, 23, 1527.
- 2S. Wang, H. Xu, H. Luan, in: S. Wang, (Ed.), Starch Structure, Functionality and Application in Foods, Springer, Singapore 2020, p. 41.
10.1007/978-981-15-0622-2_4 Google Scholar
- 3M. Schirmer, A. Hochstotter, M. Jekle, E. Arendt, T. Becker, Food Hydrocolloids 2013, 32, 52.
- 4X. Liang, L. Chen, D. J. Mcclements, J. Zhao, X. Zhou, C. Qiu, J. Long, H. Ji, Z. Xu, M. Meng, L. Gao, Z. Jin, Crit. Rev. Food Sci. Nutr. 2023, 63, 1.
- 5J. A. Putseys, L. Lamberts, J. A. Delcour, J. Cereal Sci. 2010, 51, 238.
- 6C. E. Snape, W. R. Morrison, M. M. Maroto-Valer, J. Karkalas, R. A. Pethrick, Carbohydr. Polym. 1998, 36, 225.
- 7G. F. Fanta, F. C. Felker, G. W. Selling, Starch-Stärke 2016, 68, 874.
- 8G. F. Fanta, J. A. Kenar, F. C. Felker, Carbohydr. Polym. 2013, 98, 555.
- 9J. A. Byars, G. F. Fanta, J. A. Kenar, F. C. Felker, Carbohydr. Polym. 2012, 88, 91.
- 10G. F. Fanta, J. A. Kenar, J. A. Byars, F. C. Felker, R. L. Shogren, Carbohydr. Polym. 2010, 81, 645.
- 11W. T. Hay, G. F. Fanta, F. C. Felker, S. C. Peterson, C. D. Skory, M. P. Hojilla-Evangelista, G. Biresaw, G. W. Selling, Food Hydrocolloids 2019, 90, 490.
- 12W. T. Hay, J. A. Byars, G. F. Fanta, G. W. Selling, Carbohydr. Polym. 2017, 161, 140.
- 13A. Marinopoulou, V. Karageorgiou, E. Papastergiadis, C. Iordanidis, A. Dagklis, S. N. Raphaelides, Food Bioprod. Process. 2019, 116, 186.
- 14U. Lesmes, J. Barchechath, E. Shimoni, Innovative Food Sci. Emerging Technol. 2008, 9, 507.
- 15V. L. Finkenstadt, F. C. Felker, G. F. Fanta, J. A. Kenar, G. W. Selling, K. J. Hornback, D. L. Fisk, J. Appl. Polym. Sci. 2016, 133, 43251.
- 16S. Bhatnagar, M. A. Hanna, 1997, Starch 49, 12.
- 17S. Bhatnagar, M. A. Hanna, J. Food Sci. 1996, 61, 778.
- 18S. Bhatnagar, M. A. Hanna, Cereal Chem. 1994, 71, 582.
- 19S. Bhatnagar, M. A. Hanna, Cereal Chem. 1994, 71, 587.
- 20C. Mercier, R. Charbonniere, J. Grebaut, J. F. De La Gueriviere, Cereal Chem. 1980, 57, 4.
- 21F. E. Dayan, C. L. Cantrell, S. O. Duke, Bioorg. Med. Chem. 2009, 17, 4022.
- 22A. T. Showler, J. Integr. Pest Manage. 2017, 8, 15.
- 23W. M. Hikal, R. S. Baeshen, H. A. Said-Al Ahl, Cogent Biol. 2017, 3, 1404274.
- 24J. J. Zhu, S. C. Cermak, J. A. Kenar, G. Brewer, K. F. Haynes, D. Boxler, P. D. Baker, D. Wang, C. Wang, A. Y. Li, R. D. Xue, Y. Shen, F. Wang, N. M. Agramonte, U. R. Bernier, J. G. De Oliveira Filho, L. M. F. Borges, K. Friesen, D. B. Taylor, Sci. Rep. 2018, 8, 14053.
- 25A. T. Lehmann, G. J. Brewer, D. J. Boxler, J. J. Zhu, K. Hanford, D. Taylor, J. A. Kenar, S. C. Cermak, J. A. Hogsette, Pest Manag. Sci. 2023, 79, 3050.
- 26W. A. Qualls, R. D. Xue, M. Farooq, S. T. Peper, V. Aryaprema, K. Blore, R. Weaver, D. Autry, A. Talbalaghi, J. Kenar, S. C. Cermak, J. J. Zhu, J. Med. Entomol. 2021, 58, 979.
- 27G. H. Roh, X. Zhou, Y. Wang, S. C. Cermak, J. A. Kenar, A. Lehmann, B. Han, D. B. Taylor, X. Zeng, C. G. Park, G. J. Brewer, J. J. Zhu, Pest Manage. Sci. 2019, 76, 405.
- 28C. E. Montilla-Buitrago, R. A. Gómez-López, J. F. Solanilla-Duque, L. Serna-Cock, H. S. Villada-Castillo, Starch-Stärke 2021, 73, 2100060.
- 29J. L. Willett, V. L. Finkenstadt, J. Polym. Environ. 2006, 14, 125.
- 30W. Wiedmann, E. Strobel, Starch-Stärke 1991, 43, 138.
- 31J. L. Willett, M. M. Millard, B. K. Jasberg, Polymer 1996, 38, 5983.
- 32J. E. Cervantes-Ramírez, A. H. Cabrera-Ramirez, E. Morales-Sánchez, M. E. Rodriguez-García, M. D. L. L. Reyes-Vega, A. K. Ramírez-Jiménez, B. L. Contreras-Jiménez, M. Gaytán-Martínez, Carbohydr. Polym. 2020, 246, 116555.
- 33P. Colonna, C. Mercier, Carbohydr. Polym. 1983, 3, 87.
- 34S. N. Raphaelides, G. Dimitreli, S. Exarhopoulos, G. Kokonidis, E. Tzani, Carbohydr. Polym. 2011, 83, 727.
- 35S. N. Raphaelides, K. Arsenoudi, S. Exarhopoulos, Z. M. Xu, Food Res. Int. 2010, 43, 329.
- 36S. N. Raphaelides, G. Dimitreli, S. Exarhopoulos, E. Ilia, P. Koutsomihali, Food Bioprod. Process. 2015, 96, 245.
- 37S. C. Cermak, A. L. Durham, T. A. Isbell, R. L. Evangelista, R. E. Murray, Ind. Crops Prod. 2015, 67, 179.
- 38G. S. Choudhury, A. Gautam, Food Res. Int. 1998, 31, 7.
- 39G. F. Fanta, R. L. Shogren, J. H. Salch, Carbohydr. Polym. 1999, 38, 1.
- 40G. W. Selling, M. P. Hojilla-Evangelista, W. T. Hay, K. D. Utt, G. D. Grose, Ind. Crops Prod. 2022, 178, 114615.
- 41W. T. Hay, R. W. Behle, G. F. Fanta, F. C. Felker, S. C. Peterson, G. W. Selling, Carbohydr. Polym. 2017, 157, 1050.
- 42J. A. Kenar, D. L. Compton, S. C. Peterson, F. C. Felker, Carbohydr. Polym. 2022, 296, 119955.
- 43E. Bertoft, G. A. Annor, X. Shen, P. Rumpagaporn, K. Seetharaman, B. R. Hamaker, Carbohydr. Polym. 2016, 140, 113.
- 44J. Karkalas, S. Raphaelides, Carbohydr. Res. 1986, 157, 215.
- 45G. F. Fanta, F. C. Felker, R. L. Shogren, J. H. Salch, Carbohydr. Polym. 2008, 71, 253.
- 46L. S. Lai, J. L. Kokini, Biotechnol. Prog. 1991, 7, 251.
- 47N. L. Lacourse, P. A. Altieri (National Starch Corporation), US4863655A, 1989.
- 48M. Horvat, M. A. Emin, B. Hochstein, N. Willenbacher, H. P. Schuchmann, Carbohydr. Polym. 2013, 93, 492.
- 49A. Lopez-Rubio, A. Htoon, E. P. Gilbert, Biomacromolecules 2007, 8, 1564.
- 50R. F. Tester, J. Karkalas, X. Qi, J. Cereal Sci. 2004, 39, 151.
- 51Z. Cao, A. J. J. Woortman, P. Rudolf, K. Loos, Macromol. Biosci. 2015, 15, 691.
- 52F. C. Felker, J. A. Kenar, G. F. Fanta, A. Biswas, Starch-Stärke 2013, 65, 864.
- 53Y. Nakamura, K. Kainuma, Plant Mol. Biol. 2022, 108, 291.
- 54D. Cooke, M. J. Gidley, Carbohydr. Res. 1992, 227, 103.
- 55Y. Mao, J. Shi, L. Cai, W. Hwang, Y. C. Shi, Biomacromolecules 2023, 24, 1980.
- 56S. Pérez, E. Bertoft, Starch-Stärke 2010, 62, 389.
- 57Q. Yang, L. Qi, Z. Luo, X. Kong, Z. Xiao, P. Wang, X. Peng, Food Hydrocolloids 2017, 69, 473.
- 58W. Wei, M. Wu, H. Xu, X. Zhang, W. Ren, Int. J. Biol. Macromol. 2024, 257, 128607.
- 59D. Wu, H. Ma, M. Fu, X. Tang, J. Food Sci. Technol. 2022, 59, 4405.
- 60B. Zhang, S. Dhital, B. M. Flanagan, P. Luckman, P. J. Halley, M. J. Gidley, Carbohydr. Polym. 2015, 134, 485.
- 61X. Yang, Y. Liu, Z. Lv, Q. Hua, L. Liu, B. Wang, J. Tang, J. Energy Storage 2021, 33, 102059.
- 62A. Marinopoulou, E. Papastergiadis, S. N. Raphaelides, M. G. Kontominas, Carbohydr. Polym. 2016, 141, 106.
- 63U. V. Lay Ma, J. D. Floros, G. R. Ziegler, Carbohydr. Polym. 2011, 83, 1869.
- 64T. Uchino, Y. Tozuka, T. Oguchi, K. Yamamoto, J. Incl. Phenom. Macrocycl. Chem. 2002, 43, 31.
- 65L. Wang, W. Wang, Y. Wang, G. Xiong, X. Mei, W. Wu, A. Ding, X. Li, Y. Qiao, L. Liao, Int. J. Food Prop. 2018, 21, 2121.
- 66K. Kumar, K. Loos, ACS Omega 2019, 4, 17807.
- 67Y. Tozuka, A. Takeshita, A. Nagae, A. Wongmekiat, K. Moribe, T. Oguchi, K. Yamamoto, Chem. Pharm. Bull. 2006, 54, 1097.
- 68F. Liu, W. Bai, Z. Gu, J. Zhang, J. Chen, J. Yu, New J. Chem. 2023, 47, 4761.
- 69M. Koch-Müller, D. Rhede, Am. Mineral. 2010, 95, 770.
- 70G. W. Selling, W. T. Hay, K. O. Evans, S. C. Peterson, K. D. Utt, Ind. Crops Prod. 2023, 194, 116352.
- 71Y. Tian, Y. Zhu, M. Bashari, X. Hu, X. Xu, Z. Jin, Carbohydr. Polym. 2013, 91, 586.
- 72X. Zhang, T. Mi, W. Gao, Z. Wu, C. Yuan, B. Cui, Y. Dai, P. Liu, Food Chem. 2022, 388, 133054.
- 73Y. Feng, S. A. Junejo, B. Zhang, X. Fu, Q. Huang, Food Hydrocolloids 2024, 146, 109251.
- 74P. Liu, Y. Dong, W. Gao, Z. Wu, B. Yu, C. Yuan, B. Cui, Food Hydrocolloids 2023, 135, 108134.
- 75S. Wan, Q. Liu, D. Yang, P. Guo, Y. Gao, R. Mo, Y. Zhang, Food Chem. 2023, 403, 134219.
- 76T. Feng, F. Liu, X. Wang, H. Zhuang, R. Ye, Z. Rong, Y. Liu, Int. J. Polym. Sci. 2015, 2015, 645916.
10.1155/2015/645916 Google Scholar