Physical Pretreatment on Common Bean Starch at Acid Hydrolyzed Nanocrystals Structure and Properties
Corresponding Author
Vania Zanella Pinto
Engenharia de Alimentos, Programa de Pós-Graduação, em Ciência e Tecnologia de Alimentos (PPGCTAL), Universidade Federal da Fronteira Sul (UFFS), Laranjeiras do Sul, Paraná, 85304-120 Brazil
E-mail: [email protected]; [email protected]
Search for more papers by this authorCamila Costa Pinto
Instituto Federal do Amazonas (IFAM), Campus Presidente Figueiredo, Manaus, Amazonas, 69735-000 Brazil
Programa de Pós-Graduação em Física (PPGFIS), Universidade Federal do Amazonas (UFAM), Manaus, 69077-000 Brazil
Search for more papers by this authorSérgio Michielon de Souza
Programa de Pós-Graduação em Física (PPGFIS), Universidade Federal do Amazonas (UFAM), Manaus, 69077-000 Brazil
Departamento de Física, Universidade Federal do Amazonas (UFAM), Manaus, 69077-000 Brazil
Search for more papers by this authorKhalid Moomand
Non-affiliated, Guelph, Ontario, ON N1G 2W1 Canada
Search for more papers by this authorBárbara Biduski
Teagasc Food Research Centre, Ashtown, Dublin 15, D15 KN3K Ireland
Search for more papers by this authorGustavo Henrique Fidelis dos Santos
Engenharia de Alimentos, Programa de Pós-Graduação, em Ciência e Tecnologia de Alimentos (PPGCTAL), Universidade Federal da Fronteira Sul (UFFS), Laranjeiras do Sul, Paraná, 85304-120 Brazil
Search for more papers by this authorAlvaro Renato Guerra Dias
Departamento de Ciência e Tecnologia Agroindustrial (DCTA), Universidade Federal de Pelotas (UFPel), Rio Grande do Sul, Pelotas, RS, 96010-900 Brazil
Search for more papers by this authorCorresponding Author
Vania Zanella Pinto
Engenharia de Alimentos, Programa de Pós-Graduação, em Ciência e Tecnologia de Alimentos (PPGCTAL), Universidade Federal da Fronteira Sul (UFFS), Laranjeiras do Sul, Paraná, 85304-120 Brazil
E-mail: [email protected]; [email protected]
Search for more papers by this authorCamila Costa Pinto
Instituto Federal do Amazonas (IFAM), Campus Presidente Figueiredo, Manaus, Amazonas, 69735-000 Brazil
Programa de Pós-Graduação em Física (PPGFIS), Universidade Federal do Amazonas (UFAM), Manaus, 69077-000 Brazil
Search for more papers by this authorSérgio Michielon de Souza
Programa de Pós-Graduação em Física (PPGFIS), Universidade Federal do Amazonas (UFAM), Manaus, 69077-000 Brazil
Departamento de Física, Universidade Federal do Amazonas (UFAM), Manaus, 69077-000 Brazil
Search for more papers by this authorKhalid Moomand
Non-affiliated, Guelph, Ontario, ON N1G 2W1 Canada
Search for more papers by this authorBárbara Biduski
Teagasc Food Research Centre, Ashtown, Dublin 15, D15 KN3K Ireland
Search for more papers by this authorGustavo Henrique Fidelis dos Santos
Engenharia de Alimentos, Programa de Pós-Graduação, em Ciência e Tecnologia de Alimentos (PPGCTAL), Universidade Federal da Fronteira Sul (UFFS), Laranjeiras do Sul, Paraná, 85304-120 Brazil
Search for more papers by this authorAlvaro Renato Guerra Dias
Departamento de Ciência e Tecnologia Agroindustrial (DCTA), Universidade Federal de Pelotas (UFPel), Rio Grande do Sul, Pelotas, RS, 96010-900 Brazil
Search for more papers by this authorAbstract
Starch nanocrystals (SNC) are insoluble platelets with crystalline structures produced by acid hydrolysis. Pretreatments, including heat–moisture treatment (HMT), annealing (ANN), and sonication (SNT) can be used to improve SNC properties. They investigate the impact of these pretreatments on SNC structure and properties, including hydrolysis kinetics and yield, molecular structure, infrared spectroscopy, crystallinity (Xc), and thermal stability. Hydrolysis of native and pretreated starches followed a two-phase first-order model with an initial rapid stage and a slower second stage based on the k-values. SNC yield is improved by at least 180% than previously reported. HMT SNC yield is 42.3% while native SNC is 35.2%. Structural analysis reveals that SNC displayed an A-type structure with increased Xc. However, prolonged acid hydrolysis (7 days) reduces Xc by breaking long molecular chains into shorter glucose ones, reducing SNC yield. Melting temperatures (Tp) of pretreated SNC increase after 5 days of hydrolysis. Pretreated carioca bean starch shows advantages for SNC production after 5 days of hydrolysis, reaching good yield and Xc. HMT and SNT prove effective in improving hydrolysis yield and thermal stability, while ANN slightly accelerates SNC production. Their findings provide valuable insights into optimizing pretreatments for enhancing SNC properties and expanding their applications.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
star202300204-sup-0001-SuppMat.pdf297.9 KB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1D. Le Corre, H. Angellier-Coussy, React. Funct. Polym. 2014, 85, 97.
- 2J. Kaur, G. Kaur, S. Sharma, K. Jeet, Crit. Rev. Food Sci. Nutr. 2018, 58, 1097.
- 3P. H. Campelo, A. S. Sant'Ana, M. T. Pedrosa Silva Clerici, Curr. Opin. Food Sci. 2020, 33, 136.
- 4C. Li, B. Gong, Food Chem. 2021, 353, 129467.
- 5X. Sun, Z. Sun, A. S. M. Saleh, K. Zhao, X. Ge, H. Shen, Q. Zhang, L. Yuan, X. Yu, W. Li, Food Hydrocoll. 2021, 121, 107034.
- 6D. LeCorre, J. Bras, A. Dufresne, J. Nanoparticle Res. 2011, 13, 7193.
- 7H. Y. Kim, S. S. Park, S. T. Lim, Colloids Surf., B 2015, 126, 607.
- 8X. Fu, J. Cai, X. Zhang, W. Di Li, H. Ge, Y. Hu, Adv. Drug Deliv. Rev. 2018, 132, 169.
- 9S. Li, W. Zhou, C. Huang, Y. Hu, Q. Gao, Y. Chen, Int. J. Biol. Macromol. 2023, 232, 123402.
- 10J. H. Kim, D. H. Park, J. Y. Kim, Food Hydrocoll. 2017, 63, 59.
- 11H. Angellier, L. Choisnard, S. Molina-Boisseau, P. Ozil, A. Dufresne, Biomacromolecules 2004, 5, 1545.
- 12H. Y. Kim, D. J. Park, J. Y. Kim, S. T. Lim, Carbohydr. Polym. 2013, 98, 295.
- 13L. Dai, J. Zhang, F. Cheng, Food Chem. 2019, 278, 350.
- 14V. Z. Pinto, K. Moomand, V. G. Deon, B. Biduski, E. da R. Zavareze, G. C. Lenhani, G. H. Fidelis dos Santos, L. T. Lim, A. R. G. Dias, Starch/Staerke. 2021, 73, 2000008.
- 15W. Niu, H. Pu, G. Liu, C. Fang, Q. Yang, Z. Chen, J. Huang, Int. J. Biol. Macromol. 2020, 158, 732.
- 16J. Y. Zuo, K. Knoerzer, R. Mawson, S. Kentish, M. Ashokkumar, Ultrason. Sonochem. 2009, 16, 462.
- 17S. Hedayati, M. Niakousari, Z. Mohsenpour, Int. J. Biol. Macromol. 2020, 143, 136.
- 18L. M. Fonseca, S. L. M. El Halal, A. R. G. Dias, E. da R. Zavareze, Carbohydr. Polym. 2021, 274, 118665.
- 19Y. Hao, Y. Chen, Q. Li, Q. Gao, Carbohydr. Polym. 2018, 184, 171.
- 20A. Mukurumbira, M. Mariano, A. Dufresne, J. J. Mellem, E. O. Amonsou, Int. J. Biol. Macromol. 2017, 102, 241.
- 21D. Zhou, Z. Ma, X. Yin, X. Hu, J. I. Boye, Food Hydrocoll. 2019, 93, 386.
- 22H. Xiao, F. Yang, Q. Lin, Q. Zhang, W. Tang, L. Zhang, D. Xu, G. Q. Liu, Int. J. Biol. Macromol. 2019, 138, 556.
- 23H. Y. Kim, J. H. Lee, J. Y. Kim, W. J. Lim, S. T. Lim, Starch/Staerke 2012, 64, 367.
- 24K. Roy, R. Thory, A. Sinhmar, A. K. Pathera, V. Nain, Int. J. Biol. Macromol. 2020, 144, 242.
- 25V. Nain, K. S. Sandhu, Int. J. Pharma Biol. Sci. 2018, 9, 304.
- 26R. Hoover, T. Hughes, H. J. Chung, Q. Liu, Food Res. Int. 2010, 43, 399.
- 27Q. Zhang, Y. Zhou, W. Yue, W. Qin, H. Dong, T. Vasanthan, Trends Food Sci. Technol. 2021, 109, 169.
- 28V. Z. Pinto, V. G. Deon, K. Moomand, N. L. Vanier, D. Pilatti-Riccio, E. da R. Zavareze, L. T. Lim, A. R. G. Dias, Starch/Staerke. 2019, 71, https://doi.org/10.1002/star.201800173.
10.1002/star.201800173 Google Scholar
- 29C. C. Pinto, P. H. Campelo, S. Michielon de Souza, J. Appl. Polym. Sci. 2020, 137, 49529.
- 30C. C. Pinto, E. A. Sanches, M. T. P. S. Clerici, M. T. Pereira, P. H. Campelo, S. Michielon de Souza, Food Hydrocoll. 2021, 117, 106682.
10.1016/j.foodhyd.2021.106682 Google Scholar
- 31S. Wang, L. Copeland, Crit. Rev. Food Sci. Nutr. 2013, 55, 1081.
10.1080/10408398.2012.684551 Google Scholar
- 32R. F. Tester, J. Karkalas, X. Qi, J. Cereal Sci. 2004, 39, 151.
- 33P. Ambigaipalan, R. Hoover, E. Donner, Q. Liu, Food Chem. 2014, 143, 175.
- 34V. Vamadevan, R. Hoover, E. Bertoft, K. Seetharaman, Biopolymers 2014, 101, 871.
- 35E. D. R. Zavareze, A. R. G. Dias, Carbohydr. Polym. 2011, 83, 317.
- 36L. Jayakody, R. Hoover, Carbohydr. Polym. 2008, 74, 691.
- 37V. Vamadevan, E. Bertoft, D. V. Soldatov, K. Seetharaman, Carbohydr. Polym. 2013, 98, 1045.
- 38F. Haq, H. Yu, L. Wang, L. Teng, M. Haroon, R. U. Khan, S. Mehmood, Bilal-Ul-Amin, R. S. U., A. Khan, A. Nazir, Carbohydr. Res. 2019, 476, 12.
- 39X. Wang, F. Wen, S. Zhang, R. Shen, W. Jiang, J. Liu, Int. J. Biol. Macromol. 2017, 96, 807.
- 40P. Chatakanonda, R. Wansuksri, K. Sriroth, Kasetsart J. – Nat. Sci. 2011, 45, 284.
- 41R. Czechowska-Biskup, B. Rokita, S. Lotfy, P. Ulanski, J. M. Rosiak, Carbohydr. Polym. 2005, 60, 175.
- 42D. Wang, F. Hou, X. Ma, W. Chen, L. Yan, T. Ding, X. Ye, D. Liu, Int. J. Biol. Macromol. 2020, 148, 493.
- 43R. Kizil, J. Irudayaraj, K. Seetharaman, J. Agric. Food Chem. 2002, 50, 3912.
- 44R. H. Wilson, M. T. Kalichevsky, S. G. Ring, P. S. Belton, Carbohydr. Res. 1987, 166, 162.
- 45W. F. Wolkers, A. E. Oliver, F. Tablin, J. H. Crowe, Carbohydr. Res. 2004, 339, 1077.
- 46B. Sun, Y. Tian, B. Wei, L. Chen, Y. Bi, Z. Jin, Int. J. Biol. Macromol. 2017, 97, 67.
- 47Yangsheng, S. A. Wu, Cereal Chem. 1990, 67, 202.
- 48R. Vermeylen, B. Goderis, J. A. Delcour, Carbohydr. Polym. 2006, 64, 364.
- 49D. Lecorre, J. Bras, A. Dufresne, Carbohydr. Polym. 2012, 87, 658.