Starchy Films as a Sustainable Alternative in Food Industry: Current Research and Applications
Shubhi Singh
Department of Biotechnology, Jaypee Institute of Information Technology, Noida, Uttar Pradesh, 201309 India
Search for more papers by this authorCorresponding Author
Smriti Gaur
Department of Biotechnology, Jaypee Institute of Information Technology, Noida, Uttar Pradesh, 201309 India
E-mail: [email protected]
Search for more papers by this authorNisha Sharma
Department of Biotechnology, Jaypee Institute of Information Technology, Noida, Uttar Pradesh, 201309 India
Search for more papers by this authorShubhi Singh
Department of Biotechnology, Jaypee Institute of Information Technology, Noida, Uttar Pradesh, 201309 India
Search for more papers by this authorCorresponding Author
Smriti Gaur
Department of Biotechnology, Jaypee Institute of Information Technology, Noida, Uttar Pradesh, 201309 India
E-mail: [email protected]
Search for more papers by this authorNisha Sharma
Department of Biotechnology, Jaypee Institute of Information Technology, Noida, Uttar Pradesh, 201309 India
Search for more papers by this authorAbstract
The overconsumption of nonbiodegradable materials, particularly plastics, has had a significant and detrimental impact on the environment. Advancements in research sector have led to the development of biodegradable materials, namely starch-based biodegradable films, which have the potential to reduce this environmental impact. Starch is a unique biopolymer with distinctive chemical, physical, mechanical, thermal, and optical properties that make it an attractive alternative to nonbiodegradable and harmful materials. This review paper comprehensively discusses the properties of starch and the techniques involved in transforming native starch into starch-based films. Further a broad overview of recent research on combining starch with several composites to enhance the physicochemical properties has been discussed herein. In addition, this paper also discusses recent insights into the development of starch-based composite films and their potential applications in food packaging systems. Future studies must focus on the development of starch composites that strike a balance between different versatile properties of the biopolymer. Additionally, a critical examination of the interactions at the molecular level will help to expand our understanding of this sustainable biopolymer. Ultimately, the findings of this review paper will provide valuable insights for researchers and industry professionals interested in the development and utilization of starch-based biodegradable films.
Conflict of Interest
The authors declare no conflict of interest.
References
- 1P. Mahendra, M. Devrani, A. Hadush, Beverage Food World 2019, 46, 21.
- 2K. W. Meereboer, M. Misra, A. K. Mohanty, Green Chem. 2020, 22, 5519.
- 3C. Wen Yi, D. Ying Ying Tang, K. ShiongKhoo, A. Ng Kay Lup, K. Wayne Chew, Environ. Sci. Ecotechnology 2020, 4, 100065.
- 4T. Masoumeh, H. YousefniaPasha, R. Tabatabaeekoloor, E. Pesaranhajiabbas, Compr. Rev. Food Sci. Food Saf. 2021, 20, 5321.
- 5F. Yezhi, E. G. Dudley, Compr. Rev. Food Sci. Food Saf. 2021, 20, 3404.
- 6F. Mahmoud Soltani, K. Mohi-Alden, M. Omid, Food Res. Int. 2021, 141, 110113.
- 7M. C. Biswas, B. Jony, P. K. Nandy, R. A. Chowdhury, S. Halder, D. Kumar, S. Ramakrishna, M. Hassan, M. A. Ahsan, M. E. Hoque, M. A. Imam, J. Polym. Environ. 2021, 30, 51.
- 8L. D. Pérez-Vergara, M. T. Cifuentes, A. P. Franco, C. E. Pérez-Cervera, R. D. Andrade-Pizarro, NFS J. 2020, 21, 39.
10.1016/j.nfs.2020.09.002 Google Scholar
- 9H. Eghbaljoo, I. K. Sani, M. A. Sani, S. Rahati, E. Mansouri, E. Molaee-Aghaee, N. Fatourehchi, A. Kadi, A. Arab, K. Sarabandi, K. Samborska, Int. J. Biol. Macromol. 2022, 222, 2327.
- 10M. Y. Khalid, Z. U. Arif, Food Packag. Shelf Life 2022, 33, 100892.
- 11A. Rashidinejad, S. Boostani, A. Babazadeh, A. Rehman, A. Rezaei, S. Akbari-Alavijeh, R. Shaddel, S. M. Jafari, Food Res. Int. 2021, 142, 110186.
- 12V. Gupta, D. Biswas, S. Roy, Materials 2022, 15, 5899.
- 13L. J. L. Iversen, K. Rovina, J. M. Vonnie, P. Matanjun, K. H. Erna, N. M. N. Aqilah, W. X. L. Felicia, A. A. Funk, Molecules 2022, 27, 5604.
- 14M. L. Sanyang, S. M. Sapuan, M. Jawaid, M. R. Ishak, J. Sahari, Food Packag. Shelf Life 2016, 7, 326.
- 15L. Zhang, Z. Liu, X. Han, Y. Sun, X. Wang, Int. J. Biol. Macromol. 2019, 134, 807.
- 16M. L. Sanyang, S. M. Sapuan, M. Jawaid, M. R. Ishak, J. Sahari, J. Food Sci. Technol. 2016, 53, 326.
- 17S. M. Noorbakhsh-Soltani, M. M. Zerafat, S. Sabbaghi, Carbohydr. Polym. 2018, 189, 48.
- 18Y. L. Chung, H. M. Lai, Cereal Chem. 2005, 82, 131.
- 19A. Cano, A. Jiménez, M. Cháfer, C. Gónzalez, A. Chiralt, Carbohydr. Polym. 2014, 111, 543.
- 20G. Hu, J. Chen, J. Gao, Carbohydr. Polym. 2009, 76, 291.
- 21Z. Ma, X. Hu, J. I. Boye, Crit. Rev. Food Sci. Nutr. 2020, 60, 276.
- 22P. Silveira Hornung, S. Ávila, F. B. Apea-Bah, J. Liu, G. Lopes Teixeira, R. Hoffmann Ribani, J. Polym. Environ. 2020, 28, 1696.
- 23B. Dereje, Int. J. Biol. Macromol. 2021, 187, 911.
- 24M. A. Butt, Coatings 2022, 12, 1115.
- 25M. Zdanowicz, K. Wilpiszewska, T. Spychaj, Carbohydr. Polym. 2018, 200, 361.
- 26C. G. Vargas, T. M. H. Costa, A. O. Rios, S. H. Flôres, Food Hydrocoll. 2017, 65, 96.
- 27J. Colivet, R. A. Carvalho, Ind. Crops Prod. 2017, 95, 599.
- 28A. Edhirej, S. Sapuan, M. Jawaid, N. Zahari, Starch–Stärke 2016, 69, 1e11.
- 29J. Tarique, S. M. Sapuan, A. Khalina, Sci. Rep. 2021, 11, 13900.
- 30A. L. Charles, N. Motsa, A. A. Abdillah, Polymers 2022, 14, 3462.
- 31H. Shaghaleh, X. Xu, S. Wang, RSC Adv. 2018, 8, 825.
- 32M. B. Agustin, B. Ahmmad, E. R. P. De Leon, J. L. Buenaobra, J. R. Salazar, F. Hirose, Polym. Compos. 2013, 34, 1325.
- 33S. Punia, Int. J. Biol. Macromol. 2020, 144, 578.
- 34M. Rosseto, D. D. Krein, N. P. Balbé, A. J. Sci, Food Agric. 2019, 99, 6671.
- 35S. Arora, D. Singh, A. Rajput, A. Bhatia, A. Kumar, H. Kaur, P. Sharma, P. Kaur, S. Singh, S. Attri, H. S. Buttar, Funct. Foods Health Dis. 2021, 11, 179.
- 36A. Das, C. A. Chatham, J. J. Fallon, C. E. Zawaski, E. L. Gilmer, C. B. Williams, M. J. Bortner, Addit. Manuf. 2020, 34, 101218.
- 37C. M. Clarkson, S. M. El AwadAzrak, E. S. Forti, G. T. Schueneman, R. J. Moon, J. P. Youngblood, Adv. Mater. 2021, 3, 2000718.
10.1002/adma.202000718 Google Scholar
- 38V. Campos-Requena, B. Rivas, M. Pérez, C. Figueroa, N. Figueroa, E. Sanfuentes, Postharvest Biol. Biotechnol. 2017, 129, 29.
- 39J. Mendes, R. Paschoalin, V. Carmona, A. Sena Neto Marques, J. Marconcini, L. Mattoso, E. Medeiros, J. Oliveira, Carbohydr. Polym. 2016, 137, 452.
- 40O. López, M. Ninago, M. Lencina, M. García, N. Andreucetti, A. Ciolino, M. Villar, Carbohydr. Polym. 2015, 126, 83.
- 41M. Hietala, A. Mathew, K. Oksman, Eur. Polym. J. 2013, 49, 950.
- 42M. Ramos, A. Valdés, A. Beltran, M. C. Garrigós, Coatings 2016, 6, 41.
- 43A. Muñoz-Bonilla, C. Echeverria, Á. Sonseca, M. P. Arrieta, M. Fernández-García, Materials 2019, 12, 641.
- 44N. Yang, F. Zou, H. Tao, L. Guo, B. Cui, Y. Fang, L. Lu, Z. Wu, C. Yuan, M. Zhao, P. Liu, Int. J. Biol. Macromol. 2023, 236, 124006.
- 45X. Z. Tang, P. Kumar, S. Alavi, K. P. Sandeep, Crit. Rev. Food Sci. Nutr. 2012, 52, 426.
- 46F. Vasconcelos, R. L. Reis, A. Martins, N. M. Neves, Electrospun Nanofibers :Principles, Technology and Novel Applications, Springer, 2022, pp. 251–295.
- 47G. T. V. Prabu, B. Dhurai, A. Saxena, J. Polym. Res. 2020, 27, 47.
- 48Y. Li, J. Zhu, H. Cheng, G. Li, H. Cho, M. Jiang, Q. Gao, X. Zhang, Adv. Mater. Technol. 2021, 6, 2100410.
- 49C. Zhang, F. Feng, H. Zhang, Trends Food Sci. Technol. 2018, 80, 175.
- 50T. Alqahtani, Biomass Convers. Biorefin. 2022, 1, https://doi.org/10.1007/s13399-022-03344-w
- 51A. A. Emir, E. Yildiz, Y. Aydogdu, G. Sumnu, S. Sahin, Legume Sci. 2021, 3, e90.
10.1002/leg3.90 Google Scholar
- 52J. Porras-Saavedra, L. Ricaurte, N. C. Pérez-Pérez, M. X. Quintanilla-Carvajal, Colloids Surf. A 2022, 649, 129456.
- 53A. López-Córdoba, S. Estevez-Areco, S. Goyanes, Carbohydr. Polym. 2019, 215, 377.
- 54S. Rawat, S. Saxena, in Tribology of Polymer and Polymer Composites for Industry 4.0, Springer, Singapore 2021, pp. 129–160.
10.1007/978-981-16-3903-6_8 Google Scholar
- 55T. C. Yadav, P. Saxena, A. K. Srivastava, A. K. Singh, R. K. Yadav, R. Prasad, V. Pruthi, Advanced Functional Textiles and Polymers: Fabrication, Processing and Applications, Wiley, 2019, pp. 365–403.
- 56K. Wadaugsorn, T. Panrong, P. Wongphan, N. Harnkarnsujarit, Ind. Crops Prod. 2022, 176, 114311.
- 57M. B. Aga, A. H. Dar, G. A. Nayik, P. S. Panesar, F. Allai, S. A. Khan, R. Shams, J. F. Kennedy, A. Altaf, Int. J. Biol. Macromol. 2021, 192, 197.
- 58M. A. Akhlaghi, R. Bagherpour, H. Kalhori, Constr. Build. Mater. 2020, 241, 118061.
- 59M. Koosha, S. Hamedi, Prog. Org. Coat. 2019, 127, 338.
- 60G. Baysal, B. Y. Çelik, J. Environ. Sci. Health, Part B 2019, 54, 79.
- 61I. Shahabi-Ghahfarrokhi, A. Babaei-Ghazvini, Int. J. Biol. Macromol. 2019, 124, 922.
- 62M. Przybysz-Romatowska, J. Haponiuk, K. Formela, Polym. Degrad. Stab. 2020, 182, 109383.
- 63Z. Li, C. Wei, Int. J. Biol. Macromol. 2020, 163, 2084.
- 64Z. Han, R. Shi, D. W. Sun, Trends Food Sci. Technol. 2020, 97, 126.
- 65J. Promsorn, N. Harnkarnsujarit, Food Control 2022, 142, 109273.
- 66C. Karthik, D. G. Caroline, S. PandiPrabha, Polym. Bull. 2021, https://doi.org/10.1007/s00289-021-03901-9
10.1007/s00289?021?03901?9 Google Scholar
- 67R. Akhter, F. A. Masoodi, T. A. Wani, S. A. Rather, Int. J. Biol. Macromol. 2019, 137, 1245.
- 68R. Chawla, S. Sivakumar, H. Kaur, Carbohydr. Polym. Technol. Appl. 2021, 2, 100024.
- 69S. P. Bangar, S. S. Purewal, M. Trif, S. Maqsood, M. Kumar, V. Manjunatha, A. V. Rusu, Foods 2021, 10, 2181.
- 70R. Syafiq, S. M. Sapuan, M. Y. M. Zuhri, R. A. Ilyas, A. Nazrin, S. F. K. Sherwani, A. Khalina, Polymers 2020, 12, 2403.
- 71B. Malhotra, A. Keshwani, H. Kharkwal, Int. J. Pharm. Pharm. Sci. 2015, 7, 10.
- 72A. Jaśkiewicz, G. Budryn, A. Nowak, M. Efenberger-Szmechtyk, Foods 2020, 9, 1696.
- 73R. Kumar, G. Ghoshal, M. Goyal, J. Food Sci. Technol. 2019, 56, 1954.
- 74P. Kumar, R. Tanwar, V. Gupta, A. Upadhyay, A. Kumar, K. K. Gaikwad, Int. J. Biol. Macromol. 2021, 187, 223.
- 75J. Jeevahan, M. Chandrasekaran, Recent Pat. Nanotechnol. 2019, 13, 222.
- 76Z. Miao, Y. Zhang, P. Lu, Int. J. Biol. Macromol. 2021, 192, 1123.
- 77N. Gürler, S. Paşa, H. Temel, Taiwan Inst. Chem. Eng. 2021, 123, 261.
- 78D. Zhang, L. Chen, J. Cai, Q. Dong, Z. U. Din, Z. Z. Hu, G. Z. Wang, W. P. Ding, J. R. He, S. Y. Cheng, Food Chem. 2021, 360, 129922.
- 79S. Zhou, X. Zhai, R. Zhang, W. Wang, L. T. Lim, H. Hou, Nanomaterials 2021, 11, 3062.
- 80T. Todhanakasem, C. Jaiprayat, T. Sroysuwan, S. Suksermsakul, R. Suwapanich, K. K. Maleenont, P. Koombhongse, B. M. Young, Polymers 2022, 14, 3232.
- 81A. Istiqomah, W. E. Prasetyo, M. Firdaus, T. Kusumaningsih, Int. J. Biol. Macromol. 2022, 210, 669.
- 82S. Wan, Q. Liu, D. Yang, P. Guo, Y. Gao, R. Mo, Y. Zhang, Food Chem. 2023, 403, 134219.