Luminescent Europium Complex-Grafted Octenyl Succinylated Starch Nanoparticles
Corresponding Author
Margarita Mondragón
Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional (CIIDIR)-Unidad Oaxaca del Instituto Politécnico Nacional, Hornos 1003, Sta. Cruz Xoxocotlán, 71230 Santa Cruz Xoxocotlán, Oaxaca, Mexico
E-mail: [email protected]
Search for more papers by this authorHaggeo Desirena
Centro de Investigaciones en Óptica (CIO), Lomas del Bosque 115, Lomas del Campestre, León, Guanajuato, 37150 Mexico
Search for more papers by this authorLuis Alberto Moreno-Ruiz
Centro de Nanociencias y Micro y Nanotecnologías (CNMN) del Instituto Politécnico Nacional, Av. Luis Enrique Erro s/n, Nueva Industrial Vallejo, Cd. De México, 07738 Mexico
Search for more papers by this authorLuis Arturo Bello-Pérez
Centro de Desarrollo de Productos Bióticos (CEPROBI) del Instituto Politécnico Nacional, Carr. Yautepec-Jojutla, km. 6, Calle CEPROBI No.8, Col. San Isidro, Yautepec, Morelos, 62731 Mexico
Search for more papers by this authorCorresponding Author
Margarita Mondragón
Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional (CIIDIR)-Unidad Oaxaca del Instituto Politécnico Nacional, Hornos 1003, Sta. Cruz Xoxocotlán, 71230 Santa Cruz Xoxocotlán, Oaxaca, Mexico
E-mail: [email protected]
Search for more papers by this authorHaggeo Desirena
Centro de Investigaciones en Óptica (CIO), Lomas del Bosque 115, Lomas del Campestre, León, Guanajuato, 37150 Mexico
Search for more papers by this authorLuis Alberto Moreno-Ruiz
Centro de Nanociencias y Micro y Nanotecnologías (CNMN) del Instituto Politécnico Nacional, Av. Luis Enrique Erro s/n, Nueva Industrial Vallejo, Cd. De México, 07738 Mexico
Search for more papers by this authorLuis Arturo Bello-Pérez
Centro de Desarrollo de Productos Bióticos (CEPROBI) del Instituto Politécnico Nacional, Carr. Yautepec-Jojutla, km. 6, Calle CEPROBI No.8, Col. San Isidro, Yautepec, Morelos, 62731 Mexico
Search for more papers by this authorAbstract
Novel luminescent starch nanoparticles are obtained by first grafting the Eu(TTA)3Phen-NH2 complex (Eu, europium; TTA, 2-thenoyltrifluoracetonato; Phen, 1,10-phenanthroline) onto octenyl succinic anhydride (OSA)-modified corn starch and then using a nanoprecipitation method. The changes in the Fourier transform infrared spectra show that the Eu complex is grafted onto the OSA-starch via amide bond formation. Transmission electron microscopy images show nanoparticles of irregular shape, with sizes in the range 35–270 nm. Eu complex-grafted OSA-starch nanoparticles (EuC-OSA-St-NPs) exhibit red luminescence emission with long luminescence lifetimes. Their good biocompatibility supports their use for biomedical applications.
Conflict of Interest
The authors declare no conflict of interest.
References
- 1R. Jiang, M. Liu, H. Huang, L. Huang, Q. Huang, Y. Wen, Q.-Y. Cao, J. Tian, X. Zhang, Y. Wei, Dyes Pigm. 2018, 149, 581.
- 2D. Wei, Y. Xue, H. Huang, M. Liu, G. Zeng, Q. Wan, L. Liu, J. Yu, X. Zhang, Y. Wei, Mater. Sci. Eng., C 2017, 81, 120.
- 3M. Liu, X. Zhang, B. Yang, F. Deng, J. Ji, Y. Yang, Z. Huang, X. Zhang, Y. Wei, RSC Adv. 2014, 4, 22294.
- 4M. Liu, X. Zhang, B. Yang, Z. Li, F. Deng, Y. Yang, X. Zhang, Y. Wei, Carbohydr. Polym. 2015, 121, 49.
- 5B. Yang, X. Zhang, X. Zhang, Z. Huang, Y. Wei, L. Tao, Mater. Today 2016, 19, 284.
- 6C. Ma, X. Zhang, L. Yang, Y. Wu, H. Liu, X. Zhang, Y. Wei, Mater. Sci. Eng., C 2016, 68, 37.
- 7D. Yang, Z. Li, L. He, Y. Deng, Y. Wang, RSC Adv. 2017, 7, 14314.
- 8L. Jia, T. Zhou, J. Xu, Z. Xu, M. Zhang, Y. Wang, Z. Li, T. Zhu, J. Mater. Sci. 2016, 51, 1324.
- 9Q. Li, J. Zhang, W. Sun, J. Yu, C. Wu, W. Qin, D. Chiu, Langmuir 2014, 30, 8607.
- 10N. Wartenberg, O. Raccurt, D. Imbert, M. Mazzanti, E. Bourgeat-Lami, J. Mater. Chem. C 2013, 1, 2061.
- 11K. Lun, Q. Ma, M. Yang, X. Dong, Y. Yang, J. Wang, W. Yu, G. Liu, Chem. Eng. J. 2015, 279, 231.
- 12N. Lv, Q. Ma, X. Dong, J. Wang, W. Yu, G. Liu, Chem. Eng. J. 2014, 243, 500.
- 13H. Peng, M. I. J. Stich, J. Yu, L. Sun, L. H. Fischer, O. S. Wolfbeis, Adv. Mater. 2010, 22, 716.
- 14W. Sun, J. Yu, R. Deng, Y. Rong, B. Fujimoto, C. Wu, H. Zhang, D. T. Chiu, Angew. Chem., Int. Ed. 2013, 52, 11294.
- 15Y. Li, Y. Tan, Z. Ning, S. Sun, Y. Gao, P. Wang, Carbohydr. Polym. 2011, 86, 291.
- 16D. Le-Corre, J. Bras, A. Dufresne, Biomacromolecules 2010, 11, 1139.
- 17M. Liu, H. Huang, K. Wang, D. Xu, Q. Wan, J. Tian, Q. Huang, F. Deng, X. Zhang, Y. Wei, Carbohydr. Polym. 2016, 142, 38.
- 18Y. Shi, D. Xu, M. Liu, L. Fu, Q. Wan, L. Mao, Y. Dai, Y. Wen, X. Zhang, Y. Wei, Mater. Sci. Eng., C 2018, 82, 204.
- 19Đ. Ačkar, J. Babić, A. Jozinović, B. Miličević, S. Jokić, R. Miličević, M. Rajič, D. Šubarić, Molecules 2005, 20, 19554.
- 20F. F. Velásquez-Barreto, L. A. Bello-Pérez, H. Yee-Madeira, C. E. Velezmoro-Sánchez, Starch/Staerke 2019, 71, 1800101.
- 21A. Rincón-Aguirre, L. A. Bello-Pérez, S. Mendoza, A. del-Real, M. E. Rodríguez-García, Starch/Staerke 2018, 70, 1700066.
- 22S. Jiang, L. Dai, Y. Qin, L. Xiong, Q. Sun, PLoS One 2016, 11, e0150043.
- 23M. Tan, G. Wang, X. Hai, Z. Ye, J. Yuan, J. Mater. Chem. 2004, 14, 2896.
- 24L. Tian, Z. Dai, L. Zhang, R. Zhang, Z. Ye, J. Wu, D. Jin, J. Yuan, Nanoscale 2012, 4, 3551.
- 25E. Juntunen, T. Myyryläinen, T. Salminen, T. Soukka, K. Pettersson, Anal. Biochem. 2012, 428, 31.
- 26K. R. Kim, Y. D. Han, H. J. Chun, K. W. Lee, D. K. Hong, K. N. Lee, H. C. Yoon, Biosensors 2017, 7, 48.
10.3390/bios7040048 Google Scholar
- 27J. A. Han, J. N. BeMiller, Carbohydr. Polym. 2007, 67, 366.
- 28A. Timgren, M. Rayner, P. Dejmek, D. Marku, M. Sjöö, Food Sci. Nutr. 2013, 1, 157.
- 29X. Song, G. He, H. Ruan, Q. Chen, Starch/Staerke 2006, 58, 109.
- 30J. Garcia-Torres, P. Bosh-Jimenez, E. Torralba-Calleja, M. Kennedy, H. Ahmed, J. Doran, D. Gutiérrez-Tauste, L. Bautista, M. D. Pirriera, J. Photochem. Photobiol. A 2014, 283, 8.
- 31R. Hui, C. Qi-He, F. Ming-Liang, X. Qiong, H. Guo-Qing, Food Chem. 2009, 114, 81.
- 32S. Cheng, X. Li, S. Xie, Y. Chen, L. J. Fan, J. Colloid Interface Sci. 2011, 356, 92.
- 33H. Zhang, H. Song, H. Yu, X. Bai, S. Li, G. Pan, Q. Dai, T. Wang, W. Li, S. Lu, X. Ren, H. Zhao, J. Phys. Chem. C 2007, 111, 6524.
- 34K. Binnemans, P. Lenaerts, K. Driesen, C. Görller-Walrand, J. Mater. Chem. 2004, 14, 191.
- 35Z. Zhou, Q. Wang, J. Lin, Y. Chen, C. Yang, Photochem. Photobiol. 2012, 88, 840.
- 36Y. Zu, J. Bi, H. Yan, H. Wang, Y. Song, B. W. Zhu, M. Tan, Nanomaterials 2016, 6, 130.
- 37H. Detert, V. Schmitt, J. Phys. Org. Chem. 2006, 19, 603.
- 38C. Yang, L. M. Fu, Y. Wang, J. P. Zhang, W. T. Wong, X. C. Ai, Y. F. Qiao, B. S. Zou, L. L. Gui, Angew. Chem., Int. Ed. 2004, 43, 5010.
- 39M. L. P. Reddy, V. Divya, R. Pavithran, Dalton Trans. 2013, 42, 15249.
- 40S. H. Hewitt, S. J. Butler, Chem. Commun. 2018, 54, 6635.
- 41T. V. Yenupuri, L. Mydlova, D. S. Agarwal, R. Sharma, R. Sakhuja, M. Makowska-Janusik, D. D. Pant, J. Phys. Chem. A 2016, 120, 6563.
- 42A. K. Parchur, R. S. Ningthoujam, RSC Adv. 2012, 2, 10859.