Efficient Charge Transfer and Effective Active Sites in Lead-Free Halide Double Perovskite S-Scheme Heterojunctions for Photocatalytic H2 Evolution
Huijun Lv
School of Physics and Physical Engineering, Qufu Normal University, Qufu, 273165 P. R. China
Search for more papers by this authorHongfei Yin
School of Physics and Physical Engineering, Qufu Normal University, Qufu, 273165 P. R. China
Search for more papers by this authorNa Jiao
School of Physics and Physical Engineering, Qufu Normal University, Qufu, 273165 P. R. China
Search for more papers by this authorChunyu Yuan
School of Physics and Physical Engineering, Qufu Normal University, Qufu, 273165 P. R. China
Search for more papers by this authorSuting Weng
Institute of Physics, Chinese Academy of Sciences, Beijing, 100190 P. R. China
Search for more papers by this authorKailing Zhou
Key Laboratory of Advanced Functional Materials, Beijing University of Technology, Beijing, 100124 P. R. China
Search for more papers by this authorYangyang Dang
School of Physics and Physical Engineering, Qufu Normal University, Qufu, 273165 P. R. China
Search for more papers by this authorXuefeng Wang
Institute of Physics, Chinese Academy of Sciences, Beijing, 100190 P. R. China
Search for more papers by this authorZhen Lu
Institute of Physics, Chinese Academy of Sciences, Beijing, 100190 P. R. China
Search for more papers by this authorCorresponding Author
Yongzheng Zhang
School of Physics and Physical Engineering, Qufu Normal University, Qufu, 273165 P. R. China
E-mail: [email protected]
Search for more papers by this authorHuijun Lv
School of Physics and Physical Engineering, Qufu Normal University, Qufu, 273165 P. R. China
Search for more papers by this authorHongfei Yin
School of Physics and Physical Engineering, Qufu Normal University, Qufu, 273165 P. R. China
Search for more papers by this authorNa Jiao
School of Physics and Physical Engineering, Qufu Normal University, Qufu, 273165 P. R. China
Search for more papers by this authorChunyu Yuan
School of Physics and Physical Engineering, Qufu Normal University, Qufu, 273165 P. R. China
Search for more papers by this authorSuting Weng
Institute of Physics, Chinese Academy of Sciences, Beijing, 100190 P. R. China
Search for more papers by this authorKailing Zhou
Key Laboratory of Advanced Functional Materials, Beijing University of Technology, Beijing, 100124 P. R. China
Search for more papers by this authorYangyang Dang
School of Physics and Physical Engineering, Qufu Normal University, Qufu, 273165 P. R. China
Search for more papers by this authorXuefeng Wang
Institute of Physics, Chinese Academy of Sciences, Beijing, 100190 P. R. China
Search for more papers by this authorZhen Lu
Institute of Physics, Chinese Academy of Sciences, Beijing, 100190 P. R. China
Search for more papers by this authorCorresponding Author
Yongzheng Zhang
School of Physics and Physical Engineering, Qufu Normal University, Qufu, 273165 P. R. China
E-mail: [email protected]
Search for more papers by this authorAbstract
The practical application of lead-free double perovskite Cs2AgBiBr6 in photocatalytic H2 evolution is still restricted due to the low activity and poor stability. The rational design of lead-free halide double perovskites heterojunctions with efficient charge transfer and effective active sites is a potential route to achieve the ideal prospect. Herein, in this work an S-scheme heterojunction of Cs2AgBiBr6 with enriched Br-vacancies and WO3 nanorods (VBr-Cs2AgBiBr6/WO3) obtaining excellent visible-light responsive photocatalytic H2 evolution performance and durable stability is reported. The S-scheme heterojunction driven by the unaligned Fermi levels of these two semiconductors ensures the efficient charge transfer at the interface, and density functional theory calculations reveal the enriched Br vacancies on Cs2AgBiBr6 (022) surfaces introduced by atom thermal vibration provide effective active sites for hydrogen evolution. The optimized VBr-Cs2AgBiBr6/WO3 S-scheme photocatalyst exhibits the photocatalytic hydrogen evolution rate of 364.89 µmol g−1 h−1 which is 4.9-fold of bare VBr-Cs2AgBiBr6 (74.44 µmol g−1 h−1) and presents long-term stability of 12 h continuous photocatalytic reaction. This work provides deep insights into the photocatalytic mechanism of VBr-Cs2AgBiBr6/WO3 S-scheme heterojunctions, which emerges a new strategy in the applications of perovskite-based photocatalysts.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available on request from the corresponding author. The data are not publicly available due to privacy or ethical restrictions.
Supporting Information
Filename | Description |
---|---|
smtd202201365-sup-0001-SuppMat.pdf2.2 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1C.-F. Fu, X. Wu, J. Yang, Adv. Mater. 2018, 30, 1802106.
- 2X. Xu, Y. Zhong, Z. Shao, Trends Chem. 2019, 1, 410.
- 3W. Wang, M. O. Tade, Z. Shao, Chem. Soc. Rev. 2015, 44, 5371.
- 4J. Wang, J. Liu, Z. Du, Z. Li, J. Energy Chem. 2021, 54, 770.
- 5S. Tasleem, M. Tahir, Renewable Sustainable Energy Rev. 2020, 132, 110073.
- 6L. Lu, X. Pan, J. Luo, Z. Sun, Chemistry 2020, 26, 16975.
- 7H. Huang, B. Pradhan, J. Hofkens, M. B. J. Roeffaers, J. A. Steele, ACS Energy Lett. 2020, 5, 1107.
- 8J. Su, Y.-q. Huang, H. Chen, J. Huang, Cryst. Res. Technol. 2020, 55, 1900222.
- 9P. Pistor, M. Meyns, M. Guc, H.-C. Wang, M. A. L. Marques, X. Alcobé, A. Cabot, V. Izquierdo-Roca, Scr. Mater. 2020, 184, 24.
- 10G. Longo, S. Mahesh, L. R. V. Buizza, A. D. Wright, A. J. Ramadan, M. Abdi-Jalebi, P. K. Nayak, L. M. Herz, H. J. Snaith, ACS Energy Lett. 2020, 5, 2200.
- 11H. Lei, D. Hardy, F. Gao, Adv. Funct. Mater. 2021, 31, 2105898.
- 12P. Chen, Y. Huang, Z. Shi, X. Chen, N. Li, Materials 2021, 14, 2469.
- 13Z. Zhang, Y. Liang, H. Huang, X. Liu, Q. Li, L. Chen, D. Xu, Angew. Chem., Int. Ed. 2019, 58, 7263.
- 14D. Wu, Y. Tao, Y. Huang, B. Huo, X. Zhao, J. Yang, X. Jiang, Q. Huang, F. Dong, X. Tang, J. Catal. 2021, 397, 27.
- 15Y. Zhang, Z. Sun, Z. Wang, Y. Zang, X. Tao, Int. J. Hydrogen Energy 2022, 47, 8829.
- 16Y. Wang, H. Huang, Z. Zhang, C. Wang, Y. Yang, Q. Li, D. Xu, Appl. Catal., B 2021, 282, 119570.
- 17T. Wang, D. Yue, X. Li, Y. Zhao, Appl. Catal., B 2020, 268, 118399.
- 18S. Kumar, I. Hassan, M. Regue, S. Gonzalez-Carrero, E. Rattner, M. A. Isaacs, S. Eslava, J. Mater. Chem. A 2021, 9, 12179.
- 19F. Xu, K. Meng, B. Cheng, S. Wang, J. Xu, J. Yu, Nat. Commun. 2020, 11, 4613.
- 20L. Zhou, Y. Li, S. Yang, M. Zhang, Z. Wu, R. Jin, Y. Xing, Chem. Eng. J. 2021, 420, 130361.
- 21Q. Xu, L. Zhang, B. Cheng, J. Fan, J. Yu, Chem 2020, 6, 1543.
- 22J. Low, C. Jiang, B. Cheng, S. Wageh, A. A. Al-Ghamdi, J. Yu, Small Methods 2017, 1, 1700080.
- 23L. Zhang, J. Zhang, H. Yu, J. Yu, Adv. Mater. 2022, 34, 2107668.
- 24H. Li, W. Tu, Y. Zhou, Z. Zou, Adv. Sci. 2016, 3, 1500389.
- 25N. Li, X. Chen, J. Wang, X. Liang, L. Ma, X. Jing, D.-L. Chen, Z. Li, ACS Nano 2022, 16, 3332.
- 26J. Wang, Y. Shi, Y. Wang, Z. Li, ACS Energy Lett. 2022, 7, 2043.
- 27H. Zhao, J. Liu, C.-F. Li, X. Zhang, Y. Li, Z.-Y. Hu, B. Li, Z. Chen, J. Hu, B.-L. Su, Adv. Funct. Mater. 2022, 32, 2112831.
- 28M. Tang, Y. Ao, P. Wang, C. Wang, J. Hazard. Mater. 2020, 387, 121713.
- 29K. Tang, Y. Zhang, Y. Shi, J. Cui, X. Shu, Y. Wang, J. Liu, J. Wang, H. H. Tan, Y. Wu, J. Mater. Chem. C 2018, 6, 12206.
- 30M. Shi, G. Li, W. Tian, S. Jin, X. Tao, Y. Jiang, E. A. Pidko, R. Li, C. Li, Adv. Mater. 2020, 32, 2002137.
- 31M. F. Daniel, B. Desbat, J. C. Lassegues, B. Gerand, M. Figlarz, J. Solid State Chem. 1987, 67, 235.
- 32D. Lim, H. Suh, M. Suryawanshi, G. Y. Song, J. Y. Cho, J. H. Kim, J. H. Jang, C. W. Jeon, A. Cho, S. Ahn, Adv. Energy Mater 2018, 8, 1702605.
- 33G. I. Tóth, G. Tegze, T. Pusztai, L. Gránásy, Phys. Rev. Lett. 2012, 108, 025502.
- 34M. Humayun, H. Ullah, J. Cao, W. Pi, Y. Yuan, S. Ali, A. A. Tahir, P. Yue, A. Khan, Z. Zheng, Q. Fu, W. Luo, Nano-Micro Lett. 2020, 12, 1.
- 35J. Yang, P. Zhang, S.-H. Wei, J. Phys. Chem. Lett. 2017, 9, 31.
- 36Z.-J. Bai, S. Tian, T.-Q. Zeng, L. Chen, B.-H. Wang, B. Hu, X. Wang, W. Zhou, J.-B. Pan, S. Shen, J.-K. Guo, T.-L. Xie, Y.-J. Li, C.-T. Au, S.-F. Yin, ACS Catal. 2022, 12, 15157.
- 37W. Cui, L. Chen, J. Li, Y. Zhou, Y. Sun, G. Jiang, S. C. Lee, F. Dong, Appl. Catal., B 2019, 253, 293.
- 38H. Chen, C.-R. Zhang, Z.-J. Liu, J.-J. Gong, W. Wang, Y.-Z. Wu, H.-S. Chen, Mater. Sci. Semicond. Process. 2021, 123, 105541.
- 39J. Zhou, M. Li, L. Ning, R. Zhang, M. S. Molokeev, J. Zhao, S. Yang, K. Han, Z. Xia, J. Phys. Chem. Lett. 2019, 10, 1337.
- 40L. Wang, R. Wang, T. Qiu, L. Yang, Q. Han, Q. Shen, X. Zhou, Y. Zhou, Z. Zou, Nano Lett. 2021, 21, 10260.
- 41Q. M. Sun, J. J. Xu, F. F. Tao, W. Ye, C. Zhou, J. H. He, J. M. Lu, Angew. Chem., Int. Ed. 2022, 61, e202200872.
- 42Y. Ao, K. Wang, P. Wang, C. Wang, J. Hou, Appl. Catal. B 2016, 194, 157.
- 43B. Wang, W. Zhang, G. Liu, H. Chen, Y.-X. Weng, H. Li, P. K. Chu, J. Xia, Adv. Funct. Mater. 2022, 32, 2202885.
- 44J. Wang, Z. Chen, G. Zhai, Y. Men, Appl. Surf. Sci. 2018, 462, 760.
- 45Y. Zhang, L. Shi, H. Yuan, X. Sun, X. Li, L. Duan, Q. Li, Z. Huang, X. Ban, D. Zhang, Chem. Eng. J. 2022, 430, 132820.
- 46F. H. Tian, Z. Liu, J. Tian, Y. Zhang, Chem. Eng. J. 2020, 31, 2095.
- 47C. Cheng, B. He, J. Fan, B. Cheng, S. Cao, J. Yu, Adv. Mater. 2021, 33, 2100317.
- 48J. Huang, C. Li, X. Hu, J. Fan, B. Zhao, E. Liu, Chin. J. Chem. 2022, 41, 26.
- 49Y. X. Zhang, R. J. Field, J. Phys. Chem. Lett. 1990, 94, 7154.
- 50Y. Wu, P. Wang, X. Zhu, Q. Zhang, Z. Wang, Y. Liu, G. Zou, Y. Dai, M.-H. Whangbo, B. Huang, Adv. Mater. 2018, 30, 1704342.
- 51J. Sheng, Y. He, J. Li, C. Yuan, H. Huang, S. Wang, Y. Sun, Z. Wang, F. Dong, ACS Nano 2020, 14, 13103.
- 52X. Liu, G. Shao, Y. Zhang, X. Liang, C. Li, W. Xiang, Mol. Catal. 2021, 499, 111305.
- 53G. Chen, P. Wang, Y. Wu, Q. Zhang, Q. Wu, Z. Wang, Z. Zheng, Y. Liu, Y. Dai, B. Huang, Adv. Mater. 2020, 32, 2001344.
- 54Z. He, Q. Tang, X. Liu, X. Yan, K. Li, D. Yue, Energy Fuels 2021, 35, 15005.
- 55Y. Jiang, K. Li, X. Wu, M. Zhu, H. Zhang, K. Zhang, Y. Wang, K. P. Loh, Y. Shi, Q. H. Xu, ACS Appl. Mater. Interfaces 2021, 13, 10037.
- 56B.-H. Wang, B. Gao, J.-R. Zhang, L. Chen, G. Junkang, S. Shen, C.-T. Au, K. Li, M.-Q. Cai, S.-F. Yin, Phys. Chem. Chem. Phys. 2021, 23, 12439.
- 57L. Wang, H. Liu, Y. Zhang, O. F. Mohammed, ACS Energy Lett. 2019, 5, 87.
- 58Y. Zhang, J. Du, R. Luo, Z. Wang, Z. Wang, J. Han, P. Liu, T. Fujita, Q. Xue, M. Chen, Nano Energy 2019, 58, 552.
- 59Z.-F. Huang, J. Song, X. Wang, L. Pan, K. Li, X. Zhang, L. Wang, J.-J. Zou, Nano Energy 2017, 40, 308.
- 60W. Zhan, Y. Yuan, L. Sun, Y. Yuan, X. Han, Y. Zhao, Small 2019, 15, 1901024.
- 61Q. Zheng, J. Wang, X. Li, Y. Bai, Y. Li, J. Wang, Y. Shi, X. Jiang, Z. Li, ACS Macro Lett. 2022, 4, 1638.