Magneto-Electrodeposition of 3D Cross-Linked NiCo-LDH for Flexible High-Performance Supercapacitors
Hui Li
Key Laboratory of Materials Physics, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031 P. R. China
University of Science and Technology of China, Hefei, 230026 P. R. China
Search for more papers by this authorCorresponding Author
Shuai Lin
Key Laboratory of Materials Physics, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031 P. R. China
E-mail: [email protected][email protected]
Search for more papers by this authorHan Li
Key Laboratory of Materials Physics, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031 P. R. China
University of Science and Technology of China, Hefei, 230026 P. R. China
Search for more papers by this authorZiqiang Wu
Key Laboratory of Materials Physics, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031 P. R. China
University of Science and Technology of China, Hefei, 230026 P. R. China
Search for more papers by this authorQian Chen
Key Laboratory of Materials Physics, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031 P. R. China
University of Science and Technology of China, Hefei, 230026 P. R. China
Search for more papers by this authorLili Zhu
Key Laboratory of Materials Physics, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031 P. R. China
University of Science and Technology of China, Hefei, 230026 P. R. China
Search for more papers by this authorChangdian Li
Key Laboratory of Materials Physics, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031 P. R. China
University of Science and Technology of China, Hefei, 230026 P. R. China
Search for more papers by this authorCorresponding Author
Xuebin Zhu
Key Laboratory of Materials Physics, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031 P. R. China
E-mail: [email protected][email protected]
Search for more papers by this authorYuping Sun
Key Laboratory of Materials Physics, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031 P. R. China
High Magnetic Field Laboratory, HFIPS, Chinese Academy of Sciences, Hefei, 230031 P. R. China
Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093 P. R. China
Search for more papers by this authorHui Li
Key Laboratory of Materials Physics, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031 P. R. China
University of Science and Technology of China, Hefei, 230026 P. R. China
Search for more papers by this authorCorresponding Author
Shuai Lin
Key Laboratory of Materials Physics, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031 P. R. China
E-mail: [email protected][email protected]
Search for more papers by this authorHan Li
Key Laboratory of Materials Physics, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031 P. R. China
University of Science and Technology of China, Hefei, 230026 P. R. China
Search for more papers by this authorZiqiang Wu
Key Laboratory of Materials Physics, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031 P. R. China
University of Science and Technology of China, Hefei, 230026 P. R. China
Search for more papers by this authorQian Chen
Key Laboratory of Materials Physics, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031 P. R. China
University of Science and Technology of China, Hefei, 230026 P. R. China
Search for more papers by this authorLili Zhu
Key Laboratory of Materials Physics, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031 P. R. China
University of Science and Technology of China, Hefei, 230026 P. R. China
Search for more papers by this authorChangdian Li
Key Laboratory of Materials Physics, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031 P. R. China
University of Science and Technology of China, Hefei, 230026 P. R. China
Search for more papers by this authorCorresponding Author
Xuebin Zhu
Key Laboratory of Materials Physics, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031 P. R. China
E-mail: [email protected][email protected]
Search for more papers by this authorYuping Sun
Key Laboratory of Materials Physics, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031 P. R. China
High Magnetic Field Laboratory, HFIPS, Chinese Academy of Sciences, Hefei, 230031 P. R. China
Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093 P. R. China
Search for more papers by this authorAbstract
Layered double hydroxides (LDHs) with outstanding redox activity on flexible current collectors can serve as ideal cathode materials for flexible hybrid supercapacitors in wearable energy storage devices. Electrodeposition is a facile, time-saving, and economical technique to fabricate LDHs. The limited loading mass induced by insufficient mass transport and finite exposure of active sites, however, greatly hinders the improvement of areal capacity. Herein, magneto-electrodeposition (MED) under high magnetic fields up to 9 T is developed to fabricate NiCo-LDH on flexible carbon cloth (CC) as well as Ti3C2Tx functionalized CC. Owing to the magneto-hydrodynamic effect induced by magnetic–electric field coupling, the loading mass and exposure of active sites are significantly increased. Moreover, a 3D cross-linked nest-like microstructure is constructed. The MED-derived NiCo-LDH delivers an ultrahigh areal capacity of 3.12 C cm–2 at 1 mA cm–2 and as-fabricated flexible hybrid supercapacitors show an excellent energy density with an outstanding cycling stability. This work provides a novel route to improve electrochemical performances of layered materials through MED technique.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available in the supplementary material of this article.
Supporting Information
Filename | Description |
---|---|
smtd202101320-sup-0001-SuppMat.pdf3 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1Z. Gao, C. Bumgardner, N. Song, Y. Zhang, J. Li, X. Li, Nat. Commun. 2016, 7, 11586.
- 2J. Zhang, J. Liu, L. Xi, Y. Yu, N. Chen, S. Sun, W. Wang, K. Lange, B. Zhang, J. Am. Chem. Soc. 2018, 140, 3876.
- 3J. Zhang, H. Hu, Z. Li, X. Lou, Angew. Chem., Int. Ed. 2016, 55, 3982.
- 4J. Chen, X. Wang, J. Wang, P. S. Lee, Adv. Energy Mater. 2016, 6, 8.
- 5X. Cai, X. Shen, L. Ma, Z. Ji, C. Xu, A. Yuan, Chem. Eng. J. 2015, 268, 251.
- 6X. Han, J. Li, J. Lu, S. Luo, J. Wan, B. Li, C. Hu, X. Cheng, Nano Energy 2021, 86, 106079.
- 7Z. Yuan, H. Wang, J. Shen, P. Ye, J. Ning, Y. Zhong, Y. Hu, J. Mater. Chem. A 2020, 8, 22163.
- 8C. Li, Z. Zhang, R. Liu, Small 2020, 16, 2003777.
- 9X. Zhou, X. Li, D. Chen, D. Zhao, X. Huang, J. Mater. Chem. A 2018, 6, 24603.
- 10H. Liang, J. Lin, H. Jia, S. Chen, J. Qi, J. Cao, T. Lin, W. Fei, J. Feng, J. Mater. Chem. A 2018, 6, 15040.
- 11A. Mishra, N. P. Shetti, S. Basu, K. R. Reddy, T. M. Aminabhavi, ChemElectroChem 2019, 6, 5771.
- 12Y. Ouyang, X. Xia, H. Ye, L. Wang, X. Jiao, W. Lei, Q. Hao, ACS Appl. Mater. Interfaces 2018, 10, 3549.
- 13H. Li, R. Chen, M. Ali, H. Lee, M. J. Ko, Adv. Funct. Mater. 2020, 30, 2002739.
- 14T. Lv, M. Liu, D. Zhu, L. Gan, T. Chen, Adv. Mater. 2018, 30, 1705489.
- 15Y. Hu, D. Ye, B. Luo, H. Hu, X. Zhu, S. Wang, L. Li, S. Peng, L. Wang, Adv. Mater. 2018, 30, 1703824.
- 16B. Wang, S. Liu, L. Liu, W. Song, Y. Zhang, S. Wang, Z. Han, J. Mater. Chem. A 2021, 9, 2948.
- 17R. Chen, J. Xue, X. Gao, C. Yu, Q. Chen, J. Zhou, G. Sun, W. Huang, Nanoscale 2020, 12, 22075.
- 18G. M. Tomboc, J. Kim, Y. Wang, Y. Son, J. Li, J. Y. Kim, K. Lee, J. Mater. Chem. A 2021, 9, 4528.
- 19Y. Yang, L. Dang, M. J. Shearer, H. Sheng, W. Li, J. Chen, P. Xiao, Y. Zhang, R. J. Hamers, S. Jin, Adv. Energy Mater. 2018, 8, 1703189.
- 20Z. Wu, Z. Zou, J. Huang, F. Gao, ACS Appl. Mater. Interfaces 2018, 10, 26283.
- 21Y. Wei, Y. Lv, B. Guo, J. Gong, J. Energy Chem. 2021, 57, 587.
- 22T. Yang, J. Ye, S. Chen, S. Liao, H. Chen, L. Yang, X. Xu, F. Wang, Electrochim. Acta 2020, 362, 137081.
- 23Z. Yan, H. Sun, X. Chen, H. Liu, Y. Zhao, H. Li, W. Xie, F. Cheng, J. Chen, Nat. Commun. 2018, 9, 2373.
- 24Z. Xing, L. Gan, J. Wang, X. Yang, J. Mater. Chem. A 2017, 5, 7744.
- 25M. Datta, D. Landolt, Electrochim. Acta 2000, 45, 2535.
- 26E. Budevski, G. Staikov, W. J. Lorenz, Electrochim. Acta 2000, 45, 2559.
- 27L. Wan, D. Chen, J. Liu, Y. Zhang, J. Chen, M. Xie, C. Du, J. Power Sources 2020, 465, 228293.
- 28H. Matsushima, H. Takahashi, T. Suzuki, M. Ueda, I. Mogi, Electrochem. Commun. 2020, 115, 106733.
- 29N. Labchir, A. Hannour, A. A. Hssi, D. Vincent, P. Ganster, A. Ihlal, J. Alloys Compd. 2021, 868, 159196.
- 30W. Ding, L. Hu, J. Dai, X. Tang, R. Wei, Z. Sheng, C. Liang, D. Shao, W. Song, Q. Liu, M. Chen, X. Zhu, S. Chou, X. Zhu, Q. Chen, Y. Sun, S. Dou, ACS Nano 2019, 13, 1694.
- 31P. Dai, T. Yan, L. Hu, Z. Pang, Z. Bao, M. Wu, G. Li, J. Fang, Z. Peng, J. Mater. Chem. A 2017, 5, 19203.
- 32W. Ding, L. Hu, Z. Sheng, J. Dai, X. Zhu, X. Tang, Z. Hui, Y. Sun, CrystEngComm 2016, 18, 6134.
- 33C. Wang, Y. Zhong, W. Ren, Z. Lei, Z. Ren, J. Jia, A. Jiang, Appl. Surf. Sci. 2008, 254, 5649.
- 34M. Ebadi, W. J. Basirun, Y. Alias, M. R. Mahmoudian, S. Y. Leng, Mater. Charact. 2012, 66, 46.
- 35N. Labchir, A. Hannour, A. A. Hssi, D. Vincent, A. Ihlal, M. Sajieddine, Curr. Appl. Phys. 2021, 25, 33.
- 36M. Yu, Z. Wang, J. Liu, F. Sun, P. Yang, J. Qiu, Nano Energy 2019, 63, 103880.
- 37L. Hu, M. Li, X. Wei, H. Wang, Y. Wu, J. Wen, W. Gu, C. Zhu, Chem. Eng. J. 2020, 398, 125605.
- 38H. Li, F. Musharavati, E. Zalenezhad, X. Chen, K. N. Hui, K. S. Hui, Electrochim. Acta 2018, 261, 178.
- 39M. Ebadi, W. J. Basirun, Y. Alias, Adv. Mat. Res. 2011, 264-265, 1389.
- 40A. Sugiyama, R. Morimoto, T. Osaka, I. Mogi, M. Asanuma, M. Miura, Y. Oshikiri, Y. Yamauchi, R. Aogaki, Sci. Rep. 2016, 6, 19795.
- 41S. Mohanta, T. Z. Fahidy, J. Appl. Electrochem. 1976, 6, 211.
- 42R. Aogaki, K. Fueki, T. Mukaibo, Denki Kagaku oyobi Kogyo Butsuri Kagaku 1975, 43, 509.
- 43R. Aogaki, K. Fueki, T. Mukaibo, Denki Kagaku oyobi Kogyo Butsuri Kagaku 1976, 44, 89.
- 44R. Morimoto, M. Miura, A. Sugiyama, M. Miura, Y. Oshikiri, I. Mogi, S. Takagi, Y. Yamauchi, R. Aogaki, J. Electroanal. Chem. 2019, 847, 113255.
- 45R. Morimoto, M. Miura, A. Sugiyama, M. Miura, Y. Oshikiri, I. Mogi, S. Takagi, Y. Yamauchi, R. Aogaki, J. Electroanal. Chem. 2019, 848, 113254.
- 46R. Morimoto, M. Miura, A. Sugiyama, M. Miura, Y. Oshikiri, Y. Kim, I. Mogi, S. Takagi, Y. Yamauchi, R. Aogaki, J. Phys. Chem. B 2020, 124, 11854.
- 47A. Ruas, P. Pochon, J.-P. Simonin, P. Moisy, Dalton Trans. 2010, 39, 10148.
- 48W. Song, B. Wang, X. Cao, Q. Chen, Z. Han, Inorg. Chem. Front. 2021, 8, 5100.
- 49J. Qi, Y. Yan, Y. Cai, J. Cao, J. Feng, Adv. Funct. Mater. 2021, 31, 2006030.
- 50D. Gui, Z. Wei, J. Chen, L. Yan, J. Li, P. Zhang, C. Zhao, J. Mater. Chem. A 2021, 9, 463.
- 51Q. Yang, Q. Wang, Y. Long, F. Wang, L. Wu, J. Pan, J. Han, Y. Lei, W. Shi, S. Song, Adv. Energy Mater. 2020, 10, 1903193.
- 52A. Huang, M. F. El-Kady, X. Chang, M. Anderson, C. Lin, C. L. Turner, R. B. Kaner, Adv. Energy Mater. 2021, 11, 2100768.
- 53R. Fan, Q. Mu, Z. We, Y. Peng, M. Shen, J. Mater. Chem. A 2020, 8, 9871.
- 54M. Liu, K.-A. Min, B. Han, L. Y. S. Lee, Adv. Energy Mater. 2021, 11, 2101281.
- 55M. Dvoyashkin, D. Leistenschneider, J. D. Evans, M. Sander, L. Borchardt, Adv. Energy Mater. 2021, 11, 2100700.
- 56H. Peng, B. Yao, X. Wei, T. Liu, T. Kou, P. Xiao, Y. Zhang, Y. Li, Adv. Energy Mater. 2019, 9, 1803665.
- 57J. Xu, C. Ma, J. Cao, Z. Chen, Dalton Trans. 2017, 46, 3276.
- 58N. L. W. Septiani, Y. V. Kaneti, Y. Guo, B. Yuliarto, X. Jiang, Y. Ide, N. Nugraha, H. K. Dipojono, A. Yu, Y. Sugahara, D. Golberg, Y. Yamauchi, ChemSusChem 2020, 13, 1645.
- 59H. Jiang, Z. Wei, L. Ma, Y. Yuan, J. Hong, X. Wu, D. P. Leonard, J. Holoubek, J. J. Razink, W. F. Stickle, F. Du, T. Wu, J. Lu, X. Ji, Angew. Chem., Int. Ed. 2019, 58, 5286.
- 60R. Ma, J. Liang, K. Takada, T. Sasaki, J. Am. Chem. Soc. 2011, 133, 613.
- 61Y. Guo, X. Hong, Y. Wang, Q. Li, J. Meng, R. Dai, X. Liu, L. He, L. Mai, Adv. Funct. Mater. 2019, 29, 1809004.
- 62Y. Wang, C. Shi, Y. Chen, D. Li, G. Wu, C. Wang, L. Guo, Electrochim. Acta 2021, 376, 138040.
- 63X. Wang, C. Yan, A. Sumboja, J. Yan, P. S. Lee, Adv. Energy Mater. 2014, 4, 1301240.
- 64H. Li, Y. Liu, S. Lin, H. Li, Z. Wu, L. Zhu, C. Li, X. Wang, X. Zhu, Y. Sun, J. Power Sources 2021, 497, 229882.
- 65X. Cao, Z. Han, Chem. Commun. 2019, 55, 1746.
- 66Y. Gogotsi, R. M. Penner, ACS Nano 2018, 12, 2081.
- 67Q. Qin, L. Chen, T. Wei, X. Liu, Small 2019, 15, 1803639.
- 68J. Zhao, Z. Li, X. Yuan, Z. Yang, M. Zhang, A. Meng, Q. Li, Adv. Energy Mater. 2018, 8, 1702787.
- 69V. Augustyn, P. Simon, B. Dunn, Energy Environ. Sci. 2014, 7, 1597.
- 70T. Brezesinski, J. Wang, S. H. Tolbert, B. Dunn, Nat. Mater. 2010, 9, 146.
- 71A. Jayakumar, R. P. Antony, R. Wang, J.-M. Lee, Small 2017, 13, 1603102.
- 72H. Lu, J. Chen, Q. Tian, J. Colloid Interface Sci. 2018, 513, 342.
- 73W. Su, F. Wu, L. Fang, J. Hu, L. Liu, T. Guan, X. Long, H. Luo, M. Zhou, J. Alloys Compd. 2019, 799, 15.
- 74S. C. Sekhar, G. Nagaraju, J. S. Yu, Nano Energy 2017, 36, 58.
- 75K. Li, B. Zhao, H. Zhang, H. Lv, J. Bai, H. Ma, P. Wang, W. Li, J. Si, X. Zhu, Y. Sun, Adv. Funct. Mater. 2021, 31, 2103073.
- 76C. Zhang, J. Xiao, X. Lv, L. Qian, S. Yuan, S. Wang, P. Lei, J. Mater. Chem. A 2016, 4, 16516.
- 77H. Xie, S. Tang, D. Li, S. Vongehr, X. Meng, ChemSusChem 2017, 10, 2301.
- 78L. Wang, S. Li, F. Huang, X. Yu, M. Liu, H. Zhang, J. Power Sources 2019, 439, 227103.