P-Doped SiOx/Si/SiOx Sandwich Anode for Li-Ion Batteries to Achieve High Initial Coulombic Efficiency and Low Capacity Decay
Jinsol Im
Department Materials Science and Chemical Engineering, Hanyang University, 55 Hanyangdaehak-ro, Sangrok-gu, Ansan, Gyeonggi-do, 15588 Republic of Korea
Search for more papers by this authorJung-Dae Kwon
Surface Materials Division, Korea Institute of Materials Science (KIMS), 797 Changwon-daero, Seongsan-gu, Changwon, Gyeongnam, 51508 Republic of Korea
Search for more papers by this authorCorresponding Author
Dong-Ho Kim
Surface Materials Division, Korea Institute of Materials Science (KIMS), 797 Changwon-daero, Seongsan-gu, Changwon, Gyeongnam, 51508 Republic of Korea
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Sukeun Yoon
Division of Advanced Materials Engineering, Kongju National University, 1223–24 Cheonan-daero, Seobuk-gu, Cheonan, Chungnam, 31080 Republic of Korea
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Kuk Young Cho
Department Materials Science and Chemical Engineering, Hanyang University, 55 Hanyangdaehak-ro, Sangrok-gu, Ansan, Gyeonggi-do, 15588 Republic of Korea
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorJinsol Im
Department Materials Science and Chemical Engineering, Hanyang University, 55 Hanyangdaehak-ro, Sangrok-gu, Ansan, Gyeonggi-do, 15588 Republic of Korea
Search for more papers by this authorJung-Dae Kwon
Surface Materials Division, Korea Institute of Materials Science (KIMS), 797 Changwon-daero, Seongsan-gu, Changwon, Gyeongnam, 51508 Republic of Korea
Search for more papers by this authorCorresponding Author
Dong-Ho Kim
Surface Materials Division, Korea Institute of Materials Science (KIMS), 797 Changwon-daero, Seongsan-gu, Changwon, Gyeongnam, 51508 Republic of Korea
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Sukeun Yoon
Division of Advanced Materials Engineering, Kongju National University, 1223–24 Cheonan-daero, Seobuk-gu, Cheonan, Chungnam, 31080 Republic of Korea
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Kuk Young Cho
Department Materials Science and Chemical Engineering, Hanyang University, 55 Hanyangdaehak-ro, Sangrok-gu, Ansan, Gyeonggi-do, 15588 Republic of Korea
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorAbstract
Initial reversibility and excellent capacity retention are the key requirements for the success of high-capacity electrode materials in high-performance Li-ion batteries and pose a number of challenges to development. Silicon has been regarded as a promising anode material because of its outstanding theoretical capacity. However, it suffers from colossal volume change and continuous formation of unstable solid electrolyte interphases during lithiation/delithiation processes, which eventually result in low initial Coulombic efficiency (ICE) and severe capacity decay. To circumvent these challenges, a new sandwich Si anode (SiOx/Si/SiOx) free from prelithiation is designed and fabricated using a combination of P-doping and SiOx layers. This new anode exhibits high conductivity and specific capacity compared to other Si thin-film electrodes. Cells with SiOx/Si/SiOx anodes deliver the highest presently known ICE value among Si thin-film anodes of 90.4% with a charge capacity of 3534 mA h g−1. In addition, the SiOx layer has sufficient mechanical stability to accommodate the large volume change of the intervening Si layer during charge-discharge cycling, exhibiting high potential for practical applications of Si thin-film anodes.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available in the supplementary material of this article.
Supporting Information
Filename | Description |
---|---|
smtd202101052-sup-0001-SuppMat.pdf1.9 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1Y. He, L. Jiang, T. Chen, Y. Xu, H. Jia, R. Yi, D. Xue, M. Song, A. Genc, C. Bouchet-Marquis, L. Pullan, T. Tessner, J. Yoo, X. Li, J.-G. Zhang, S. Zhang, C. Wang, Nat. Nanotechnol. 2021, 16, 1113.
- 2R. Zhu, Z. Wang, X. Hu, X. Liu, H. Wang, Adv. Funct. Mater. 2021, 31, 2101487.
- 3W. Li, X. Sun, Y. Yu, Small Methods 2017, 1, 1600037.
- 4X. Li, X. Sun, X. Hu, F. Fan, S. Cai, C. Zheng, G. D. Stucky, Nano Energy 2020, 77, 105143.
- 5Y. Jin, B. Zhu, Z. Lu, N. Liu, J. Zhu, Adv. Energy Mater. 2017, 7, 1700715.
- 6J. Wang, Y. Cui, Nat. Energy 2020, 5, 361.
- 7Y. Yang, X. Qu, X. Zhang, Y. Liu, J. Hu, J. Chen, M. Gao, H. Pan, Adv. Mater. 2020, 32, 1908285.
- 8C. L. Berhaut, D. Z. Dominguez, D. Tomasi, C. Vincens, C. Haon, Y. Reynier, W. Porcher, N. Boudet, N. Blanc, G. A. Chahine, S. Tardif, S. Pouget, S. Lyonnard, Energy Storage Mater. 2020, 29, 190.
- 9a) Y. Shen, X. Shen, M. Yang, J. Qian, Y. Cao, H. Yang, Y. Luo, X. Ai, Adv. Funct. Mater. 2021, 31, 2101181; b) C. Sun, X. Zhang, C. Li, K. Wang, X. Sun, Y. Ma, Energy Storage Mater. 2020, 32, 497.
- 10C. Li, W. Zhu, B. Lao, X. Huang, H. Yin, Z. Yang, H. Wang, D. Chen, Y. Xu, ChemElectroChem 2020, 7, 3743.
- 11K. Schroder, J. Alvarado, T. A. Yersak, J. Li, N. Dudney, L. J. Webb, Y. S. Meng, K. J. Stevenson, Chem. Mater. 2015, 27, 5531.
- 12F. Zhang, J. Yang, Emergent Mater. 2020, 3, 369.
- 13H. Jia, J. Zheng, J. Song, L. Luo, R. Yi, L. Estevez, W. Zhao, R. Patel, X. Li, J.-G. Zhang, Nano Energy 2018, 50, 589.
- 14S. Huang, L. Zhang, L. Liu, L. Liu, J. Li, H. Hu, J. Wang, F. Ding, O. G. Schmidt, Energy Storage Mater. 2018, 12, 23.
- 15P. M. Ette, P. B. Bhargav, N. Ahmed, B. Chandra, A. Rayarfrancis, K. Ramesha, Electrochim. Acta 2020, 330, 135318.
- 16S. Guo, H. Li, H. Bai, Z. Tao, J. Chen, J. Power Sources 2014, 248, 1141.
- 17A. Mukanova, A. Nurpeissova, A. Urazbayev, S.-S. Kim, M. Myronov, Z. Bakenov, Electrochim. Acta 2017, 258, 800.
- 18M. Haro, V. Singh, S. Steinhauer, E. Toulkeridou, P. Grammatikopoulos, M. Sowwan, Adv. Sci. 2017, 4, 1700180.
- 19F. Dou, Y. Weng, G. Chen, L. Shi, H. Liu, D. Zhang, Chem. Eng. J. 2020, 387, 124106.
- 20E. Park, H. Yoo, J. Lee, M.-S. Park, Y.-J. Kim, H. Kim, ACS Nano 2015, 9, 7690.
- 21Z. Li, J. Jin, Z. Yuan, W. Yang, Mater. Sci. Semicond. Process. 2021, 121, 105300.
- 22a) L. Tong, P. Wang, A. Chen, F. Qiu, W. Fang, J. Yang, C. Wang, Y. Yang, Carbon 2019, 153, 592; b) K. Kong, G. Xu, Y. Lan, C. Jin, Z. Yue, X. Li, F. Sun, H. Huang, J. Yuan, L. Zhou, Appl. Surf. Sci. 2020, 515, 146026.
- 23M. Salah, C. Hall, P. Murphy, C. Francis, R. Kerr, B. Stoehr, S. Rudd, M. Fabretto, J. Power Sources 2021, 506, 230194.
- 24J. Im, E. K. Jang, S. Kim, S. Yoon, D.-H. Kim, K. Y. Cho, Chem. Eng. J. 2020, 402, 126292.
- 25A. Mukanova, A. Jetybayeva, S.-T. Myung, S.-S. Kim, Z. Bakenov, Mater. Today Energy 2018, 9, 49.
- 26G. Das, S. Bose, S. Mukhopadhyay, C. Banerjee, A. K. Barua, Silicon 2019, 11, 487.
- 27S. Calnan, O. Gabriel, I. Rothert, M. Werth, S. Ring, B. Stannowski, R. Schlatmann, ACS Appl. Mater. Interfaces 2015, 7, 19282.
- 28Z. Li, H. Zhao, P. Lv, Z. Zhang, Y. Zhang, Z. Du, Y. Teng, L. Zhao, Z. Zhu, Adv. Funct. Mater. 2018, 28, 1605711.
- 29I. Jung, J. Y. Son, S.-J. Park, K.-Y. Rhee, Res. Chem. Intermed. 2014, 40, 2477.
- 30X. Su, Q. Wu, J. Li, X. Xiao, A. Lott, W. Lu, B. W. Sheldon, J. Wu, Adv. Energy Mater. 2014, 4, 1300882.
- 31D. M. Zhigunov, G. N. Kamaev, P. K. Kashkarov, V. A. Volodin, Appl. Phys. Lett. 2018, 113, 023101.
- 32G. Yang, X. Li, Y. Cheng, M. Wang, D. Ma, A. P. Sokolov, S. V. Kalinin, G. M. Veith, J. Nanda, Nat. Commun. 2021, 12, 578.
- 33M. Jiao, Y. Wang, C. Ye, C. Wang, W. Zhang, C. Liang, J. Alloys Compd. 2020, 842, 155774.
- 34G. Zheng, Y. Xiang, L. Xu, H. Luo, B. Wang, Y. Liu, X. Han, W. Zhao, S. Chen, H. Chen, Q. Zhang, T. Zhu, Y. Yang, Adv. Energy Mater. 2018, 8, 1801718.
- 35J. Yang, H. Jo, S.-W. Choi, D.-W. Kang, J.-D. Kwon, J. Mater. Sci. Technol. 2019, 35, 1563.
- 36a) A. Al-Obeidi, D. Kramer, S. T. Boles, R. Mönig, C. V. Thompson, Appl. Phys. Lett. 2016, 109, 071902;
b) M. T. Demirkan, L. Trahey, T. Karabacak, Thin Solid Films 2016, 600, 126;
c) C.-Y. Wu, C.-C. Chang, J.-G. Duh, J. Power Sources 2016, 325, 64;
d) B. Jerliu, E. Hüger, M. Horisberger, J. Stahn, H. Schmidt, J. Power Sources 2017, 359, 415;
e) A. R. Jiménez, R. Klöpsch, R. Wagner, U. C. Rodehorst, M. Kolek, R. Nölle, M. Winter, T. Placke, ACS Nano 2017, 11, 4731;
f) X. Luo, J. Lang, S. Lv, Z. Li, Front. Mater. Sci. 2018, 12, 147;
g) A. R. Jiménez, R. Nölle, R. Wagner, J. Hüsker, M. Kolek, R. Schmuch, M. Winter, T. Placke, Nanoscale 2018, 10, 2128;
h)J. Wang, L. Liao, Y. Li, J. Zhao, F. Shi, K. Yan, A. Pei, G. Chen, G. Li, Z. Lu, Y. Cui, Nano Lett. 2018, 18, 7060;
i) Z. Cao, B. Xia, X. Xie, J. Zhao, Electrochim. Acta 2019, 313, 311;
j) H. S. Sitinamaluwa, H. Li, K. C. Wasalathilake, A. Wolff, T. Tesfamichael, S. Zhang, C. Yan, Nano Mater. Sci. 2019, 1, 70;
10.1016/j.nanoms.2019.02.005 Google Scholark) B. Zhu, G. Liu, G. Lv, Y. Mu, Y. Zhao, Y. Wang, X. Li, P. Yao, Y. Deng, Y. Cui, J. Zhu, Sci. Adv. 2019, 5, eaax0651; l) L. Tong, P. Wang, W. Fang, X. Guo, W. Bao, Y. Yang, S. Shen, F. Qiu, ACS Appl. Mater. Interfaces 2020, 12, 29242.
- 37J. Niu, S. Zhang, Y. Niu, H. Song, X. Chen, J. Zhou, B. Cao, J. Mater. Chem. A 2015, 3, 19892.
- 38H. Lim, H. Kim, S.-O. Kim, K. J. Kim, W. Choi, Chem. Eng. J. 2021, 404, 126581.
- 39J. Réthoré, H. Zheng, H. Li, J. Li, K. E. Aifantis, J. Power Sources 2018, 400, 383.