Ultra-Thick Graphene Films with High Thermal Conductivity Through a Non-Stacking Strategy
Shujing Yang
State Key Laboratory of Materials for Integrated Circuits, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050 P. R. China
College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049 P. R. China
Search for more papers by this authorHaolong Zheng
State Key Laboratory of Materials for Integrated Circuits, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050 P. R. China
College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049 P. R. China
Search for more papers by this authorCorresponding Author
Peng He
State Key Laboratory of Materials for Integrated Circuits, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050 P. R. China
College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049 P. R. China
E-mail: [email protected]; [email protected]
Search for more papers by this authorYonghua Lu
Shanghai Zhongke Yueda Material Technology Co., Ltd, Shanghai, 201800 P. R. China
Search for more papers by this authorNa Guo
Shanghai Zhongke Yueda Material Technology Co., Ltd, Shanghai, 201800 P. R. China
Search for more papers by this authorYanhong Li
Shanghai Zhongke Yueda Material Technology Co., Ltd, Shanghai, 201800 P. R. China
Search for more papers by this authorCorresponding Author
Guqiao Ding
State Key Laboratory of Materials for Integrated Circuits, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050 P. R. China
College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049 P. R. China
E-mail: [email protected]; [email protected]
Search for more papers by this authorShujing Yang
State Key Laboratory of Materials for Integrated Circuits, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050 P. R. China
College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049 P. R. China
Search for more papers by this authorHaolong Zheng
State Key Laboratory of Materials for Integrated Circuits, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050 P. R. China
College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049 P. R. China
Search for more papers by this authorCorresponding Author
Peng He
State Key Laboratory of Materials for Integrated Circuits, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050 P. R. China
College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049 P. R. China
E-mail: [email protected]; [email protected]
Search for more papers by this authorYonghua Lu
Shanghai Zhongke Yueda Material Technology Co., Ltd, Shanghai, 201800 P. R. China
Search for more papers by this authorNa Guo
Shanghai Zhongke Yueda Material Technology Co., Ltd, Shanghai, 201800 P. R. China
Search for more papers by this authorYanhong Li
Shanghai Zhongke Yueda Material Technology Co., Ltd, Shanghai, 201800 P. R. China
Search for more papers by this authorCorresponding Author
Guqiao Ding
State Key Laboratory of Materials for Integrated Circuits, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050 P. R. China
College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049 P. R. China
E-mail: [email protected]; [email protected]
Search for more papers by this authorAbstract
The growing heat flow density from the miniaturization trend of electronic devices seriously challenges the heat diffusion in electronic systems. Consequently, there is an increasing demand for thermal management materials with both thermal conductivity (K) and material thickness (d) to effectively transfer devices’ heat flux. Graphene films (GFs) with high K have attracted significant attention, but achieving both high K and large d remains challenging due to graphene's intrinsic properties and fabrication limitations. Here, a novel non-stacking strategy is proposed for fabricating monolithic thick GFs. By utilizing the ultra-small-sized graphene oxide slurry, introducing multi-line shearing, and utilizing a specially designed frame, stable and highly oriented thick films are successfully produced. These thick films eliminate the interfacial defects and enable a monolithic GF with ultra-high K over 1600 W m−1 K−1 (improved by 17.03%) when d exceeds 300 µm compared to the conventional multi-layer stacking method. While the K × d value, which represents the film's heat transfer capability, increased by 21.34% to 0.544 W K−1, the chip's operating temperature further decreased by 3.3 °C. The proposed strategy provides a promising solution to produce high-performance thick GFs and represents an effective route for heat dissipation of electronic systems.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
smll202500855-sup-0001-SuppMat.docx2.8 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1M. M. Waldrop, Nature. 2016, 530, 144.
- 2C. E. Leiserson, N. C. Thompson, J. S. Emer, B. C. Kuszmaul, B. W. Lampson, D. Sanchez, T. B. Schardl, Science. 2020, 368, 9744.
- 3A. L. Moore, L. Shi, Mater. Today. 2014, 17, 163.
- 4H. Song, J. Liu, B. Liu, J. Wu, H. Cheng, F. Kang, Joule. 2018, 2, 442.
- 5J. Jyoti, B. P. Singh, M. Sandhu, S. K. Tripathi, Nanomaterials, Springer Nature, Singapore 2023, pp. 205–239.
10.1007/978-981-19-7963-7_8 Google Scholar
- 6Y. Ji, C. Li, H. Wu, S. Guo, F. Zhang, J. Qiu, Compos. B. 2025, 290, 111965.
- 7O. H. Kwon, T. Ha, D. Kim, B. Kim, Y. S. Kim, T. J. Shin, W. Koh, H. S. Lim, Y. Yoo, ACS Appl. Mater. Interfaces. 2018, 10, 34625.
- 8X. Kong, G. Song, Y. Chen, X. Chen, M. Li, L. Li, Y. Wang, P. Gong, Z. Zhang, J. Zhang, R. Yang, K. Xu, T. Cai, K. Chang, Z. Pan, B. Wang, X. Wu, C. Lin, K. Nishimura, N. Jiang, J. Yu, Compos. Sci. Technol. 2023, 241, 110141.
- 9D. Wang, H. Wei, Y. Lin, P. Jiang, H. Bao, X. Huang, Compos. Sci. Technol. 2021, 213, 108953.
- 10A. A. Balandin, Nat. Mater. 2011, 10, 569.
- 11D. L. Nika, A. A. Balandin, Rep. Prog. Phys. 2017, 80, 036502.
- 12E. Pop, V. Varshney, A. K. Roy, MRS Bull. 2012, 37, 1273.
- 13A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, C. N. Lau, Nano Lett. 2008, 8, 902.
- 14H. Zheng, P. He, S. Yang, G. Ding, Carbon. 2025, 233, 119908.
- 15H. Song, F. Kang, Acta Phys. -Chim. Sin. 2021, 38, 2101013.
10.3866/PKU.WHXB202101013 Google Scholar
- 16Z. Li, P. He, Y. Ping, N. Guo, X. Zeng, S. Yang, G. Ding, ACS Appl. Nano Mater. 2022, 5, 10471.
- 17Y. Zhang, H. Han, N. Wang, P. Zhang, Y. Fu, M. Murugesan, M. Edwards, K. Jeppson, S. Volz, J. Liu, Adv. Funct. Mater. 2015, 25, 4430.
- 18D. Liu, H. Fu, T. Yang, W. Wang, J. Zhao, K. Wu, C. Wu, Z. Yong, Y. Zhang, Mater. Res. Express. 2022, 9, 036405.
- 19S. Ghosh, W. Bao, D. L. Nika, S. Subrina, E. P. Pokatilov, C. N. Lau, A. A. Balandin, Nat. Mater. 2010, 9, 555.
- 20H. Yuan, J. Ye, C. Ye, S. Yin, J. Li, K. Su, G. Fang, Y. Wu, Y. Zheng, M. Ge, R. Tang, G. Feng, Y. Qu, Y. Zhu, Chem. Mater. 2021, 33, 1731.
- 21K. Xiong, C. Ma, J. Wang, X. Ge, W. Qiao, L. Ling, Ceram. Int. 2023, 49, 8847.
- 22X. Chen, X. Deng, N. Y. Kim, Y. Wang, Y. Huang, L. Peng, M. Huang, X. Zhang, X. Chen, D. Luo, B. Wang, X. Wu, Y. Ma, Z. Lee, R. S. Ruoff, Carbon. 2018, 132, 294.
- 23L. Peng, Z. Xu, Z. Liu, Y. Guo, P. Li, C. Gao, Adv. Mater. 2017, 29, 1700589.
- 24X. Meng, H. Pan, C. Zhu, Z. Chen, T. Lu, D. Xu, Y. Li, S. Zhu, ACS Appl. Mater. Interfaces. 2018, 10, 22611.
- 25F. Xu, R. Chen, Z. Lin, X. Sun, S. Wang, W. Yin, Q. Peng, Y. Li, X. He, J. Mater. Chem. C. 2018, 6, 12321.
- 26J. Lin, P. Li, Y. Liu, Z. Wang, Y. Wang, X. Ming, C. Gao, Z. Xu, ACS Nano. 2021, 15, 4824.
- 27K. Ozawa, T. Okuzono, M. Doi, Jpn. J. Appl. Phys. 2006, 45, 8817.
- 28T. Okuzono, K. Ozawa, M. Doi, Phys. Rev. Lett. 2006, 97, 136103.
- 29J. Kim, L. J. Cote, F. Kim, W. Yuan, K. R. Shull, J. Huang, J. Am. Chem. Soc. 2010, 132, 8180.
- 30U. Khan, A. O'Neill, M. Lotya, S. De, J. N. Coleman, Small. 2010, 6, 864.
- 31B. Konkena, S. Vasudevan, J. Phys. Chem. C. 2014, 118, 21706.
- 32S. Yang, Z. Tao, Q. Kong, J. Li, X. Li, X. Yan, J. Liu, Y. Tong, Z. Liu, Chem. Eng. J. 2023, 473, 145330.
- 33Z. Pan, Y. Wu, H. Yuan, R. Tang, L. Ji, B. Zhou, C. Ye, D. Zhang, Y. Qu, H. Ji, Y. Zhu, Carbon. 2021, 182, 799.
- 34N. Wang, M. K. Samani, H. Li, L. Dong, Z. Zhang, P. Su, S. Chen, J. Chen, S. Huang, G. Yuan, X. Xu, B. Li, K. Leifer, L. Ye, J. Liu, Small. 2018, 14, 1801346.
- 35H. Zheng, P. He, S. Yang, Y. Lu, N. Guo, Y. Li, G. Wang, G. Ding, Adv. Sci. 2024, 12, 2410913.
- 36Y. Hao, X. Ming, J. Lu, M. Cao, P. Zhang, H. Shi, K. Li, Y. Gao, L. Wang, W. Fang, Y. Chen, L. Zhang, H. Sun, W. Gao, Y. Liu, Z. Xu, C. Gao, Adv. Funct. Mater. 2024, 34, 2400110.
- 37S. Chen, Q. Wang, M. Zhang, R. Huang, Y. Huang, J. Tang, J. Liu, Carbon. 2020, 167, 270.
- 38P. Zhang, P. He, Y. Zhao, S. Yang, Q. Yu, X. Xie, G. Ding, Adv. Funct. Mater. 2022, 32, 2202697.
- 39X. Zhang, Y. Guo, Y. Liu, Z. Li, W. Fang, L. Peng, J. Zhou, Z. Xu, C. Gao, Carbon. 2020, 167, 249.
- 40H. Bai, C. Li, X. Wang, G. Shi, J. Phys. Chem. C. 2011, 115, 5545.
- 41S. G. Kim, S. H. Wang, C. M. Ok, S. Y. Jeong, H. S. Lee, Carbon. 2017, 125, 280.
- 42S. Yang, P. He, H. Zheng, D. Xiao, G. Ding, Chem. Eng. J. 2024, 493, 152803.
- 43Y. Quan, P. He, J. Chen, N. Guo, Y. Li, H. Zheng, J. Zhang, X. Ren, Y. Zhang, W. Bao, K. Qi, G. Ding, Carbon. 2024, 226, 119179.
- 44Y. Liu, P. Li, F. Wang, W. Fang, Z. Xu, W. Gao, C. Gao, Carbon. 2019, 155, 462.
- 45S. Lin, S. Ju, J. Zhang, G. Shi, Y. He, D. Jiang, RSC Adv. 2019, 9, 1419.
- 46A. Akbari, S. R. Joshi, C. Wang, D. C. C. Mojica, S. Chatterjee, V. Modepalli, C. Cahoon, C. W. Bielawski, P. Bakharev, G. H. Kim, R. S. Ruoff, Matter. 2020, 2, 1198.
- 47R. Ranjbarzadeh, A. Karimipour, M. Afrand, A. H. M. Isfahani, A. Shirneshan, Appl. Therm. Eng. 2017, 126, 538.
- 48M. A. Nazari, R. Ghasempour, M. H. Ahmadi, G. Heydarian, M. B. Shafii, Int. Commun. Heat Mass Transfer. 2018, 91, 90.
- 49B. Konkena, S. Vasudevan, J. Phys. Chem. Lett. 2012, 3, 867.
- 50W. Du, H. Wu, H. Chen, G. Xu, C. Li, Carbon. 2020, 158, 568.
- 51S. Hamze, D. Cabaleiro, P. Estellé, J. Mol. Liq. 2021, 325, 115207.
- 52S. Hong, S. S. Yoo, P. J. Yoo, J. Mater. Chem. C. 2019, 7, 9380.
- 53S. K. Basu, L. E. Scriven, L. F. Francis, A. V. McCormick, Prog. Org. Coat. 2005, 53, 1.
- 54S. Arai, M. Doi, Eur. Phys. J. E. 2012, 35, 57.
- 55P. G. de Gennes, Eur. Phys. J. E. 2002, 7, 31.
- 56P. Zhang, X. Ming, Y. Liu, X. Wang, H. Shi, Y. Hao, J. Lu, Z. Liu, H. Lai, Y. Zhang, W. Gao, Z. Xu, C. Gao, J. Therm. Sci. 2024, 33, 1480.
- 57P. Zhang, J. Zhou, P. He, S. Yang, G. Ding, Carbon. 2022, 191, 477.
- 58S. Wan, X. Li, Y. Chen, N. Liu, S. Wang, Y. Du, Z. Xu, X. Deng, S. Dou, L. Jiang, Q. Cheng, Nat. Commun. 2022, 13, 7340.
- 59S. Wan, Y. Chen, S. Fang, S. Wang, Z. Xu, L. Jiang, R. H. Baughman, Q. Cheng, Nat. Mater. 2021, 20, 624.
- 60G. Xiao, H. Li, Z. Yu, H. Niu, Y. Yao, Nano Micro Lett. 2024, 16, 17.
- 61S. Ronca, T. Igarashi, G. Forte, S. Rastogi, Polymer. 2017, 123, 203.